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Entorhinal grid cells tile a horizontal environment’s surface 
with a hexagonal-close-packed (HCP) array of approximately 
circular firing fields, the regular spacing of which is widely 

thought to provide a distance metric supporting the brain’s spatial 
cognitive map1. An unresolved but central question is whether this 
map can be three-dimensional (3D), as befits the behavioral ecol-
ogy of most vertebrates. Hippocampal place cells, the core of the 
cognitive map in mammals2 and probably birds3 (but see ref. 4), 
form spatially defined firing fields in a volumetric environment in 
both bats5,6 and rats7, suggesting a capacity for the vertebrate brain 
to fully map volumetric space. We investigated whether this map 
could be founded on a regular 3D entorhinal grid.

Theoretical considerations suggest that in a volumetric space, 
the corresponding (and theoretically optimal) grid structure for 3D 
spatial mapping would be an HCP or face-centered-cubic (FCC) lat-
tice of firing fields8–13 (Fig. 1a). However, previous studies on vertical 
surfaces found that grid fields formed vertical stripes14 or expanded 
blobs15 depending on the locomotor affordances (movement con-
straints) of the surface. In the present study, using wireless telemetry 
in rats exploring a cubic lattice maze (Fig. 1b–e), we investigated 
whether grid fields are indeed close packed (that is, optimally orga-
nized), randomly dispersed or somewhere in between (irregular 
with local order). We show that grid cells do stably express focal, 
3D fields, but these are larger, more variably sized/shaped and more 
widely spaced than on a horizontal surface, and are distributed in 
a random pattern throughout the volume. We explore the implica-
tions of this for spatial computations.

Results
We recorded medial entorhinal cortex (mEC) grid cells in seven 
rats freely foraging within a 3D climbing lattice maze7,16–18 (approxi-
mately 1 m3; Fig. 1b,c) and a standard horizontal arena (1.2 m2; Fig. 
1e and Extended Data Fig. 1a). These recordings were made in an 
‘A–B–A’ format: rats were recorded first in the horizontal arena 
(‘Arena 1’ trial) followed by the 3D lattice maze (‘Lattice’ trial), with 
a final session back in the original horizontal arena (‘Arena 2’ trial; 

Fig. 1e). As we used 3D tracking in all settings, grid fields were ana-
lyzed volumetrically even on the arena.

Rats fully explored 3D, but anisotropically. Rats fully explored the 
environments, but in the lattice they spent more time in the bot-
tom layer (Fig. 1d and Extended Data Fig. 1b–e). As we have found 
previously18, they mainly moved parallel to the maze boundaries 
and prioritized horizontal movements over vertical ones (Extended 
Data Fig. 1f; see ref. 17 for in-depth behavior analysis).

Grid cells exhibited significant and stable spatial activity in the  
lattice. We recorded a total of 115 grid cells in layers II–IV of the 
mEC. For the main analysis, we selected only those cells that had sta-
ble grid firing in both arena sessions (n = 47; Fig. 1f,g, Supplementary 
Fig. 1 for all grid cells, Supplementary Video 1 for rotating plots, 
Supplementary Fig. 2 for all histology and Supplementary Table 1 
for per-rat summary). Analyses for the remaining 68 cells (which 
were stable in one of the two arena sessions but not in both) are 
shown in Extended Data Fig. 5; including or omitting these cells did 
not change the results.

The grid cells selected for the main analysis were stable through-
out recording, as shown by similar firing rates throughout sessions, 
high grid scores (a measure of hexagonality) in the arena sessions 
and high cross-correlation between the two arena sessions. Spatial 
correlations were also high between the first and second arena trial 
maps, and cluster waveforms were stable throughout recording. 
These effects can be seen in Extended Data Fig. 2.

In both the arena and lattice maze sessions, grid cell firing was 
spatially stable between session halves (halves versus shuffled: 
P < 0.001 in all cases, one-sample Student’s t-tests; no difference 
between mazes: P = 0.20, one-way analysis of variance (ANOVA); 
Extended Data Fig. 3), albeit with greater stability in the horizontal 
XY plane of the lattice than the vertical XZ or YZ planes (Extended 
Data Fig. 3b). Furthermore, grid cell activity was also spatially stable 
when comparing data separated into horizontal and vertical move-
ment epochs (Extended Data Fig. 4), confirming that there was no 
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Fig. 1 | Grid cells produced firing fields in a 3D climbing lattice. a, Hypothetical grid field packings: standard horizontal hexagonal field configuration 
(i); exploded close-packed lattice, in this case HCP (layers color coded for clarity) (ii); units of the two optimal packings: HCP (left) alternates two 
layer-arrangements whereas FCC (right) has three (iii); columnar field configuration (iv); and random field configuration (v). b, Lattice maze schematic.  
c, Lattice maze photographs. See Extended Data Fig. 1a for arena photographs. d, Example coverage in a lattice session. Color denotes normalized (Norm.) 
dwell time in each region. e, Recording protocol. f, Example histology. Data for all animals can be seen in Supplementary Fig. 2. g, Three representative 
grid cells in the arenas (left) and lattice (right). Left–right: arena spike plots (gray shows coverage; red dots show spikes), arena rate maps, arena 
autocorrelations, volumetric spike plots, volumetric firing rate maps, rate maps as projected on to each of the three coordinate planes and projected 
autocorrelations. Color bars from top to bottom correspond to volumetric rate maps, autocorrelations and planar rate maps. All grid cells can be seen in 
Supplementary Fig. 1.
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movement-related change in firing (remapping) that might have 
obscured spatial firing patterns.

Grid cell firing was more spatially clustered than chance even 
in the lattice (Fig. 2b), indicated by spatial information being 
consistently higher than spike-train-shuffled data (P < 0.05 in all 
cases, one-sample Student’s t-tests). However, spatial information 
was lower in the lattice than the arena and was closer to chance 
(F[2,137] = 20.3, P < 0.0001, η2 = 0.228, Lattice versus Arena 1 or 

Arena 2: P < 0.0001; all other: P > 0.05, one-way ANOVA; Fig. 2b). 
Although this suggests a disruption of grid cell spatial specificity, 
there was still a positive correlation between arena and lattice spatial 
information (Fig. 2c). Similar results were found when using spar-
sity as an alternative to spatial information content: this was lower 
than spike-train-shuffled data in all three mazes (Arena 1, Lattice 
and Arena 2 means: −12.4, −5.06 and −11.7; P < 0.05 in all cases, 
one-sample Student’s t-tests), but was closer to chance in the lattice 
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Fig. 2 | Grid cells mapped the lattice with large and widely spaced but stable fields. a, Grid cell firing was spatially correlated between session halves (red 
lines denote medians; black lines denote 1st and 3rd quantiles; see also Extended Data Fig. 4). Colored data points represent grid cells, gray represents 
shuffled values (n = 5,000). b, Z-scored spatial information was higher than chance in all environments but reduced in the lattice. Text gives the proportion 
of cells exceeding the shuffle 95th percentile (z = 1.96; gray line). c, Arena and lattice spatial information was significantly positively correlated (n = 46 cells). 
LLS, linear least squares line fit. d, Position and size of every grid field (left) and proportion of fields in every lattice layer (right; see also Supplementary 
Fig. 7b) (n = 133 fields). e, Grid field radius was significantly larger in the lattice than in the first arena. f, The size of grid fields in the arena and lattice was 
significantly positively correlated (n = 46 cells). g, The number of fields per grid cell in the arena and lattice was positively correlated. h, Grid cells exhibited 
significantly fewer fields per m3 in the lattice maze. i, Grid spacing was significantly larger in the lattice (n = 47, 43 and 47 cells for Arena 1, Lattice and Arena 
2, respectively). j, Grid spacing (maximum 120 cm) in the arena and lattice was uncorrelated, and arena grid modules (bottom histogram) were disrupted 
in the lattice (n = 43 cells). Cells for which no lattice spacing could be estimated are not shown in i or j. a,b,f,g, n = 47, 46 and 47 cells. b,f,g,i, Markers 
represent cells, black open circles denote mean and error bars denote s.e.m. For multiple comparisons: ***P < 0.001, **P < 0.01, **P < 0.05, all two-sided 
tests with Dunn–Sidak correction. See Supplementary Fig. 4 for schematic and validation of procedures in g–j.

Nature NeurOscience | VOL 24 | November 2021 | 1567–1573 | www.nature.com/natureneuroscience 1569

http://www.nature.com/natureneuroscience


Articles NaTurE NEurOscIEncE

(F[2,137] = 18.6, P < 0.0001, η2 = 0.213, Lattice versus Arena 1 or 
Arena 2: P < 0.0001; all other P > 0.05, one-way ANOVA).

Grid fields were larger, more variable and more widely spaced 
in the lattice. Grid fields were observed throughout the lattice 
maze volume (Fig. 2d and Supplementary Fig. 3b). These tended, 
on average, to be larger in the lattice, as shown by the grid field 
radius (Supplementary Fig. 4), which was significantly larger in 
the lattice compared with the first arena session (F[2,131] = 3.7, 
P = 0.0284, η2 = 0.053, Arena 1 versus Lattice P = 0.0254; all other 
P > 0.05, one-way ANOVA; Fig. 2e). There was a significant positive 
within-cell correlation between field sizes in the arena and lattice 
(Fig. 2f).

Fields were also more variable in size: we assessed this by com-
puting the coefficient of variation (CV), which is the standard 
deviation (s.d.) divided by the mean; this was significantly larger 
in the lattice, as shown by one-way ANOVA (Supplementary Fig. 
3a; F[2,133] = 10.1, P = 0.0001, η2 = 0.1318). Post hoc tests also con-
firmed that the lattice differed significantly from each arena trial 
(P = 0.0004 and 0.0005, respectively). This suggests that fields did 
not conform to a grid structure.

The number of fields expressed in the arena and lattice was posi-
tively correlated (Fig. 2g), suggesting that the clumpiness of grid cell 
firing in two dimensions was still present to some extent in three 
dimensions. However, surprisingly, the numbers of fields exhibited 

in the arena and lattice did not differ (Arena 1: 2.6 ± 0.28; Lattice: 
2.9 ± 0.29; Arena 2: 2.6 ± 0.34, mean ± s.e.m. fields; F[2,137] = 0.3, 
P = 0.72), meaning that there were significantly fewer grid fields 
per m3 in the lattice than in the arena (F[2,137] = 13.8, P < 0.0001, 
η2 = 0.167, Lattice versus Arena 1 or 2 P < 0.0001; all other P > 0.05, 
one-way ANOVA; Fig. 2f). This is consistent with findings from 
hippocampal place cells in the lattice maze, which also exhibited 
fewer fields per m3 than expected7, and from both place and grid 
cells on a vertical wall15.

Grid fields also exhibited significantly larger spacing in the lat-
tice (F[2,118] = 22.0, P < 0.0001, η2 = 0.271, Lattice versus Arena 1 
or 2 P < 0.0001; all other P > 0.05, one-way ANOVA; Fig. 2i) but 
spacing in the lattice was not correlated with arena spacing; instead, 
arena grid scale modules were disrupted in the lattice (Fig. 2j).

To summarize, grid cells in the lattice produced stable firing 
fields, but these were larger, more variably sized and more widely 
spaced.

Grid fields did not form a close-packed configuration in the lat-
tice. We next looked at the spatial pattern of the firing fields in the 
lattice maze. Previous theoretical and computational work suggests 
that the optimal packing of grid fields in 3D spaces would be an 
HCP or FCC configuration8–13. To test this, we first calculated a 
close-packed quality score (χCP) that measures the presence of 
either close-packed structure. This score was significantly lower 
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than would be expected if an FCC or HCP arrangement was pres-
ent and was instead consistent with a non-close-packed arrange-
ment of fields such as columnar or random (COL or RND; Fig. 3a; 
F[4,442] = 1,612.2, P < 0.0001, η2 = 0.936; all groups differ: P < 0.001 
except grid cells and random P > 0.05). Configuration-specific 
scores (for FCC, HCP and columns; Supplementary Figs. 5 and 6) 
were also all close to zero and significantly lower than simulated 
configurations (Fig. 3a–c and Supplementary Fig. 7). Simulated 
field configurations most closely matching the real data were uni-
formly random (Fig. 3c) or shuffled ones (Supplementary Fig. 7b).

We explored this further by computing the CV of the interfield 
distances: this should be low if interfield distances are uniform.  
In the arena, interfield distances had a low CV, which is expected 
in a regular grid pattern. However, CVs in the lattice maze were 
no different from chance (Fig. 3d). Together, these findings show 
that grid fields in the lattice were randomly dispersed rather than 
regularly structured.

In an alternative approach, we reasoned that if a cell expressed 
an FCC or HCP firing pattern in the lattice maze, its firing rate map 
should be periodically self-similar (that is, correlate highly with 
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itself), peaking with vertical shifts at multiples of approximately 
0.816d, where d is the cell’s grid spacing. Furthermore, the position 
of these self-similarity peaks would depend on the firing pattern 
(Fig. 3e). Although this was correctly detected in our simulations, 
grid cells did not show evidence of either pattern (Fig. 3f). In addi-
tion, grid scores were generally negative for all layers of the lattice 
(Fig. 3g). Last, we took every possible plane sliced through grid cell 
firing maps and calculated the maximum possible grid score among 
them. These values still did not differ from chance in the lattice 
maze (Supplementary Fig. 7e), meaning that a hexagonal grid pat-
tern could not be found at any arbitrary orientation.

In conclusion, a variety of analyses suggests that grid fields were 
randomly dispersed in the lattice.

A minority of grid cells exhibited hexagonally arranged colum-
nar fields. Grid fields were slightly but significantly more elongated 
in the lattice than in the arena (Fig. 4a; F[2,374] = 48.2, P < 0.0001, 
η2 = 0.205, Lattice versus Arena 1 or Arena 2: P < 0.0001; all other 
P > 0.05, one-way ANOVA) and this elongation was mainly along the 
vertical axis (Fig. 4b). After correcting for this field anisotropy, grid 
cells still exhibited a random field configuration (Supplementary 
Fig. 8a,b), confirming that field shape did not obscure our original 
field configuration analysis.

Consistent with our previous results, when lattice maze activity 
was projected on to the bounding (coordinate) planes, the result-
ing grid scores were significantly lower in all three projections than 
the arena plane (Fig. 4c; F[3,181] = 169.6, P < 0.0001, η2 = 0.738, all 
lattice projections versus arena P < 0.0001; lattice XY versus XZ, 
P = 0.0425; all other P > 0.05). However, a small number of cells 
exhibited higher grid scores than expected by chance when pro-
jected on to the equivalent lattice XY (horizontal) plane (12.8%; Fig. 
4c,d). These cells were recorded in two different rats across multiple 
sessions and tetrodes (Fig. 4d). These high XY grid scores in the lat-
tice were associated with larger-scale grid cells (Extended Data Fig. 
7a), but not with differences in theta modulation, animal behav-
ior or mEC layer (Extended Data Fig. 7b–d). This might reflect 
animal-specific variation in vertical odometry as reduced vertical 
odometry has been seen in other settings previously14,15.

Evidence for square firing patterns19 was also observed in some 
grid cells but the overall proportion was close to that expected by 
chance (6.5% for XY plane; Extended Data Fig. 6a,b) and their 
square grid scores were similar to those found for nongrid cells 
(Extended Data Fig. 6c,d).

Discussion
We found that rat grid cell firing fields filled a volumetric environ-
ment but did not make a regular (HCP or FCC) pattern11,20. They 
instead formed irregular configurations of enlarged, slightly verti-
cally elongated, variably sized and more widely spaced fields. This 
irregularity is surprising given the regular pattern the cells create on 
horizontal surfaces but is consistent with computational models that 
predict local order in the absence of a regular close-packed struc-
ture12,19,21,22. It is also consistent with recent experimental results on 
a 2D vertical wall15.

We looked to see whether there might be hidden order in the 
form of a preserved local interfield distance, as suggested by a pre-
liminary report in bats23, but found that distances were more con-
sistent with a random arrangement. This difference in findings may 
be due to intrinsic species differences in physiology, but we think it 
more likely to be due to how movement patterns through the volu-
metric spaces can affect grid self-organization. Bats can fly directly 
in any direction, whereas the rats were largely constrained to paths 
aligned to the maze axes, and they prioritized horizontal move-
ments. These movement constraints may have affected the initial 
conditions that influenced where the fields first coalesced19. Similar 
sensitivity to self-organization conditions occurs in other physical 

systems such as crystals. We can perhaps think of the 3D irregular 
grid field structure as analogous to an amorphous variant of the 2D, 
regular ‘crystalline’ one, similar to how amorphous silica is an irreg-
ular variant of quartz (regular) or glass (irregular with local order, 
similar to the bat findings). Such insights have important theoreti-
cal consequences. For example, our findings support the attractor 
models of grid formation, because the alternative oscillatory inter-
ference models would predict either a perfect lattice, if conditions 
allowed, or complete breakdown of the grids if they did not; they 
would not predict the randomly dispersed fields that we observed 
here. Our results also raise the possibility that, from a functional 
perspective, regularity and symmetry are not the critical features of 
grid cell firing, so much as the chunking of space that is a consistent 
feature of grid cell activity.

Theta, head direction, speed coding, spike dynamics and spatial 
information properties were largely preserved in the lattice maze 
(Extended Data Fig. 8 and Supplementary Figs. 10–12), suggesting 
that the lack of grid structure in three dimensions was not due to 
a disruption of these signals. However, grid field size and spacing 
increased whereas speed cell modulation decreased (Supplementary 
Fig. 10b) and grid spacing modules broke down—findings reminis-
cent of those seen in rats navigating a vertical surface15. These results 
could be explained by a partial failure to integrate the distance trav-
eled through space, because this would result in breakdown of the 
grid firing pattern. Alternatively, if grid cells are updated using the 
same dual-axis rule that governs head direction cell activity in three 
dimensions24,25, then cumulative 3D movements could also disrupt 
overall grid activity22. If this were the case, then we might have 
expected to still see some hexagonal activity in the bottom layer of 
the maze, where rats mainly moved horizontally. However, it is pos-
sible that any tendency to regularity would have been disrupted by 
the development of nearby fields higher up in the maze.

Despite the general breakdown of the grid firing pattern, we did 
observe planar (horizontally aligned) hexagonal activity in a minor-
ity of grid cells, recorded across two different animals. This activity 
approximated vertical columns and could be explained by preserved 
horizontal integration of distance traveled but poorer vertical pro-
cessing in these animals13,26. Alternatively, this could be a feature of 
the self-organizing process: in a learning network model19 a behav-
ioral bias for horizontal movements, which we did observe in our 
rats, sometimes led to the formation of hexagonally planar field 
arrangements rather than close-packed ones. Columnar fields have 
also been suggested as an efficient way for grid cells to represent 
higher-dimensional spaces, although in this case we would expect 
the fields of some cells to intersect rather than to all form vertical 
columns27. The sessions in which these columnar cells were recorded 
had no detectable peculiarity in terms of behavior or recording loca-
tion (Extended Data Fig. 7). However, larger grid spacing was sig-
nificantly associated with column-like activity, suggesting that the 
periodic activity of large-scale grid cells may be better preserved 
in 3D environments than small-scale cells. One possibility is that 
this effect is scale dependent: perhaps rats were not able to resolve 
their positions at a fine spatial resolution, resulting in expanded 
grid and place fields in the lattice maze, whereas distance estimation 
was preserved enough to maintain hexagonal grid firing at larger 
resolutions. Alternatively, columnar activity in the small-scale grid 
cells may have been disrupted by the structure of the maze. Further 
research is needed to disentangle these possibilities.

Given previous findings that place cells express spatially local-
ized firing fields in volumetric space7 and that rats can navigate 
accurately in the lattice maze17,18, our results suggest that place cells 
and spatial mapping can perhaps function even when grid cell firing 
fields are irregularly distributed18. It may be that place cells do not 
require grid cell inputs for positioning when visual cues are avail-
able28, although future studies that simultaneously record place and 
grid cells in three dimensions, in the presence and absence of visual 
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cues, are needed to fully explore this relationship. Alternatively, it 
may be that the information that grid cells supply to place cells is 
independent of the regularity of their fields.

In summary, our findings show that grid cells do generate firing 
fields that are distributed throughout a volumetric space, forming 
the potential substrate for a volumetric cognitive map such as the 
place cell map. However, they also show that the self-organizing 
process for grid cells is sensitive to environment type, with the result 
being variation in field size and regularity or irregularity of the 
grid depending on environment structure and/or movement affor-
dances. These findings invite a reappraisal of the computational 
contributions that grid cells make to spatial mapping, because they 
suggest that any metric contribution of grid fields to spatial local-
ization in 3D space (if there is one) must arise from the statistics of 
their dispersal rather than their precise arrangement.
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Methods
This experiment complied with the national (Animals (Scientific Procedures) Act, 
1986, United Kingdom) and international (European Communities Council Directive 
of November 24, 1986 (86/609/EEC)) legislation governing the maintenance of 
laboratory animals and their use in scientific experiments. Experimental procedures 
were approved by the UK Home Office and ethical approval was granted through 
consultation with veterinary staff at University College London.

Animals. Nine male Lister Hooded rats were used (only seven of these animals 
contributed grid cells; rats sourced from Charles River Laboratories), weighing 
approximately 400–450 g at the start of the experiment. No statistical methods 
were used to predetermine sample sizes but our sample sizes are similar to those 
reported in previous publications7,15. Before surgery all animals were housed for 
a minimum of 8 weeks in a large (2.15 × 1.55 × 2 m3) cage enclosure, lined on the 
inside with chicken wire. This was to provide the rats with sufficient 3D climbing 
experience. During this time, they were given unlimited access to a miniature 
version of the lattice maze (11 cm spacing rather than 16 cm for the recording 
lattice). The animals were housed individually in cages after surgery and given 
access to a hanging hammock or climbable nest box for continued 3D experience.

The animals were maintained under a 12 h light:dark cycle (light starting at 
6am) and testing was performed during the light phase of this cycle. Throughout 
testing, rats were food restricted such that they maintained approximately 90% 
(and not less than 85%) of their free-feeding weight. A summary of the sessions 
and cells recorded from each rat can be seen in Supplementary Table 1.

Electrodes and surgery. Axona (MDR-xx) microdrives were used. Drives 
supported four or eight tetrodes composed of four HML-coated, 17-µm 
diameter, 90% platinum/10% iridium wires (California Fine Wire), gold-plated 
(Non-Cyanide Gold Plating Solution, Neuralynx) to reduce their impedance 
to 180–300 kΩ measured at 1 kHz. Microdrives were implanted using standard 
stereotaxic procedures under isoflurane anesthesia29. Briefly, six support screws 
were inserted in the skull, electrodes were implanted after removal of dura, and the 
drive, skull and screw assembly was secured with an optional first layer of dental 
cement (Super-Bond C&B Metabond), followed by several layers of regular acrylic 
dental cement (Simplex Rapid Acrylic, Kemdent). Electrodes were implanted at 
a postero-anterior 8–11° slope (i.e., with the electrode tip pointing towards the 
animal’s nose), 1–1.5 mm below the dura, approximately 4.5 mm medial to the 
midline and as close as possible to the transverse sinus. See Supplementary Fig. 2 
for histology results and a photo of an implanted drive.

Apparatus. All experiments were conducted in the same room (3.2 × 2.1 × 2.2 m3) 
under moderately dimmed light conditions. Three of the room walls were covered 
with black material with large high-contrast cues on two of them (1.5 × 1.2 m2 
cardboard sheet and a 1 × 1.7 m2 yellow plastic sheet). The fourth wall was covered 
with a white cotton sheet. The floor of the room was covered with black anti-static 
linoleum flooring. We used two pieces of experimental apparatus: a square open 
field environment (‘arena’) and a cubic lattice composed of horizontal and vertical 
climbing bars (‘lattice’).

The arena was a 1.2 × 1.2 m2 square high-walled wooden enclosure, composed 
of four 1.8 × 0.65 m2 matte black-painted walls (Extended Data Fig. 1a). The top 
edges of these walls were covered with large, corrugated tubing to prevent the rats 
from exploring this area. The bottom edge of this square was highlighted with a 
strip of 50% gray paint. One 0.45 × 0.65 m2 matte white wooden cue was affixed to 
one wall. Rats were recorded freely foraging in the arena for randomly dispersed, 
flavored puffed rice (CocoPops, Kelloggs).

The cubic lattice maze (Fig. 1a,b) was constructed from a children’s toy-set 
(miniQUADRO, Quadroplay). Hollow cubes were created by attaching red plastic 
tubes (length: 150 mm, diameter: 10 mm) using six- or four-way connectors 
(each 10-mm wide). These cubes were then assembled into a 6 × 6 × 6 cubic maze 
(0.97 × 0.97 × 0.97 m3). The maze was raised 0.45 m above the ground, initially on 
black metal stools but later on a narrow wooden frame. To encourage exploration, 
malt paste (GimCat Malt-Soft Paste, H. von Gimborn) was smeared onto the bars 
of the lattice by the experimenter. This paste was spread evenly throughout the 
maze, midway along the bars, equally between horizontal and vertical bars and 
reapplied every 15 min.

Recording setup and procedure. Single unit activity was collected using a 
customized 64-channel recording system (Axona) running Axona dacqUSB 
software. The rat’s microdrive was connected to a wireless headstage (custom 
64-channel, W-series, Triangle Biosystems Int.). Analog signals were transmitted to 
a wireless base station via dual receiver antennae situated approximately 1 m above 
the maze environments. Unfiltered signals were sampled at 50 kHz, amplified 100 
times and transmitted at approximately 3.375 GHz (300 µW at 3 m). They were 
passed to an Axona preamplifier and amplified a further 100 times, and then to a 
system unit for single unit recording where the signal was bandpass (Butterworth) 
filtered between 300 and 7,000 Hz. Signals were digitized at 48 kHz and could 
be further amplified 10–40 times at the experimenter’s discretion. For local field 
potential (LFP) recording, a 4.8-kHz signal was saved as above, which was then 
bandpass filtered between 6 and 12 Hz (fourth-order Butterworth filter, MATLAB 

butter and filtfilt) for theta analyses described below. The position of the animal 
was recorded using five infrared sensitive CCTV cameras (Samsung SCB-5000P) 
tracking four wide-angle infrared light-emitting diodes (Osram Opto SFH 487P, 
880 nm) fixed to the wireless headstage.

After recovery from surgery, rats were screened for single unit activity and the 
presence of theta oscillations once or twice a day, 5 d a week. Screening was performed 
in the open field apparatus, after which rats freely foraged on the lattice maze for the 
same duration to ensure equal novelty between the mazes. Once the presence of grid 
cells was confirmed, rats were recorded using the experimental procedure (Fig. 1e).

In these sessions, rats were recorded for a minimum of 18 min in the 
arena and until they had sufficiently explored the environment (mean ± s.d.: 
27.8 ± 3.8 min). They were then allowed to rest and drink in an opaque, lidded box 
for approximately 10 min. During this time, the arena was dismantled and replaced 
with the lattice maze. Rats were then placed on the bottom layer of the lattice and 
left to forage in this environment for a minimum of 45 min and until they had 
sufficiently explored the environment (mean ± s.d.: 69.0 ± 22.8 min). Rats were 
returned to the opaque box as before and then recorded in the arena for a further 
minimum of 16 min and until they had sufficiently explored the environment 
(mean ± s.d.: 27.4 ± 9.9 min). During recordings, the experimenter monitored 
progress from a connected room, which housed the recording equipment and was 
separated from the experimental room by a black opaque curtain.

At the end of the recording session, the animals were removed from the 
apparatus and the electrodes were lowered by at least 20 µm to maximize the 
chance of recording from a different population of cells on the following day. 
Grid cells with similar fields seen on the same tetrodes on consecutive days were 
discarded; all analyzed grid cells can be seen in Supplementary Fig. 1. Rats were 
tested until grid cells were no longer observed and it was judged that the electrodes 
had left the desired layer (mean ± s.d.: 4.7 ± 2.7 sessions).

Trajectory reconstruction. The rat’s position was tracked in real time at a 
25-Hz sampling frequency using DacqTrack software (Axona). Position data 
were synchronized with neural data using a pulsed optic interface—each camera 
monitored a 1-Hz TTL (through the lens)-initiated light source, controlled by the 
recording system, which allowed accurate, offline synchronization. The onset of 
these light pulses was used to continually realign the position data using nearest 
neighbor interpolation (MATLAB interp1).

The rat’s 3D position was then reconstructed using the direct linear transform 
algorithm30, applied to the data from all five cameras, in pairs. Briefly, these 
cameras were first calibrated to reverse any distortion introduced by their 
optical elements (MATLAB estimateCameraParameters, undistortImage and 
undistortPoints). We then imaged the same checkerboard pattern with each camera 
and used its 3D pose to calculate the distance and orientation of each camera 
relative to it and thus to each other (MATLAB extrinsics and cameraMatrix). Using 
this information, we constructed a fundamental matrix. If x represents some points 
viewed by camera 1 and x′ represents the same points viewed by camera 2, the 
fundamental matrix, F, represents the relationship between points x and x′.

x′i Fxi = 0.
This relationship can be used to triangulate any given pair of points imaged 

by two cameras into 3D space30. For each recording session we reconstructed 
the animal’s path using every possible pair of cameras (MATLAB triangulate) 
and we then combined these reconstructions into one single trajectory. This was 
achieved by taking the weighted mean of each point, where the weighting was 
the reliability of the point’s estimated location. Reliability was assessed using each 
point’s reprojection error; after triangulation, each point was projected back into 
both camera images and the reprojection error was then calculated as the distance 
between the original and reprojected position of the point.

In this setup, the rats need be viewed by only two cameras at any one time for a 
successful reconstruction, allowing for almost continuous tracking even in cluttered, 
complex environments such as the lattice maze. Our cameras were extremely stable; 
however, recalibrations were conducted once every 2–4 weeks to ensure continued 
reconstruction accuracy. For segments of missing tracking data, we simultaneously 
interpolated and smoothed the existing data using an unsupervised, robust, 
discretized, n-dimensional spline-smoothing algorithm (MATLAB smoothn31,32). 
Example 3D trajectories can be seen in Extended Data Fig. 1b,c.

Behavior and spherical heatmaps. Using smoothed and interpolated 3D 
reconstructed position data we calculated the instantaneous 3D heading of the 
animal as the normalized change in position:

û =
u⃗

∥u⃗∥
where:

u⃗ = (ΔX (t) ,ΔY (t) ,ΔZ (t))

and

∥u⃗∥ =

√

ΔX (t)2 + ΔY (t)2 + ΔZ (t)2.
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This gives a unit vector representing the animal’s heading at time t. For 
visualization we projected these vectors on to a unit sphere as described below 
(Grid field orientation).

Grobéty and Schenk16 and Jovalekic et al.18 previously reported, in lattice 
mazes similar to the one used here, that rats exhibited a strong bias for horizontal 
movements. To test this in our lattice maze, we compared the number of times each 
animal crossed from one lattice element (the smallest cubic subcomponent of the 
maze) to another. This was computed in each of the X, Y and Z axes because the 
lattice edges and bars were aligned with these. We considered a ‘crossing’ to have 
occurred when the head of the rat moved from one unit to another. A detailed 
analysis of the behavioral data can be found elsewhere17 and so only brief results 
related to grid cell activity are reported in the present study.

Spike sorting. Single unit activity was analyzed offline using a combination of 
MATLAB functions and spike-sorting software. First, the dimensionality of the 
waveform information was reduced to the first three principal components and 
amplitude. Based on these parameters, an automated spike-sorting algorithm 
(Klustakwik v.3.0 (ref. 33)) was used to distinguish and isolate separate clusters. The 
clusters were then further checked and refined manually using a cluster cutting 
GUI (TINT v.4.4.12, Axona). As well as the previously mentioned features, manual 
cluster cutting also made use of spike auto- and cross-correlograms.

Firing rate maps. To generate 3D volumetric firing rate maps we used an adaptive 
binning method described previously34,35. Briefly, for every bin a circle centered on 
the point was gradually expanded until the following criterion was met:

r > α/n
√
s

where α is a constant, r is the radius of the circle in pixels, n is the number of 
occupancy samples falling within the circle and s is the total number of spikes 
falling within the circle. Once this criterion has been met, the firing rate assigned 
to the point was equal to s/n. For our maps, α was set to the value 1,600 and we 
calculated the firing rate across a 2.5-cm3 grid. Periods where the animals were 
moving <5 cm s−1 were not included in any firing rate maps to avoid potential 
contamination by a low-speed phenomenon (sharp-wave/ripple activity, licking 
behavior, and so on).

When calculating the stability of spatial activity between volumetric maps to 
avoid inflated comparisons based on many small voxels, we instead made maps 
using a standard histogram procedure (MATLAB histcn, B. Luong). For this, data 
were binned using a much larger 10-cm3 grid and smoothed using a Gaussian 
kernel with an s.d. of 2.5 bins (MATLAB imgaussfilt3). For 2D maps, such as the 
Cartesian planar projections, we also generated firing rate maps using a standard 
histogram procedure (MATLAB histcounts2). For this, data were binned using a 
2.5-cm3 grid and smoothed using a Gaussian kernel with an s.d. of 1 bin (MATLAB 
imgaussfilt).

Recording stability between arenas. To verify that cells were stably recorded 
during our maze sessions we used a similar approach to one described previously36. 
First we computed Pearson’s pairwise correlation (MATLAB corr) between the first 
and second arena rate maps recorded before and after each lattice maze session. 
For this we used the 2D XY-projected rate maps described above (Firing rate 
maps). For comparison we correlated first and second arena sessions from random 
grid cells while maintaining their temporal order (that is, first arena versus second 
arena from a random grid cell). This shuffle was repeated 5,000 times. The results 
of this analysis can be seen in Extended Data Fig. 2. See also Waveform stability for 
an approach independent of spatial activity.

Waveform stability. As a test for cluster recording stability that is not reliant on 
spatial activity maps, we computed average waveforms for each tetrode channel 
(four channels total). We then calculated the Euclidean distance between these 
waveforms on each tetrode channel (50 samples, sampled at 48 kHz, MATLAB 
pdist2) between session pairs (Arena 1 versus Lattice, Lattice versus Arena 2 and 
Arena 1 versus Arena 2) and averaged across all four channels. In the resulting 
values, small distances indicate unchanging waveform shape and stable recording 
across all four channels.

On their own these values can highlight whether one recording session was 
consistently unstable relative to the others, but to assess the general stability of all 
sessions we generated chance distributions for comparison. For these we repeated 
the above procedure but compared pyramidal cells (neurons with a peak-to-trough 
width of waveform >250 µs) that were co-recorded on the same tetrodes. The same 
tetrodes were used for comparable electrode and recording system impedance. 
Only putative pyramidal cells were used, so that comparisons would be between 
cells with similar waveform characteristics (most of the recorded grid cells were 
also assumed to be pyramidal). For example, the waveforms for one pyramidal cell 
recorded in arena 1 could be compared with the waveforms of another pyramidal 
cell co-recorded on the same tetrode in the lattice. These chance distributions 
reflect the change in Euclidean distance that could be expected if cells randomly 
shifted position relative to the recording tetrode while remaining detectable. 
Spurious values >300 µV were excluded from the analysis.

Spatial stability within sessions. To test the within-session stability of spatial 
representations, we divided maze sessions into two halves of equal length (first 
50% and second 50%) and computed Pearson’s pairwise correlation (MATLAB 
corr) between the firing rate maps for these halves. The two dimensions were 
generated from data projected on to the Cartesian coordinate planes and we also 
compared volumetric maps generated as multivariate histograms with 10 cm3 
voxels smoothed using a Gaussian with a 2.5-bin s.d. (MATLAB imgaussfilt3). 
Large bins and smoothing were used here to reduce the huge number of spatial 
bins compared between maps (from around the 9 × 104 voxels found in adaptively 
binned rate maps to around 2 × 103 voxels). Examples of these maps can be seen in 
Extended Data Fig. 3a. In both cases we compared the observed correlation values 
with shuffled distributions generated by comparing session halves from random 
grid cells (that is, first 50% versus second 50% from a random grid cell). This 
shuffle was repeated 5,000 times for each map type. The results of this analysis can 
be seen in Extended Data Fig. 3.

Stability between movement epochs. To test the stability of spatial representations 
when rats were moving vertically versus horizontally, we divided maze sessions 
based on the animal’s movement direction (defined in Behavior and spherical 
heatmaps). This consisted of filtering trajectory and spike data to include only 
vertical movements (defined as movements at a pitch >30° or <−30°) or only 
horizontal movements (defined as movements at a pitch <30° and >−30°). We 
used a pitch angle of 30° to delineate movements because this divides the face  
of a sphere into two halves with equal surface area (a ‘belt’ around the equator  
for one half and two spherical caps for the other). An example filtered trajectory 
can be seen in Extended Data Fig. 4a,b. We then repeated the analysis described in 
Spatial stability within sessions. The results of this analysis can be seen in  
Extended Data Fig. 4.

Spatial information and sparsity shuffles. To determine whether the firing of grid 
cells was less homogeneous (that is, more ‘clumped’) than chance, we generated 
firing rate maps using a standard histogram procedure (MATLAB histcn, B. 
Luong) with 2 cm3 voxels and smoothed using a Gaussian kernel with an s.d. of 
2 voxels (MATLAB imgaussfilt3). We then calculated spatial information content 
(bits s−1) as:

Spatial information =

N
∑

i=1
pi

λi

λ
log2

λi

λ
.

Next, for each grid cell we shuffled its spike train 100 times by random 
increments of 0.02 s (minimum 20 s), and for each shuffle we re-computed a firing 
rate map and spatial information as above. Last, we expressed the observed spatial 
information values in s.d.s from the shuffle:

Standardized value =
(Observed value − μshuffle)

σshuffle
.

This essentially z-scores the observed values relative to the shuffles. Scores 
>1.96 exceed the shuffle 95th percentile and thus deviate significantly from the 
shuffle at the 0.05 level. Similar results were obtained using sparsity (data not 
shown).

Directional analyses and shuffles. As we did not have access to 3D head direction 
information, we estimated instantaneous projected azimuthal head direction as:

θ (t) = tan−1
[Δyt/Δxt]

where Δxt and Δyt represent the change in X or Y position, respectively19, for 
which we used the smoothed and interpolated position tracking (Trajectory 
reconstruction) ignoring movements in the Z axis. To generate head direction 
tuning curves, we binned position and spike directions into 6° bins, smoothed 
the resulting histograms with a Gaussian kernel (MATLAB imgaussfilt, σ = 3 bins, 
circular padding) and then generated a tuning curve by dividing the spike 
histogram by the time spent in each bin. From these we calculated, as a measure 
of directionality, the Rayleigh vector length (MATLAB circ_r, circular statistics 
toolbox37) and preferred firing direction as the bin containing the maximum  
firing rate.

Next, for each cell we shuffled its spike train 100 times by random increments 
of 0.02 s (minimum 20 s) and for each shuffle recomputed a directional rate map 
and statistics as above. A cell was categorized as directionally modulated if it 
exhibited a Rayleigh vector greater than the 95th percentile of the shuffled values 
in both arena sessions and fired at a rate >0.1 Hz in both.

Last, to determine whether directionally modulated cells maintained their 
allocentric firing directions across mazes (all recordings were made in the same 
location in the same room), we correlated the tuning curves for all cells as a 
population in the arena to their tuning curves in the lattice. For comparison 
we circularly shifted each cell’s lattice tuning curve independently by a random 
number of bins (between 1 and 60) and recomputed the correlation. We repeated 
this 1,000 times and, if the original correlation exceeded the 95th percentile of the 
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shuffled values, we considered that the cell population firing was more stable than 
chance; this difference was also expressed as a standardized z-score as described 
above (Spatial information and sparsity shuffles).

Autocorrelations. For 2D and 3D autocorrelations, r, of each grid cell’s firing rate 
map was calculated according to:

r
(

τx, τy, τz
)

=
M

∑

x,y,z λ(x,y,z)λ(x−τx ,y−τy ,z−τz)−
∑

x,y,z λ(x,y,z)
∑

x,y,z λ(x−τx ,y−τy ,z−τz)
√

[

M
∑

x,y,z λ(x,y,z)2−
[

∑

x,y,z λ(x,y,z)
]2][M

∑

x,y,z λ(x−τx ,y−τy ,z−τz)2−[λ(x−τx ,y−τy ,z−τz)]2
]

where λ(x, y, z) is the firing rate at the location (x, y, z) in the firing rate map, M is 
the total number of voxels in the rate map and τx, τy and τz correspond to x, y and z 
coordinate spatial lags19.

Autocorrelation self-similarity. As a measure of firing rate map self-similarity 
along each axis we extracted, for each grid cell, the autocorrelation values falling 
along the autocorrelation midlines (MATLAB interp3 with linear interpolation). 
Intuitively, if a volumetric firing rate map contained circular columns that spanned 
the entire z-axis, then the autocorrelation would also contain a columnar peak 
in its center, spanning the entire z-axis. Thus, values falling along a line drawn 
straight down the middle of the autocorrelation from top to bottom would all be 
high, whereas values falling on a line drawn straight across the autocorrelation 
from one side to the other through the middle would peak near the center, but 
otherwise contain low values.

Autocorrelation correction for anisotropy. As in place cells7 some grid fields 
were significantly elongated, if these fields formed a close-packed arrangement 
this could take two forms. First, fields could be arranged isotropically (field 
centroids forming equilateral tetrahedra) while remaining individually elongated, 
perhaps resulting in the overlap of vertical layers. Although this should not present 
a problem for the planar symmetry analysis proposed by Stella and Treves12, a 
second possibility is that the underlying arrangement itself could be elongated 
(field centroids forming acute and obtuse tetrahedra) with fields elongating to fill 
the volume between them. This latter configuration would disrupt the angular 
relationships between packing layers and the planar symmetry analysis.

To account for this, we repeated the planar analysis after correcting grid cell 
autocorrelograms to remove anisotropy introduced by field elongation. This 
would also correct anisotropic close-packed arrangements, allowing FCC and 
HCP arrangements to be identified. For this, we thresholded autocorrelations at a 
correlation value of 0.25 (MATLAB imbinarize) and extracted the central region. 
This central region should reflect the average characteristics of the firing fields in 
the firing rate map, their elongation and orientation. Using this fact, we resized 
the autocorrelation along each dimension by the amount necessary to ‘correct’ 
this central peak into a sphere (MATLAB imresize3 with cubic interpolation 
and anti-aliasing), thus, correcting any anisotropy in a potentially close-packed 
arrangement (see Supplementary Fig. 7a for an example).

Grid score. Gridness scores were calculated similarly to previous studies1,38. The 
2D autocorrelogram was thresholded to leave only values >0.3 and the seven 
most central correlation peaks were found. The peak closest to the center of the 
autocorrelation was excluded and the annulus concentric with the autocorrelogram 
that contained the other six peaks was isolated. The inner/outer radii defining this 
annulus were chosen as ±r, where r was the estimated radius of the most central 
peak. Pearson’s correlations between rotationally offset copies of the annulus 
were computed. Gridness score (also called hexagonal gridness score (HGS)) was 
calculated as the minimum correlation obtained at rotational offsets 60° and 120° 
minus the maximum obtained at 30°, 90° and 150°, which results in a high value 
when the autocorrelation exhibits a hexagonal structure and a low value otherwise. 
In addition, we calculated an equivalent score for a square firing pattern (also called 
square gridness score (SGS)) as the minimum correlation obtained at rotational 
offsets 90° and 180° minus the maximum obtained at 45°, 135° and 225°19.

Grid score shuffles. To determine whether a cell’s HGS or other spatial parameter 
was greater than could be expected by chance, for each session we used a 
bootstrap-versus-shuffle approach15,39. First, estimated spatial parameter values 
(HGS, SGS, speed score) were obtained by resampling spikes using a bootstrap 
with replacement procedure (100 iterations). At each iteration, we recreated a 
firing rate map and spatial autocorrelation, and recalculated the spatial parameter 
values. Spatial parameter values were then estimated as the median of the collected 
bootstrapped values.

Next, we repeated the same procedure (100 iterations), but instead of 
resampling spikes we circularly shifted the spike train of the cell by a random 0.2 s 
increment (>20 s). If the median parameter value obtained from bootstrapping 
exceeded the 95th percentile of the values obtained from the shuffles, the spatial 
parameter was considered to be greater than expected by chance.

Grid cell criteria. After completing the parameter shuffles described above, a cell 
was considered to be a grid cell if its grid score exceeded that expected by chance 

in both arena sessions (recorded before and after the lattice session). The results of 
this analysis can be seen in Extended Data Fig. 2b–d.

Grid fields. Firing fields were detected in adaptive binned firing rate maps (Firing 
rate maps) as regions of >64 contiguous voxels with a firing rate >30% of the map’s 
peak value (MATLAB imbinarize and regionprops3). In addition, each field had 
to have a peak firing rate >1 Hz and rats had to visit it more than five times during 
a session. We then extracted field properties such as volume, centroid, principal 
axis lengths, eigenvectors and eigenvalues using previously established methods7 
(MATLAB regionprops3).

Grid field distribution in the lattice. To test whether grid cell firing fields were 
distributed uniformly throughout the lattice maze, we pooled fields from all grid 
cells and binned them according to their lattice layer along each axis of the maze. 
We then compared the proportion of fields in each layer with a chance distribution. 
Chance was computed by generating n random points within a volume matching 
the lattice 1,000 times and repeating the above process, where n is the number 
of real grid cells. Intuitively we would expect this chance distribution to be 
centered on 1/6 because there are six lattice layers along each axis. If the observed 
proportion of fields in a layer exceeded the lower or higher 99th percentiles 
of this chance distribution, it was considered to be significantly under- or 
overrepresented, respectively. For visual assessment, we also plotted the same data 
for all grid cells individually (Supplementary Fig. 3a).

Grid fields per cubic meter. To estimate the practical volume of our 3D mazes 
we calculated an average dwell time map across all sessions and animals. We then 
thresholded this map so that only bins containing an average dwell time >0.1 s 
remained. The maze volume was then estimated as the total volume of these 
remaining voxels. In this way the arena was estimated as 0.4 m3 and the lattice as 
1.2 m3.

Grid field size. Grid field size was estimated as the radius of a sphere with a 
volume equivalent to that of the 3D autocorrelation central peak after thresholding 
at 0.25. This method was validated on simulated FCC arrangements with different 
field sizes (Supplementary Fig. 4a,b).

To test whether the volume of firing fields was consistent within grid cells for 
each grid cell we detected its firing fields (Grid fields) and calculated the CV (µ/σ) 
of their volumes. A low CV indicates low variability. Next, we pooled all the grid 
fields, shuffled their cell identities and repeated the above process. We repeated this 
100 times and then compared grid cell CV values with the ones obtained from the 
shuffles.

Grid field spacing. Grid spacing was estimated by expanding a sphere outward 
from the center of the 3D autocorrelation, in steps of 1 bin up to a radius 0.6× 
the maximum side length of the autocorrelation, and calculating the median 
correlation in bins within a distance of 2 bins from the surface of the sphere. 
Average field spacing was then estimated as the location of the first peak in 
the median correlation values after excluding the central autocorrelation peak 
(MATLAB findpeaks, with a minimum peak prominence of 0.01 and excluding 
peaks at a distance <5 bins). This method was validated on simulated field 
arrangements and correctly estimates grid spacing regardless of the underlying 
configuration (Supplementary Fig. 4c,d). The average median correlation values 
for all grid cells can be also be seen in Supplementary Fig. 4e.

Grid field orientation. We extracted each grid field’s orientation and principal 
axes, which were defined as the orientation and major axes of an ellipsoid with the 
same normalized second central moments as the field region. In more detail, we 
calculated the second central moments or covariance matrix that best described a 
thresholded place field, in effect fitting a multivariate normal distribution to the 
field. The direction and magnitude of the best-fit ellipse that describes the place 
field are then given by the eigenvectors and eigenvalues of this covariance matrix 
respectively (MATLAB regionprops3).

To determine whether fields were oriented in three dimensions along one 
or more arbitrary axes, we projected the field eigenvectors and their antipodal 
equivalents on to a unit sphere. We then extracted the number of fields falling 
within regions on the surface of the sphere corresponding to the intersection 
of the sphere and the Cartesian XYZ axes. These regions are equivalent to ~60° 
conic sections centered on each respective axis in one direction from the origin, 
so for each axis we combined the two corresponding directional regions.

To determine whether more fields were parallel to an axis than would be expected 
by chance, we generated 1,000 random points on the face of a sphere and counted the 
proportion of points falling within the area around each axis. We did this 1,000 times. 
Chance was calculated as the interval between the 2.5th and 97.5th percentile ranks of 
this distribution. If the observed field count for an axis exceeded the upper threshold, 
it was considered to be overrepresented with respect to chance.

For visualization, we calculated the von Mises–Fisher kernel smoothed density 
estimate of these grid field vectors across the sphere’s surface. Briefly, the Gaussian 
used was defined as:

g (x) = e
(

−0.5
(

x
σ

)2)
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where x was defined as the inverse cosine of the inner dot product between each 
vector point and points across a sphere’s surface (MATLAB sphere) and σ was the 
s.d. of the Gaussian, which was set to 10. In this way, the resulting 3D heat plots 
give a density estimate of points on the sphere, where density is estimated as the 
sum of the Gaussian weighted distances (along the surface of the sphere) to every 
data point. These 3D spherical maps are presented in the main text for visualization 
only. See Supplementary Fig. 9 for a schematic explanation.

Grid field elongation. After extracting a field’s principal axis lengths (Grid field 
orientation) we calculated the elongation index as:

Elongation =
P1

0.5(P2 + P3)

where P1, P2 and P3 are the principal axes from the largest to the smallest, 
respectively. This gives a measure of the curvature of the place field: large elongation 
values represent elongated fields whereas a value of 1 would represent a sphere. 
In the case of the arena, where animals were mainly restricted to horizontal (2D) 
movements, elongation was calculated using the first two principal axes (P1/P2).

We then tested whether this elongation index deviated significantly from a 
distribution that would be expected by chance using an analysis inspired by one 
reported previously5. For each field we defined a perfect sphere, centered on the 
field’s centroid. The diameter of this sphere was calculated such that it would share 
the same convex volume (the volume of the convex hull enclosing the field voxels) 
as the place field. This was calculated as:

Equivalent diameter = 6
(

vf
π

) 1
3

where vf is the convex volume of the place field. This is more accurate than the 
geometric mean approach reported previously5, which assumes that all place 
fields are perfectly elliptical and thus tends to underestimate equivalent diameter. 
Next, the spikes emitted within the place field were randomly shuffled among the 
trajectories through this sphere using a multivariate Gaussian process (MATLAB 
normrnd). The mean of the Gaussian was the sphere center, and the s.d. of 
the Gaussian was set at 1.8× the radius of the sphere (to approximate the 20% 
thresholding used during field detection). Each spike was then assigned to the 
position of the nearest trajectory data point (MATLAB knnsearch). The result of 
this procedure was a normally distributed point cloud of spikes centered on the 
centroid of the original field, with the same equivalent diameter and firing rate. 
This is more realistic than the previous approach which spread spikes uniformly5.

We then recomputed the firing rate map for these shuffled spikes and extracted 
its elongation index as described above. This procedure was repeated 100 times for 
each place field. We then expressed the observed field elongation as a z-score of 
these 100 shuffles; place fields with an elongation index that could be expected, by 
chance, from an underlying spherical field (that is, with an elongation index lower 
than the 95th percentile rank of the shuffled distribution or lower than z = 1.96) 
were defined as spherical or isotropic: otherwise, place fields were defined as 
nonspherical, anisotropic or elongated.

Grid field local order. To estimate the local ordering of grid firing fields we used 
a method inspired by one described previously23. We first generated firing maps 
as standard histograms with 2 cm3 voxels smoothed using a Gaussian kernel with 
an s.d. of 2.5 bins (MATLAB imgaussfilt3). We thresholded these maps to leave 
only those values >10% of the peak firing rate. We then found field centroids as 
regional maxima of the H-maxima transform (MATLAB imextendedmax, H = 0.8). 
Centroids with a distance <25 cm between them were iteratively replaced with the 
average of the two centroids.

For each field we then found the distance to its three nearest neighbors. After 
discarding repeated distances, we calculated the CV (s.d./mean) of all interfield 
distances. A low CV value indicates that distances were consistent.

Next, we circularly shifted the spike train of the cell by a random 0.2-s increment 
(>20 s) and generated a firing rate map as above using this shuffled spike train. If the 
number of fields detected in this map was similar to that observed in the original 
map (±3 fields), we repeated the CV analysis described above, otherwise the shuffle 
was discarded. We aimed to collect a maximum of 1,000 of these shuffles per cell, 
but the procedure was halted if this number was not achieved after 10,000 shuffles. 
Thus, some grid cells may have less than the maximum 1,000 shuffles (mean and s.d. 
total shuffles: 767 and 386). To determine whether the local ordering of fields was 
higher in grid cells than the shuffles, we compared the observed grid cell CV values 
with the average of their corresponding shuffles (that is, paired comparison of grid 
cell CV values and average shuffle values). Note that no grid cells, in the arena or 
lattice, exceeded the 95th percentiles of the shuffled distributions, suggesting that this 
approach is not sensitive at detecting consistent interfield distances.

Planar symmetry analysis. FCC is a cubic lattice structure that results from 
stacking hexagonally arranged layers of spheres in the sequence ABC, where layers 
B and C are offset hexagonal patterns that rest in the spaces between the spheres 
below. HCP is a similar lattice structure that describes an ABA sequence (Fig. 1a 
and Supplementary Fig. 5a)11,12,19,20.

Where the autocorrelogram of a 2D grid cell firing rate map resembles a 
hexagonal grid, centered on a central peak, the autocorrelogram of a 3D FCC 
configuration also reproduces the same 3D pattern spanning around a central 
peak12. If the field configuration is aligned to the XY axes, a horizontal plane cut 
through the center of the autocorrelation will pass through a hexagonal field 
arrangement, and the correlation values falling on this plane will present a high 
grid score. In addition, three further planes angled at a pitch of 72° from the XY 
plane can be found that also pass through hexagonal arrangements and present 
high grid scores. These planes will also be arranged with 120° between them in 
azimuth. In addition, due to the cubic nature of the FCC arrangement (another 
name for FCC is cubic-close-packed), there are also three planes at a pitch of 57° 
from the XY plane, arranged with 120° between them in azimuth, offset from the 
72° hexagonal planes by 60° in azimuth, that transect fields arranged in a square 
formation. In this way, extracting every possible plane through the autocorrelation 
center, and mapping their HGS and SGS, respectively, can, in turn, be used to 
determine the likelihood of an FCC arrangement (Supplementary Figs. 5b,c and 6).

By contrast the autocorrelation of an HCP configuration, while still centered 
around a peak, does not exactly resemble the original pattern. Although there is 
still a ‘best plane’ corresponding to a horizontal shift of the grid pattern (as in the 
2D case) due to the half overlap of peaks between layers, there are a further six 
layers that pass through peaks resembling a hexagonal grid12. Assuming a field 
arrangement aligned to the XY axes, a horizontal plane cut through the center 
of the autocorrelation will pass through a hexagonal field arrangement and the 
correlation values falling on this plane will present a high HGS. In addition, six 
further planes angled at a pitch of 72° from the XY plane can be found that also 
pass through hexagonal arrangements. However, three of these planes present 
high HGS (arranged with 120° between them in azimuth), whereas the other three 
present low HGS (arranged 60° offset to the other planes in azimuth). In an HCP 
arrangement, planes with square field arrangements can also be found, again at 57° 
from the XY plane in pitch and at the same azimuthal angles as the hexagonal ones 
(Supplementary Fig. 6).

Last, the autocorrelation of a hexagonal columnar field arrangement is the 
same arrangement centered around a columnar peak. Assuming that the columns 
are parallel to the z-axis, we would expect horizontal slices to present high grid 
scores that would decrease as the pitch of the slices diverges from the horizontal 
(Supplementary Figs. 5c and 6).

In these examples, we assumed that the configurations are aligned to the XY 
axes, but, once grid scores have been mapped for every azimuth and pitch slice 
combination, it is possible to estimate the 3D orientation of the arrangement using 
the ‘best plane’ or the transecting plane with the highest grid score. In the FCC 
case, all four planes are equally ‘best’, but this is useful for HCP and columnar 
arrangements. In all cases it allows us to correct grid cell autocorrelations, rotating 
them so that the best plane is always horizontal (Supplementary Fig. 7a).

Structure scores (χCP, χFCC, χHCP and χCOL). Once we collected the HGS and 
SGS for every possible plane transecting a grid cell autocorrelation, we looked to 
calculate scores that could be used to differentiate the different field configurations. 
We used an approach similar to that proposed by Stella and Treves12, but also took 
into account the square grid scores, which allowed us to differentiate FCC and 
HCP arrangements based solely on their autocorrelations. We also extended this 
analysis to include a score for columnar arrangements (Supplementary Fig. 6).

We built volumetric firing rate maps (Firing rate maps) and autocorrelations 
(Autocorrelations), and then extracted planes transecting the autocorrelation (65 
pitch angles and 65 azimuth angles for a total of 4,225 planes; MATLAB sphere 
and obliqueslice). For each plane we calculated its HGS and SGS (Grid score). We 
next found the ‘best plane’ as the one associated with the maximum HGS, and 
corrected the autocorrelogram so that this plane would form the XY horizontal 
(Supplementary Fig. 7a). We then interpolated the HGS and SGS maps up to 128 
pitch and azimuth angles using a spherical nearest neighbor method, where nearest 
neighbors were found based on the inverse cosine of the inner dot product between 
each vector point and points across a sphere’s surface (MATLAB sphere).

Next, we extracted the HGSs found at a 72° pitch from the best plane and the 
SGSs found at a 50° pitch from the best plane. As both FCC and HCP are expected 
to exhibit high HGSs and SGSs at these respective angles, we calculated a general 
quality score (χCP) as the median of these two distributions combined.

For an FCC score (χFCC) we found the three 120° offset azimuth angles at 72° 
pitch from the best plane with the maximum total hexagonal grid score. We then 
calculated β as the median square grid score found at the same azimuthal angles 
and at a 50° pitch and α as the median square grid score found at 60° offsets from 
these in azimuth and at a 50° pitch (Supplementary Fig. 6 left). From these:

χFCC = α − β.

For the HCP score (χHCP) we found the three 120° offset azimuth angles at 
72° pitch from the best plane, with the maximum total hexagonal grid score. We 
then calculated α as the median square grid score found at the same azimuthal 
angles and at a 50° pitch, and β as the median square grid score found at the same 
azimuthal angles and at a 72° pitch (Supplementary Fig. 6, middle). From these:

χHCP = α − β.
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For the columnar score (χCOL), we calculated α as the median hexagonal grid 
score found at all pitch angles within 60° of the best plane and β as the median of 
all remaining grid scores (Supplementary Fig. 6, right). From these:

χCOL = α − β.

Simulated field arrangements. Where S was the side length of a hexagon, points 
were separated by S along the x axis and 

√
3(0.5S) along the y axis, with every 

second row of points along the y axis offset by S/2 in x; this gives points tiling 
horizontal space in a hexagonal arrangement. For our simulations, S was a value 
randomly drawn for each cell from the uniform distribution between 200 and 
600 mm. For close-packed arrangements these horizontal points were then stacked 
along the z axis separated by (

√
6/3)S. For HCP, every second layer along the z 

axis (second onwards) was offset in y by 
√
3(1/3)S. For FCC, every third layer 

(second onwards) along the z axis was offset in y by 
√
3(1/3)S and every third layer 

(third onwards) along the z axis was offset in y by −2(
√
3 (1/6) S). For a columnar 

configuration, the horizontal hexagonal points were stacked continuously in z. For 
a random arrangement of fields, we generated n random points (MATLAB rand), 
where n was the number of points generated for an HCP arrangement, spread 
within the cuboid volume occupied by an HCP arrangement.

When the desired arrangement of points was generated, for every pixel of the 
simulated rate map we calculated the Euclidean distance to the nearest field point 
(MATLAB bwdist) and weighted these using the Gaussian:

g (x) = e
(

−0.5
(

x
σ

)2)

where x is the Euclidean distance and σ is the Gaussian s.d., which was set at 2. 
To ensure that the planar symmetry analysis was capable of differentiating field 
arrangements even when they are not aligned to the maze/gravity, the resulting 
simulated firing rate map was then rotated 30° around a random 3D axis (MATLAB 
imrotate3 and rand). Simulated field arrangements without this last rotation step 
can be seen in Supplementary Fig. 7a.

Grid field shuffle. To generate fields in random positions while remaining as close 
to the real data as possible, we employed a field-shuffling technique described 
previously40. Briefly, adaptive binned firing rate maps were oversmoothed (Firing 
rate maps, MATLAB imgaussfilt3, sigma 3 bins) and firing fields were segmented 
through a watershedding procedure. For this, field peaks were detected as local 
maxima (MATLAB imextendedmax with an H-maxima of 0.2) and watersheds 
were calculated on the distance transform (MATLAB bwdist) of these peaks 
(MATLAB watershed).

The following analyses were then performed on the unsmoothed adaptive binned 
firing rate map: n uniformly random points were identified in an empty copy of the 
firing rate map where n was the total number of fields identified in the watershed 
procedure. For each segmented field (numbered 1 to n), the bin with the peak firing 
rate was copied to one of these random positions. Next, firing rate values were 
iteratively moved from the original rate map (O) to the new empty copy (E) after this 
procedure: for each field in turn (1 to n) the bin closest to the peak was moved from 
O to E while maintaining its position relative to the peak as closely as possible (the 
‘ideal’ position). Values were not moved to the locations of unvisited bins in O nor 
could they overwrite values already moved to E, so where the ideal position was not 
available values were instead moved to the position nearest to it in city-block distance. 
This procedure was repeated for every field in turn and in the field order 1 to n 
iteratively, until every bin had been moved from O to a position in E.

Intuitively, this method randomly shuffles the positions of fields within a 
firing rate map but also preserves, as much as possible, the internal structure of 
each field. Furthermore, because every firing rate value is moved and both maps 
share the same number of elements, both maps have the same distribution of 
firing rate values, the same peak firing rate and the same number of unvisited bins. 
Unvisited bins also retain their spatial positions, which maintains the shape and 
configuration of any uneven sampling in the original firing rate map. Due to the 
computational time cost associated with this shuffling method when using 3D 
maps and the already large time cost of the planar symmetry analysis, this shuffle 
was performed only twice per cell. Example field-shuffled firing rate maps can be 
seen in Supplementary Fig. 8c.

LFP analyses. Before analysis, all LFP data had their direct current offsets 
removed, slowly changing components and running line noise using the Chronux 
toolbox41 locdetrend function, which subtracts the linear regression line fit within 
a 1-s moving window. They were then resampled at 250 Hz using a polyphase 
anti-aliasing filter (MATLAB function resample, pchip interpolation).

To obtain a theta phase angle for each spike, LFPs were first bandpass filtered 
in the 6- to 12-Hz range (fourth-order Butterworth, MATLAB butter and filtfilt) 
before a Hilbert transform was applied to obtain the instantaneous phase angle 
(MATLAB hilbert). Instantaneous frequency was calculated as the derivative of this 
analytic signal (MATLAB instfreq) and instantaneous amplitude was calculated as 
its magnitude.

To assess the relationship between running speed and the theta oscillation, we 
compared the instantaneous theta power/amplitude at every position data point 

(every 20 ms) with the animals’ instantaneous running speed. Instantaneous speed 
was estimated as the total distance traveled in every 40-ms window. To quantify the 
relationship between speed and power. we fitted a linear regression model using a 
least squares approach (MATLAB polyfit, 1°) and extracted the slope, y-intercept 
and sum of squared error. We also performed the same procedures to test the 
relationship between running speed and instantaneous frequency.

To calculate general theta characteristics, we computed average power spectral 
densities for each recording session by first zero-padding LFP data to the next 
highest power of 2. A Welch spectral estimator was then applied to obtain the 
power spectral density (MATLAB pwelch, Hamming window, 8 segments, 50% 
overlap). This was computed for 500 logarithmically spaced points between 0 and 
250 Hz. Theta power was estimated as the maximum power found in the theta 
band (6–12 Hz) and theta frequency was defined as the frequency associated with 
this maximum power.

Running speed analyses. Instantaneous running speed was estimated as the total 
distance traveled in every 40-ms window. For each cell, instantaneous firing rate 
was estimated as the smoothed spike histogram (20-ms bins, 13-bin or 260-ms 
Gaussian smoothing window using MATLAB function fspecial). To quantify 
the relationship between speed and firing rate, we used an analysis similar to 
that described previously42. We binned the animals’ running speeds in 2 cm s−1 
increments, and calculated the mean firing rate for each running speed bin and 
the total time spent moving at that speed. We then fitted a linear regression model 
to the average firing rate/speed data using a least squares approach (MATLAB 
function polyfit, 1°) and extracted the slope, y-intercept and sum of squared error.

Spike phase and autocorrelation analyses. To quantify the intrinsic theta 
modulation of every place cell we used an analysis described previously43,44. 
For each cell we calculated the ±500 ms spike autocorrelation in 10-ms bins, 
normalized this to the maximum value found between 100 and 150 ms and 
removed values >1. Then we fit the following function to the remaining data:

y (t) =
(

a ×
(

sin
(

2πωt + π

2

)

+ 1
)

+ b
)

× exp
(

−
|t|
τ1

)

+ c × exp
(

−
r2

τ22

)

where a, b, c, ω, τ1 and τ2 were fit to the data using a nonlinear least squares method 
(MATLAB fit) and t is the autocorrelogram time lag. In simple terms this function 
fits a sine wave of frequency ω to the data, and the exponential term allows for 
this to decrease exponentially as the time lag increases (reflecting the exponential 
decay inherent in all spike autocorrelations). The last Gaussian term helps to 
center the fit on the autocorrelogram peak, which we found to be unnecessary in 
most cases. A measure of theta modulation strength was defined as a/b, which 
intuitively corresponds to the ratio of the sine fit relative to the baseline in the 
autocorrelogram. The parameter ω was extracted as the intrinsic theta modulation 
of the cell. We restricted possible values for ω to [6,12], a and b were restricted to 
non-negative values [0 Inf], c was restricted to [0,0.8], τ1 was unrestricted and τ2 
was restricted to [0,0.05]. This fitting procedure was carried out only on cells that 
fired at least 500 spikes.

For each cell, the instantaneous theta phase of every spike was calculated by 
linear interpolation of the instantaneous theta phase signal described previously. 
These phase angles were binned between −π and π in 0.1-rad bins. The cell’s 
preferred theta phase was defined as the circular mean of these angles and the 
strength of this modulation was defined as the mean resultant vector length 
of these angles (MATLAB circ_mean and circ_r respectively, circular statistics 
toolbox37).

Histology. At the end of the experiment animals were anesthetized, given an 
overdose of pentobarbital intraperitoneally (Euthatal, Merial Animal Health 
Ltd) and perfused with 0.9% saline solution followed by a 4% formalin solution. 
The brain was extracted and stored in 4% formalin for at least 7 d before any 
histological analyses. The brains were sliced sagittally in 30-µm sections on a 
freezing microtome at −20°. These sections were stained with a 0.1% Cresyl violet 
solution and the slice best representing the electrode track was then imaged. 
Histology results for every animal can be seen in Supplementary Fig. 2.

Statistics and figures. Unless otherwise stated, we used two-tailed parametric tests 
(for example, MATLAB anova1 and ttest2) and post hoc tests compared population 
means (MATLAB multcompare, Dunn–Sidak correction). In all figures, * indicates 
significant at the 0.05 level, ** at the 0.01 level and *** at the 0.001 level. For all 
dot plots, black lines denote the s.d., empty circular markers denote the sample 
mean and filled markers represent individual data points. Data distributions were 
assumed to be normal but this was not formally tested. Data collection and analysis 
were not performed blind to the conditions of the experiments. No animals or data 
points were excluded from the experiment but putative cell clusters were manually 
curated to remove noise artifacts.

For the permutation tests described in Extended Data Fig. 7a we computed 
the mean difference between groups; we then pooled and shuffled samples, 
divided them into groups matching the original group sizes and recomputed the 
mean difference. We repeated this 1,000 times and estimated the probability of 
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the outcome by z-scoring the original mean difference to the shuffled values and 
calculating a P value as the position of the absolute (one-sided test) z-value in the 
cumulative distribution function of a normal distribution with mean 0 and s.d. 1.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A summary dataset is available for download45. The full raw dataset is available 
from the authors on request. Source data are provided with this paper.

Code availability
MATLAB code is available for download which, together with the summary 
dataset, can be used to regenerate all of the figures and analyses reported in the 
present study45. Code to analyze raw data is available from the authors on request.
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Extended Data Fig. 1 | Animals explored the whole lattice maze with a bias for horizontal movements. (a) Side and top-down views of the arena.  
(b) Different views of the 3D positions for a representative arena session. (c) Different views of the 3D positions for a representative lattice maze session. 
(d) Top) averaged dwell time histogram for all arena sessions (n=42); Bottom) mean ± SEM proportion of time spent at different positions within the 
arena averaged across sessions. Rats explored the entire arena homogenously. (e) Top) averaged dwell time histogram for all lattice maze sessions 
(n=42); bottom) Mean ± SEM proportion of time spent in each layer of the maze, averaged across sessions. Rats explored the entire lattice homogenously 
in X and Y but with a strong vertical bias for the bottom layer. (f) Left) spherical heatmaps showing the time spent moving at every possible yaw × pitch 
angle in the arena and lattice (n=42 sessions). Inset schematics give the maze shape and the corresponding axes shown extending through the spheres. 
Right) Filled markers represent sessions (n=42), open circles denote mean, error bars denote SEM. As reported previously, rats were biased towards 
horizontal movements in both mazes and were far more likely to move parallel to the maze axes: the walls of the arena or the sides and bars of the lattice 
(F(2,123) = 417.2, p = 1.56 × 10−55, η2 = 0.872; one-way ANOVA).
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Extended Data Fig. 2 | Grid cells were more stable than chance throughout recordings. For panels A, D, E & F: n=47 cells. For panels a & d: filled markers 
represent cells, open circles denote mean, error bars denote SEM. (a) Grid cell firing rates did not differ between the mazes (F(2,138) = 2.0, p = .135, η2 = 
0.029, one-way ANOVA). (b) Example grid cell ratemaps and autocorrelations for the two arena sessions. In addition to ratemap autocorrelations we also 
calculated the cross-correlation between arenas 1 and 2. Only cells with a grid score exceeding the 95th percentile of a shuffle in both arena sessions were 
analysed. (c) Total number of cells with a grid score exceeding the 95th percentile of a shuffle in each arena session. The purple bar sections represent the 
cells categorised as grid cells and included in the main analyses, grey bars represent unstable cells that met our grid cell criteria in only one arena session. 
Main results were also replicated using only these unstable grid cells (Extended Data Fig. 5). (d) Grid scores of all grid cells calculated for both arenas and 
the cross-correlation between arena maps. These scores did not differ (F(2,138) = 1.1, p = .337, η2 = 0.016, one-way ANOVA). (e) Left) example firing of 
a grid cell in both arenas. Middle) to determine if grid cells were stable between arenas we correlated their arena firing rate maps (blue area; blue triangle 
denotes median) and compared this distribution to correlations between 5000 shuffled ratemaps (grey area; grey triangle denotes 95th percentile). Right) 
cumulative density curves of the same distributions. Shaded areas denote 95% confidence intervals. The blue vertical line marks the 95th percentile of the 
shuffle on the x-axis and the blue horizontal line (very close to the x-axis) marks the y-intercept of the observed correlation distribution with this. Grid 
cells were more stable than chance (shuffled arena correlations 95th percentile: 0.23, grid cell median correlation: 0.59, D = 0.96, p < .001, two-sample 
Kolmogorov-Smirnov test). (f) The Euclidean distance between waveforms in different session pairs for all grid cells (Methods: Waveform stability). 
Red horizontal lines denote medians; black horizontal lines denote 1st and 3rd quantiles, error bars denote data range. Distances did not change across 
recordings (F(2,124) = 2.6, p = .0787; one-way ANOVA) suggesting grid cells were stably recorded throughout the experiment. Although distances were 
smallest when comparing the lattice to each arena (Group average Lattice vs Arena 1: 25.4, Lattice vs Arena 2: 25.5, Arena 1 vs Arena 2: 38.1) which is 
consistent with a gradual decrease in stability over time. In each case the distances between recording pairs were also significantly lower than chance 
which was estimated using pyramidal cell pairs co-recorded on the same tetrodes (p < .0001 in all cases, two-sample t-tests; black distributions).
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Extended Data Fig. 3 | Grid cells were more stable than chance within sessions, especially in the XY plane. See Methods: Spatial stability within sessions. 
For panels a & b: n=47 cells. (a) Left) representative grid cell volumetric firing rate maps used for the volumetric correlation analysis; each represents one 
half of the same lattice session. Note that these maps have much larger voxels than ones used or shown elsewhere. Middle) raincloud plots showing the 
distribution of correlation values found for the arena and lattice sessions. Grey distributions represent correlations between random grid cells recorded in 
each maze. Red lines denote medians, black lines denote 1st and 3rd quantiles. Right) cumulative distribution functions of the same distributions. Shaded 
areas denote 95% confidence intervals. In all sessions grid cells were more stable than chance (p < .0001 in all cases; two-sample t-tests) and the mazes 
did not differ (F(2,137) = 1.6, p = .203, η2 = 0.023; one-way ANOVA). (b) Left) same cell as a but shown using projected maps used for planar correlations. 
Middle) raincloud plots as in a, showing the correlations found for each projected plane of the lattice for all grid cells. Right) cumulative distribution 
functions of these data. Shaded areas denote 95% confidence intervals. All projections were more stable than chance (p < .001 in all cases; two-sample 
t-tests) but horizontal (XY) projections yielded significantly higher correlations than vertical ones (F(2,135) = 5.8, p = .00377, η2 = 0.079; one-way 
ANOVA) which is consistent with previous findings in place cells.
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Extended Data Fig. 4 | Grid cells did not remap according to movement direction. See Methods: Stability between movement epochs. For panels c &  
d: n=47 cells. (a) An example lattice trajectory filtered to show only vertical movements. (b) Same as a but for horizontal movements. (c) Left) example 
grid cell volumetric firing rate maps used for the movement direction analysis; each map represents the same grid cell activity filtered for vertical (left) 
or horizontal (right) movement epochs. Note that these maps have much larger voxels than ones used or shown elsewhere. Middle) raincloud plots 
showing the distribution of correlation values found for grid cells in the lattice (blue) and between random grid cells (grey). Red lines denote medians, 
black lines denote 1st and 3rd quantiles. Right) cumulative distribution functions of the same distributions. Shaded areas denote 95% confidence intervals. 
Grid cells were more stable than chance (t(4834) = 12.8, p = 6.49 × 10−37; two-sample t-test). (d) Left) example grid cell projected maps used for planar 
correlations. Middle) raincloud plots as in a, showing the correlations found for each projected plane of the lattice for all grid cells. Right) cumulative 
distribution functions of these data. Shaded areas denote 95% confidence intervals. All projections were more stable than chance (p < .0001 in all cases; 
two-sample t-tests) and they did not differ (F(2,135) = 2.1, p = .1249, η2 = 0.0303; one-way ANOVA).
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Extended Data Fig. 5 | Main results were similar in unstable grid cells. These plots supplement main figures but focus on unstable grid cells (that is 
cells that met our grid cell criteria in only one arena session; grey areas in Extended Data Fig. 2c). For panels a-f, h (right) & i (right): open circles denote 
mean, error bars denote SEM and text gives the results of one-way ANOVAs. For multiple comparisons: *** = p < .001, ** = p < .01, ** = p < .05, all 
two-sided tests with Dunn-Sidak correction. (a) Supplement to Fig. 2g; Grid field radius was similar in the lattice and arena sessions. n=40, 35, 28 & 27 
cells. (b) Supplement to Fig. 2i; grid spacing was significantly larger in the lattice. n=40, 25, 28 & 20 cells. (c) Supplement to Fig. 2b; Z-scored spatial 
information was higher than chance in all environments but reduced in the lattice. n=40, 36, 28 & 28 cells. (d) Z-scored sparsity was also lower than 
chance in all environments but was higher in the lattice. n=40, 36, 28 & 28 cells. (e) Supplement to Fig. 2f; grid cells exhibited significantly fewer fields 
per m3 in the lattice maze. n=76, 82, 68 & 74 cells. (f) Supplement to Fig. 4a; fields were significantly more elongated in the lattice. n=157, 233, 166 & 188 
cells. (g) Supplement to Fig. 3a; structure scores (χFCC, χHCP and χCOL) for grid cells (n=47, black markers), unstable grid cells (n=68, red markers) 
and simulations (convex hulls shown as shaded polygons). (h) Left) Supplement to Fig. 3c; All grid cells (stable & unstable) categorized based on which 
convex hull they fell into. Right) configuration specific scores for stable (n=47, black markers) and unstable (n=68, red markers) grid cells. (i) Left) 
Supplement to Fig. 3c; unstable grid cells categorized based on which convex hull they fell into. Right) configuration specific scores for unstable grid cells 
(n=68) only.
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Extended Data Fig. 6 | Weak evidence of square pattern activity in grid cells and non-grid cells. For panels a & c: Filled markers represent cells, open 
circles denote mean, error bars denote SEM. (a) Left) square grid scores for all grid cells (n=46) in each projected plane of the lattice maze. Square grid 
scores are low in each of the lattice planes and these did not differ (F(2,135) = 2.5, p = .0872, η2 = 0.036, one-way ANOVA). Right) proportion of grid cells 
with a square grid score exceeding the 95th percentile of a chance distribution in each lattice plane. A small number of cells exhibited a significant square 
firing pattern when projected onto the XY and YZ planes. Grey line shows the value that would be expected by chance (5%). (b) Three examples of these 
significant XY square grid cells. Top row shows the volumetric firing rate map, text gives the rat number, date, tetrode and cluster. Bottom row shows the 
autocorrelation of the XY projected firing rate map, text gives the square grid score (SGS) of the autocorrelation. (c-d) same as a-b but for all non-grid 
cells (n=550, 551 & 550). Square grid scores were again low and did not differ between projected planes (F(2,1648) = 1.2, p = .2975, η2 = 0.0015, one-way 
ANOVA). No plane exhibited more square grid cells than would be expected by chance (5%, grey line).
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Extended Data Fig. 7 | Cells with significant XY hexagonality in the lattice maze. For panels c & d: Filled markers represent cells, open circles denote 
mean, error bars denote SEM. Six grid cells (1 from one animal, 5 from another across a total of 3 sessions) showed a significant hexagonal grid score in 
the XY plane of the lattice maze. (a) Both grid spacing (z = −3.3, p < .001) and field size (z = 4.5, p < .0001; permutation tests: Methods: Statistics and 
figures) in the arena were significantly higher in the XY grid cells (n=6) than the remaining grid cells (n=41) suggesting that the hexagonality of large 
scale grid cells may be better preserved in 3D space. (b) The layer of the mEC the cells were recorded in was not related to XY hexagonality. Text gives 
the result of a two-sided Chi-square test of expected proportions which indicates that the layers where significant XY grid cells (red area) were found 
could be drawn by chance from the underlying distribution of grid cells (black area). (c-d) Theta modulation (Methods: Spike phase and autocorrelation 
analyses) and the proportion of layer crossings that were vertical in the lattice maze (Methods: Behaviour and spherical heatmaps) were also not related to 
XY hexagonality. Text gives the result of permutation tests (Methods: Statistics and figures). n=41 & 6 cells.
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Extended Data Fig. 8 | Directional modulation was preserved in the lattice. These analyses were conducted on head direction estimated from speed 
filtered displacement (Methods: Directional analyses and shuffles). (a) Markers represent cells, open circles denote mean, error bars denote SEM. 
Rayleigh vector lengths for all 40 directionally modulated cells (that is, any cells with a Rayleigh vector length exceeding the 95th percentile of 100 spike 
train shuffles in both arena sessions, may include grid cells). Grey line denotes a commonly used arbitrary cut-off (0.3) and text gives the proportion of 
cells with a Rayleigh vector length greater than this. Vector lengths were lower in the lattice (F(2,117) = 7.1, p = .0013, η2 = 0.108, one-way ANOVA).  
(b) Vector lengths were correlated between Arena 1 and the Lattice suggesting preserved directional modulation in this maze. LLS: linear least squares line 
fit. Text gives the result of a Pearson linear correlation and the slope of the LLS. (c) Left) normalized Arena 1 tuning curves for all directionally modulated 
cells sorted by their preferred firing direction (PFD; peak firing). Right) normalized lattice tuning curves sorted by their Arena 1 PFD. The preserved 
diagonal ordering suggests that cells maintained the same allocentric firing directions in the lattice; the population correlation between arena and lattice 
tuning curves (r = 0.85) exceeded the 95th percentile of 1000 shuffles (r = 0.33; z = 8.3, p < .0001) confirming this. (d) Overlaid arena and lattice polar 
tuning curves for 8 example directional cells. Coloured text gives the Rayleigh vector length for the corresponding tuning curves. (e) Same as c but for 
all conjunctive grid × direction cells (n = 7). As before, the correlation between arena and lattice tuning curves (r = 0.91) exceeded the 95th percentile of 
1000 shuffles (r = 0.55; z = 3.7, p = .0001) confirming that conjunctive grid cells maintained the same allocentric firing directions in the lattice.  
(f) Example conjunctive grid cells, one per row, ratemap, spatial autocorrelation and overlaid tuning curves as in D.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Descriptions of software are given in text. Mainly; dacqUSB (Axona), dacqTrack (Axona)

Data analysis Descriptions of software are given in text. Mainly; Tint (v.4.4.12, Axona), Matlab (2020a, The Mathworks), Klustakwik v3, Chronux toolbox 

plugin for Matlab (2.12 v03, http://chronux.org), CircStat circular statistics toolbox for Matlab (Mathworks file exchange; Berens, P.), smoothn 

n-dimensional interpolation algorithm (Mathworks file exchange; Garcia, D.). All custom Matlab codes are available for downloaded here: DOI: 

10.17632/s3h7n7jyr4.1.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The full data set, in its analyzed Matlab compatible format, is available here: DOI: 10.17632/s3h7n7jyr4.1; this includes all of the data reported or presented in the 

main text or supplementary files and everything needed to recreate the main analyses and figures. It also includes all tracking data, spike waveforms and spike time 

information. The raw data files are too large to be made publicly available (150GB) and because the only benefit they offer is the ability to recluster the raw spike 

data (something which researchers are unlikely to want or need) these data are instead available from the authors on request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes of 4-10 animals are typical in hippocampal research (Grieves et al. 2020; Flores-Abreu et al. 2014; Porter et al. 2018). We 

collected data from 9 animals (grid cells in 7 of these) which is a large enough number to ensure the effects we see are not specific to one 

animal or cohort. Cell yields can vary dramatically in hippocampal recordings, we recorded 115 grid cells of which we selected only the most 

stable, leaving 47 grid cells. This number is in line with other research using wireless telemetry in animals navigating in 3D (i.e. 55 place cells in 

flying bats: Yartsev & Ulanovsky, 2013; 44 grid cells in climbing rats: Hayman et al. 2015; 19 head direction cells in climbing rats: Page et al., 

2018). We feel this yield is high given the difficulty of the wireless and 3D nature of the recordings. No a priori power analysis was undertaken.

Data exclusions No animals or grid cells were excluded. Data clusters that were not classified as grid cells were excluded.

Replication Replication was not undertaken in this study although our effects are present across animals and sessions. Replication of our effects has to be 

performed by an independent laboratory and there are not currently laboratories with the required equipment to carry out this replication.

Randomization We had one treatment group so there was no need for randomization.

Blinding All animals were part of the same treatment group (arena-lattice-arena) and so the only blinding possible would be against the maze type. 

However, blinding was not possible during data collection as the difference in mazes was immediately apparent. Furthermore, there was no 

way for the experimenter to influence the outcome of the neural recordings in a predictable manner. The same experimenters who collected 

the data analyzed it and were thus not able to be blinded during analysis; furthermore, it would also not be possible for the analysis to be 

performed blinded as the two mazes vary in their dimensions and shape making their data often immediately recognizable. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Lister hooded rats, male, 250-400g in weight, age unknown (estimated to be between 10 and 20 weeks).

Wild animals The study did not involve wild animals

Field-collected samples The study did not involve samples taken from the field/wild.

Ethics oversight Animal care technicians, Named Veterinary Surgeons and Named Animal Care and Welfare Officers provided ethical and care 

guidance. This experiment complied with the national [Animals (Scientific Procedures) Act, 1986, United Kingdom] and international 

[European Communities Council Directive of November 24, 1986 (86/609/EEC)] legislation governing the maintenance of laboratory 

animals and their use in scientific experiments. Experimental procedures were approved by the UK Home Office and ethical approval 

was granted through consultation with veterinary staff at University College London.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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