Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural biology of Zika virus and other flaviviruses

Abstract

Zika virus (ZIKV) is an enveloped, icosahedral flavivirus that has structural and functional similarities to other human flavivirus pathogens such as dengue (DENV), West Nile (WNV) and Japanese encephalitis (JEV) viruses. ZIKV infections have been linked to fetal microcephaly and the paralytic Guillain–Barré syndrome. This review provides a comparative structural analysis of the assembly, maturation and host-cell entry of ZIKV with other flaviviruses, especially DENV. We also discuss the mechanisms of neutralization by antibodies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mature and immature ZIKV.
Fig. 2: Life cycle of the Flaviviridae.
Fig. 3: Maturation of flaviviruses.
Fig. 4: Packing of the E protein in mature flavivirus virions.
Fig. 5: Comparison of conservation of flavivirus E-protein structure and sequence.

Similar content being viewed by others

References

  1. Coyne, C. B. & Lazear, H. M. Zika virus–reigniting the TORCH. Nat. Rev. Microbiol. 14, 707–715 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Dick, G. W., Kitchen, S. F. & Haddow, A. J. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46, 509–520 (1952).

    Article  CAS  PubMed  Google Scholar 

  3. MacNamara, F. N. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 48, 139–145 (1954).

    Article  CAS  PubMed  Google Scholar 

  4. Duffy, M. R. et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 360, 2536–2543 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Cao-Lormeau, V. M. et al. Zika virus, French polynesia, South Pacific, 2013. Emerg. Infect. Dis. 20, 1085–1086 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cao-Lormeau, V. M. et al. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387, 1531–1539 (2016). This paper correlated ZIKV infections with Guillain–Barré syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Musso, D. et al. Potential sexual transmission of Zika virus. Emerg. Infect. Dis. 21, 359–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mlakar, J. et al. Zika virus associated with microcephaly. N. Engl. J. Med. 374, 951–958 (2016). This paper linked ZIKV infections to fetal microcephaly.

    Article  CAS  PubMed  Google Scholar 

  9. Motta, I. J. F. et al. Evidence for transmission of Zika virus by platelet transfusion. N. Engl. J. Med. 375, 1101–1103 (2016).

    Article  PubMed  Google Scholar 

  10. Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816–818 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryan, J.R. in Biosecurity and Bioterrorism 2nd edn, Ch. 3 (Butterworth–Heinemann, Oxford, 2016).

  13. Wang, C. Y. et al. Efficacy of various larvicides against Aedes aegypti immatures in the laboratory. Jpn. J. Infect. Dis. 66, 341–344 (2013).

    Article  PubMed  Google Scholar 

  14. Lindenbach, B.D. & Rice, C.M. in Fields Virology (eds. Knipe, D. M. & Howley, P. M.) 1101–1152 (Lippincott Williams & Wilkins, Philadelphia, 2007). The authoritative chapter on flavivirus biology.

  15. Theiler, M. & Smith, H. H. The effect of prolonged cultivation in vitro upon the pathogenicity of yellow fever virus. J. Exp. Med. 65, 767–786 (1937).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heinz, F. X. & Stiasny, K. Flaviviruses and flavivirus vaccines. Vaccine 30, 4301–4306 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Strauss, J.H. & Strauss, E.G. Viruses and Human Disease, 371 (Academic Press, San Diego, 2002).

  18. Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002). The first pseudo-atomic-resolution structure of a mature flavivirus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lorenz, I. C., Allison, S. L., Heinz, F. X. & Helenius, A. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J. Virol. 76, 5480–5491 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W. & Heinz, F. X. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 75, 4268–4275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pokidysheva, E. et al. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124, 485–493 (2006). The first pseudo-atomic-resolution structure of a mature flavivirus complexed with a host-cell receptor.

    Article  CAS  PubMed  Google Scholar 

  22. Davidson, A. D. Chapter 2. New insights into flavivirus nonstructural protein 5. Adv. Virus Res. 74, 41–101 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Zmurko, J., Neyts, J. & Dallmeier, K. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev. Med. Virol. 25, 205–223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murray, C. L., Jones, C. T. & Rice, C. M. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat. Rev. Microbiol. 6, 699–708 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rossmann, M. G., Bernal, R. & Pletnev, S. V. Combining electron microscopic with X-ray crystallographic structures. J. Struct. Biol. 136, 190–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y. et al. Structures of immature flavivirus particles. EMBO J. 22, 2604–2613 (2003). The first pseudo-atomic-resolution structure of an immature flavivirus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mangala Prasad, V. et al. Structure of the immature Zika virus at 9-Å resolution. Nat. Struct. Mol. Biol. 24, 184–186 (2017). The first pseudo-atomic-resolution structure of immature ZIKV, with evidence for a capsid protein shell.

    Article  CAS  Google Scholar 

  28. Mukhopadhyay, S., Kim, B.-S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J. Structure of West Nile virus. Science 302, 248 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, W. et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol. 10, 907–912 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sirohi, D. et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science 352, 467–470 (2016). The first cryo-EM structure of mature ZIKV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kostyuchenko, V. A. et al. Structure of the thermally stable Zika virus. Nature 533, 425–428 (2016). Cryo-EM structure of mature ZIKV.

    Article  CAS  PubMed  Google Scholar 

  32. Bressanelli, S. et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23, 728–738 (2004). Crystal structure of the E protein in a fusogenic state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004). Crystal structure of the E protein in a fusogenic state.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, X. et al. Structure of acidic pH dengue virus showing the fusogenic glycoprotein trimers. J. Virol. 89, 743–750 (2015). Cryo-EM structure of fusogenic DENV.

    Article  PubMed  CAS  Google Scholar 

  35. Kaufmann, B. et al. West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. Proc. Natl. Acad. Sci. USA 103, 12400–12404 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lok, S. M. et al. Binding of a neutralizing antibody to dengue virus resulted in an altered arrangement of the surface glycoproteins. Nat. Struct. Mol. Biol. 15, 312–317 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Kaufmann, B. et al. Capturing a flavivirus pre-fusion intermediate. PLoS Pathog. 5, e1000672 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cherrier, M. V. et al. Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J. 28, 3269–3276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaufmann, B. et al. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of CR4354 MAb. Proc. Natl. Acad. Sci. USA 107, 18950–18955 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cockburn, J. J. et al. Mechanism of dengue virus broad cross-neutralization by a monoclonal antibody. Structure 20, 303–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Cockburn, J. J. et al. Structural insights into the neutralization mechanism of a higher primate antibody against dengue virus. EMBO J. 31, 767–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J. Virol. 79, 1223–1231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, Z. et al. Obstruction of dengue virus maturation by Fab fragments of the 2H2 antibody. J. Virol. 87, 8909–8915 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barba-Spaeth, G. et al. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 536, 48–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Dejnirattisai, W. et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat. Immunol. 17, 1102–1108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hasan, S. S. et al. A human antibody against Zika virus crosslinks the E protein to prevent infection. Nat. Commun. 8, 14722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, X. et al. Dengue structure differs at the temperatures of its human and mosquito hosts. Proc. Natl. Acad. Sci. USA 110, 6795–6799 (2013). Cryo-EM structure of high-temperature-induced spikey mature DENV2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fibriansah, G. et al. Structural changes in dengue virus when exposed to a temperature of 37 degrees C. J. Virol. 87, 7585–7592 (2013). Cryo-EM structure of high-temperature-induced spikey mature DENV2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harrison, S. C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stiasny, K. & Heinz, F. X. Flavivirus membrane fusion. J. Gen. Virol. 87, 2755–2766 (2006). Refs. 49 and 50 are important reviews of viral membrane fusion.

    Article  CAS  PubMed  Google Scholar 

  51. Davis, C. W. et al. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J. Virol. 80, 1290–1301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, S. J. L. et al. Human skin Langerhans cells are targets of dengue virus infection. Nat. Med. 6, 816–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Richard, A. S. et al. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc. Natl. Acad. Sci. USA 114, 2024–2029 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  55. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, aal3321 (2017).

    Article  CAS  Google Scholar 

  56. Uhlén, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eean2507 (2017).

    Article  CAS  Google Scholar 

  57. Guirakhoo, F., Bolin, R. A. & Roehrig, J. T. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 191, 921–931 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Stadler, K., Allison, S. L., Schalich, J. & Heinz, F. X. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol. 71, 8475–8481 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, L. et al. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319, 1830–1834 (2008). Crystal structure of flavivirus pr–E complex.

    Article  CAS  PubMed  Google Scholar 

  60. Yu, I. M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834–1837 (2008). Cryo-EM structures showing the reversibility between the immature and mature DENV.

    Article  CAS  PubMed  Google Scholar 

  61. Yu, I.-M. et al. Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion. J. Virol. 83, 12101–12107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu, I.-M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834–1837 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Plevka, P. et al. Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres. EMBO Rep. 12, 602–606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Randolph, V. B., Winkler, G. & Stollar, V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 174, 450–458 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Kostyuchenko, V. A., Zhang, Q., Tan, J. L., Ng, T. S. & Lok, S. M. Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J. Virol. 87, 7700–7707 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, X. et al. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat. Struct. Mol. Biol. 20, 105–110 (2013). High-resolution cryo-EM structure of DENV.

    Article  PubMed  CAS  Google Scholar 

  67. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298 (1995). First crystal structure of a flavivirus E-protein dimer.

    Article  CAS  PubMed  Google Scholar 

  68. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA 100, 6986–6991 (2003). A potential inhibitor-binding pocket in DENV E protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, Y. et al. Conformational changes of the flavivirus E glycoprotein. Structure 12, 1607–1618 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kanai, R. et al. Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J. Virol. 80, 11000–11008 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nybakken, G. E., Nelson, C. A., Chen, B. R., Diamond, M. S. & Fremont, D. H. Crystal structure of the West Nile virus envelope glycoprotein. J. Virol. 80, 11467–11474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dokland, T. et al. West Nile virus core protein: tetramer structure and ribbon formation. Structure 12, 1157–1163 (2004). Crystal structure of the flavivirus capsid protein.

    Article  CAS  PubMed  Google Scholar 

  73. Ma, L., Jones, C. T., Groesch, T. D., Kuhn, R. J. & Post, C. B. Solution structure of dengue virus capsid protein reveals another fold. Proc. Natl. Acad. Sci. USA 101, 3414–3419 (2004). NMR structure of the flavivirus capsid protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heinz, F. X. et al. Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198, 109–117 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Kaufmann, B. & Rossmann, M. G. Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes Infect. 13, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Kielian, M. & Rey, F. A. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat. Rev. Microbiol. 4, 67–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Allison, S. L. et al. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 69, 695–700 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Allison, S. L., Stiasny, K., Stadler, K., Mandl, C. W. & Heinz, F. X. Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. J. Virol. 73, 5605–5612 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Stiasny, K., Allison, S. L., Marchler-Bauer, A., Kunz, C. & Heinz, F. X. Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J. Virol. 70, 8142–8147 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Cheng, R. H. et al. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80, 621–630 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johnston, L. J., Halliday, G. M. & King, N. J. Phenotypic changes in Langerhans’ cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J. Virol. 70, 4761–4766 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tassaneetrithep, B. et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197, 823–829 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barba-Spaeth, G., Longman, R. S., Albert, M. L. & Rice, C. M. Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes. J. Exp. Med. 202, 1179–1184 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mentor, N. A. & Kurane, I. Dengue virus infection of human T lymphocytes. Acta Virol. 41, 175–176 (1997).

    CAS  PubMed  Google Scholar 

  86. Bielefeldt-Ohmann, H. Analysis of antibody-independent binding of dengue viruses and dengue virus envelope protein to human myelomonocytic cells and B lymphocytes. Virus Res. 57, 63–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Wei, H. Y., Jiang, L. F., Fang, D. Y. & Guo, H. Y. Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell surface polypeptides. J. Gen. Virol. 84, 3095–3098 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Suksanpaisan, L., Cabrera-Hernandez, A. & Smith, D. R. Infection of human primary hepatocytes with dengue virus serotype 2. J. Med. Virol. 79, 300–307 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Ceccaldi, P. E., Lucas, M. & Despres, P. New insights on the neuropathology of West Nile virus. FEMS Microbiol. Lett. 233, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Rios, M. et al. Monocytes-macrophages are a potential target in human infection with West Nile virus through blood transfusion. Transfusion 46, 659–667 (2006).

    Article  PubMed  Google Scholar 

  91. Chen, Y. et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med. 3, 866–871 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Thullier, P. et al. Mapping of a dengue virus neutralizing epitope critical for the infectivity of all serotypes: insight into the neutralization mechanism. J. Gen. Virol. 82, 1885–1892 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Aoki, C. et al. Identification and characterization of carbohydrate molecules in mammalian cells recognized by dengue virus type 2. J. Biochem. 139, 607–614 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Lozach, P. Y. et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J. Biol. Chem. 280, 23698–23708 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Davis, C. W. et al. The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J. Biol. Chem. 281, 37183–37194 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Bryant, J. E. et al. Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. Virology 366, 415–423 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Murata, R. et al. Glycosylation of the West Nile Virus envelope protein increases in vivo and in vitro viral multiplication in birds. Am. J. Trop. Med. Hyg. 82, 696–704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miller, J. L. et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 4, e17 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lee, J. W., Chu, J. J. & Ng, M. L. Quantifying the specific binding between West Nile virus envelope domain III protein and the cellular receptor aVb3 integrin. J. Biol. Chem. 281, 1352–1360 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Tio, P. H., Jong, W. W. & Cardosa, M. J. Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. Virol. J. 2, 25 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Sakoonwatanyoo, P., Boonsanay, V. & Smith, D. R. Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein. Intervirology 49, 161–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Reyes-Del Valle, J., Chavez-Salinas, S., Medina, F. & Del Angel, R. M. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J. Virol. 79, 4557–4567 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Salas-Benito, J. et al. Evidence that the 45-kD glycoprotein, part of a putative dengue virus receptor complex in the mosquito cell line C6/36, is a heat-shock related protein. Am. J. Trop. Med. Hyg. 77, 283–290 (2007).

    CAS  PubMed  Google Scholar 

  104. Beasley, D. W. et al. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J. Virol. 79, 8339–8347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nelson, S. et al. Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog. 4, e1000060 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Stettler, K. et al. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353, 823–826 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Swanstrom, J. A. et al. Dengue virus envelope dimer epitope monoclonal antibodies isolated from dengue patients are protective against Zika virus. MBio 7, e01123–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Priyamvada, L. et al. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proc. Natl. Acad. Sci. USA 113, 7852–7857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao, H. et al. Structural basis of Zika virus-specific antibody protection. Cell 166, 1016–1027 (2016). First crystal structures of ZIKV-specific Fabs complexed with ZIKV E protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dai, L. et al. Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe 19, 696–704 (2016). First crystal structures of cross-reactive Fabs complexed with ZIKV E protein.

    Article  CAS  PubMed  Google Scholar 

  111. Wang, Q. et al. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci. Transl. Med. 8, 369ra179 (2016).

    Article  PubMed  CAS  Google Scholar 

  112. Zhang, S. et al. Neutralization mechanism of a highly potent antibody against Zika virus. Nat. Commun. 7, 13679 (2016). First cryo-EM structures of Fab bound to mature ZIKV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lagunas-Rangel, F. A., Viveros-Sandoval, M. E. & Reyes-Sandoval, A. Current trends in Zika vaccine development. J. Virus Erad. 3, 124–127 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Shan, C. et al. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat. Med. 23, 763–767 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Larocca, R. A. et al. Vaccine protection against Zika virus from Brazil. Nature 536, 474–478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Abbink, P. et al. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353, 1129–1132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sumathy, K. et al. Protective efficacy of Zika vaccine in AG129 mouse model. Sci. Rep. 7, 46375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Morrison, C. DNA vaccines against Zika virus speed into clinical trials. Nat. Rev. Drug Discov. 15, 521–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Dowd, K. A. et al. Rapid development of a DNA vaccine for Zika virus. Science 354, 237–240 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chahal, J. S. et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep. 7, 252 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Richner, J. M. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 168, 1114–1125.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Pardi, N. et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543, 248–251 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, E. et al. Preventative vaccines for Zika virus putbreak: Preliminary evaluation. EBioMedicine 13, 315–320 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Boigard, H. et al. Zika virus-like particle (VLP) based vaccine. PLoS Negl. Trop. Dis. 11, e0005608 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Usman Mirza, M. et al. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Sci. Rep. 6, 37313 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xie, X. et al. Understanding Zika virus stability and developing a chimeric vaccine through functional analysis. MBio 8, e02134-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Saiz, J. C. & Martin-Acebes, M. A. The race to find antivirals for Zika virus. Antimicrob. Agents Chemother. 61, e00411–17 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Eyer, L. et al. Nucleoside inhibitors of Zika virus. J. Infect. Dis. 214, 707–711 (2016).

    Article  PubMed  Google Scholar 

  129. Stephen, P., Baz, M., Boivin, G. & Lin, S. X. Structural insight into NS5 of Zika virus leading to the discovery of MTase inhibitors. J. Am. Chem. Soc. 138, 16212–16215 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Lee, H. et al. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus. Antiviral Res. 139, 49–58 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Much of the work described here was supported by NIH grant AI076331 to M.G.R. and R.J.K. We are also grateful for NIH grant AI073755 awarded to M.S. Diamond (PI) with a subaward to M.G.R. and R.J.K. We thank the Purdue Cryo-EM facility for their help and support. We are also grateful to the Purdue Rosen Center for Advanced Computing for research computing support over many decades. We have greatly benefitted from discussions and help from numerous postdocs over the years (in particular, B. Kaufmann and T. Klose) as well as graduate students in both the Kuhn and Rossmann faculty research labs at Purdue. We thank S. Kelly for help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.S.H. and M.G.R. wrote the paper. R.J.K. edited the paper. M.S. reviewed the text and contributed Fig. 5a.

Corresponding author

Correspondence to Michael G. Rossmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, S.S., Sevvana, M., Kuhn, R.J. et al. Structural biology of Zika virus and other flaviviruses. Nat Struct Mol Biol 25, 13–20 (2018). https://doi.org/10.1038/s41594-017-0010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-017-0010-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing