Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanisms of genetic instability caused by (CGG)n repeats in an experimental mammalian system

Abstract

We developed an experimental system for studying genome instability caused by fragile X (CGG)n repeats in mammalian cells. Our method uses a selectable cassette carrying the HyTK gene under the control of the FMR1 promoter with (CGG)n repeats in its 5′ UTR, which is integrated into the unique RL5 site in murine erythroid leukemia cells. Carrier-size (CGG)n repeats markedly elevated the frequency of reporter inactivation, making cells ganciclovir resistant. These resistant clones had a unique mutational signature: a change in repeat length concurrent with mutagenesis in the reporter gene. Inactivation of genes implicated in break-induced replication, including Pold3, Pold4, Rad52, Rad51, and Smarcal1, reduced the frequency of ganciclovir-resistant clones to the baseline level that was observed in the absence of (CGG)n repeats. We propose that replication fork collapse at carrier-size (CGG)n repeats can trigger break-induced replication, which results in simultaneous repeat length changes and mutagenesis at a distance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental system to study genome instability caused by (CGG)n repeats.
Fig. 2: Mechanisms of ganciclovir resistance.
Fig. 3: Proposed mechanism for mutational events triggered by carrier-size (CGG)n repeats.

Similar content being viewed by others

References

  1. Carvalho, C. M. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17, 224–238 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Ashley, C. T. Jr & Warren, S. T. Trinucleotide repeat expansion and human disease. Annu. Rev. Genet. 29, 703–728 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. Bidichandani, S. I. et al. Somatic sequence variation at the Friedreich ataxia locus includes complete contraction of the expanded GAA triplet repeat, significant length variation in serially passaged lymphoblasts and enhanced mutagenesis in the flanking sequence. Hum. Mol. Genet. 8, 2425–2436 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. Chong, S. S. et al. Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 10, 344–350 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. Monckton, D. G., Wong, L. J., Ashizawa, T. & Caskey, C. T. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet. 4, 1–8 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. McMurray, C. T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 11, 786–799 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Usdin, K., House, N. C. M. & Freudenreich, C. H. Repeat instability during DNA repair: insights from model systems. Crit. Rev. Biochem. Mol. Biol. 50, 142–167 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kim, J. C. & Mirkin, S. M. The balancing act of DNA repeat expansions. Curr. Opin. Genet. Dev. 23, 280–288 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Freudenreich, C. H., Kantrow, S. M. & Zakian, V. A. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853–856 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. Shah, K. A. & Mirkin, S. M. The hidden side of unstable DNA repeats: mutagenesis at a distance. DNA Repair 32, 106–112 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. McGinty, R. J. et al. Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Res. 27, 2072–2082 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chandok, G. S., Patel, M. P., Mirkin, S. M. & Krasilnikova, M. M. Effects of Friedreich’s ataxia GAA repeats on DNA replication in mammalian cells. Nucleic Acids Res. 40, 3964–3974 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Follonier, C., Oehler, J., Herrador, R. & Lopes, M. Friedreich’s ataxia–associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat. Struct. Mol. Biol. 20, 486–494 (2013).

    Article  PubMed  CAS  Google Scholar 

  15. Gerhardt, J. et al. Stalled DNA replication forks at the endogenous GAA repeats drive repeat expansion in Friedreich’s ataxia cells. Cell Rep. 16, 1218–1227 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gerhardt, J. et al. The DNA replication program is altered at the FMR1 locus in fragile X embryonic stem cells. Mol. Cell 53, 19–31 (2014).

    Article  PubMed  CAS  Google Scholar 

  17. Liu, G., Chen, X., Bissler, J. J., Sinden, R. R. & Leffak, M. Replication-dependent instability at (CTG)·(CAG) repeat hairpins in human cells. Nat. Chem. Biol. 6, 652–659 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liu, G. et al. Altered replication in human cells promotes DMPK (CTG)n · (CAG)n repeat instability. Mol. Cell. Biol. 32, 1618–1632 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Rindler, P. M., Clark, R. M., Pollard, L. M., De Biase, I. & Bidichandani, S. I. Replication in mammalian cells recapitulates the locus-specific differences in somatic instability of genomic GAA triplet-repeats. Nucleic Acids Res. 34, 6352–6361 (2006).

    Article  CAS  Google Scholar 

  20. Seriola, A. et al. Huntington’s and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation. Hum. Mol. Genet. 20, 176–185 (2011).

    Article  PubMed  CAS  Google Scholar 

  21. Ku, S. et al. Friedreich’s ataxia induced pluripotent stem cells model intergenerational GAA·TTC triplet repeat instability. Cell Stem Cell 7, 631–637 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hansen, R. S., Canfield, T. K., Lamb, M. M., Gartler, S. M. & Laird, C. D. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73, 1403–1409 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. Manley, K., Shirley, T. L., Flaherty, L. & Messer, A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat. Genet. 23, 471–473 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. Kovtun, I. V. & McMurray, C. T. Trinucleotide expansion in haploid germ cells by gap repair. Nat. Genet. 27, 407–411 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. Savouret, C. et al. CTG repeat instability and size variation timing in DNA repair–deficient mice. EMBO J. 22, 2264–2273 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ezzatizadeh, V. et al. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model. Neurobiol. Dis. 46, 165–171 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhao, X.-N. et al. Mutsβ generates both expansions and contractions in a mouse model of the fragile X–associated disorders. Hum. Mol. Genet. 24, 7087–7096 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Wöhrle, D. et al. Heterogeneity of DM kinase repeat expansion in different fetal tissues and further expansion during cell proliferation in vitro: evidence for a casual involvement of methyl-directed DNA mismatch repair in triplet repeat stability. Hum. Mol. Genet. 4, 1147–1153 (1995).

    Article  PubMed  Google Scholar 

  29. Du, J. et al. Role of mismatch repair enzymes in GAA·TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. J. Biol. Chem. 287, 29861–29872 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Halabi, A., Ditch, S., Wang, J. & Grabczyk, E. DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells. J. Biol. Chem. 287, 29958–29967 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lin, Y., Dent, S. Y., Wilson, J. H., Wells, R. D. & Napierala, M. R loops stimulate genetic instability of CTG·CAG repeats. Proc. Natl. Acad. Sci. USA 107, 692–697 (2010).

    Article  PubMed  Google Scholar 

  32. Nakamori, M., Pearson, C. E. & Thornton, C. A. Bidirectional transcription stimulates expansion and contraction of expanded (CTG)·(CAG) repeats. Hum. Mol. Genet. 20, 580–588 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Zhao, X.-N. & Usdin, K. Gender and cell-type-specific effects of the transcription-coupled repair protein, ERCC6/CSB, on repeat expansion in a mouse model of the fragile X–related disorders. Hum. Mutat. 35, 341–349 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chan, N. L. et al. The Werner syndrome protein promotes CAG/CTG repeat stability by resolving large (CAG)n/(CTG)n hairpins. J. Biol. Chem. 287, 30151–30156 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Frizzell, A. et al. RTEL1 inhibits trinucleotide repeat expansions and fragility. Cell Rep. 6, 827–835 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gorbunova, V. et al. Selectable system for monitoring the instability of CTG/CAG triplet repeats in mammalian cells. Mol. Cell. Biol. 23, 4485–4493 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lin, Y., Dion, V. & Wilson, J. H. Transcription promotes contraction of CAG repeat tracts in human cells. Nat. Struct. Mol. Biol. 13, 179–180 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. Lin, Y. & Wilson, J. H. Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 27, 6209–6217 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chatterjee, N., Lin, Y., Santillan, B. A., Yotnda, P. & Wilson, J. H. Environmental stress induces trinucleotide repeat mutagenesis in human cells. Proc. Natl. Acad. Sci. USA 112, 3764–3769 (2015).

    PubMed  CAS  Google Scholar 

  40. Fu, Y. H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. Feng, Y. Q., Lorincz, M. C., Fiering, S., Greally, J. M. & Bouhassira, E. E. Position effects are influenced by the orientation of a transgene with respect to flanking chromatin. Mol. Cell. Biol. 21, 298–309 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Costantino, L. et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343, 88–91 (2014).

    Article  PubMed  CAS  Google Scholar 

  43. Voineagu, I., Surka, C. F., Shishkin, A. A., Krasilnikova, M. M. & Mirkin, S. M. Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat. Struct. Mol. Biol. 16, 226–228 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ebersole, T. et al. tRNA genes protect a reporter gene from epigenetic silencing in mouse cells. Cell Cycle 10, 2779–2791 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kim, J. C., Harris, S. T., Dinter, T., Shah, K. A. & Mirkin, S. M. The role of break-induced replication in large-scale expansions of (CAG)n/(CTG)n repeats. Nat. Struct. Mol. Biol. 24, 55–60 (2017).

    Article  PubMed  CAS  Google Scholar 

  46. Sakofsky, C. J. et al. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep. 7, 1640–1648 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sotiriou, S. K. et al. Mammalian RAD52 functions in break-induced replication repair of collapsed DNA replication forks. Mol. Cell 64, 1127–1134 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lugli, N., Sotiriou, S. K. & Halazonetis, T. D. The role of SMARCAL1 in replication fork stability and telomere maintenance. DNA Repair 56, 129–134 (2017).

    Article  PubMed  CAS  Google Scholar 

  49. Wang, G. & Vasquez, K. M. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair 19, 143–151 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Malkova, A. & Ira, G. Break-induced replication: functions and molecular mechanism. Curr. Opin. Genet. Dev. 23, 271–279 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Roumelioti, F. M. et al. Alternative lengthening of human telomeres is a conservative DNA replication process with features of break-induced replication. EMBO Rep. 17, 1731–1737 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pasero, P. & Vindigni, A. Nucleases acting at stalled forks: how to reboot the replication program with a few shortcuts. Annu. Rev. Genet. 51, 477–499 (2017).

    Article  PubMed  CAS  Google Scholar 

  53. Smith, C. E., Llorente, B. & Symington, L. S. Template switching during break-induced replication. Nature 447, 102–105 (2007).

    Article  PubMed  CAS  Google Scholar 

  54. de Graaff, E. et al. Hotspot for deletions in the CGG repeat region of FMR1 in fragile X patients. Hum. Mol. Genet. 4, 45–49 (1995).

    Article  PubMed  Google Scholar 

  55. Nichol Edamura, K. & Pearson, C. E. DNA methylation and replication: implications for the “deletion hotspot” region of FMR1. Hum. Genet. 118, 301–304 (2005).

    Article  PubMed  CAS  Google Scholar 

  56. Hagerman, R. J. & Hagerman, P. J. The fragile X premutation: into the phenotypic fold. Curr. Opin. Genet. Dev. 12, 278–283 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. Sherman, S. L. Premature ovarian failure among fragile X premutation carriers: parent-of-origin effect? Am. J. Hum. Genet. 67, 11–13 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Man, L., Lekovich, J., Rosenwaks, Z. & Gerhardt, J. Fragile X–associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front. Mol. Neurosci. 10, 290 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hagerman, R., Au, J. & Hagerman, P. FMR1 premutation and full mutation molecular mechanisms related to autism. J. Neurodev. Disord. 3, 211–224 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kumari, D. & Usdin, K. Interaction of the transcription factors USF1, USF2, and alpha-Pal/Nrf-1 with the FMR1 promoter. Implications for fragile X mental retardation syndrome. J. Biol. Chem. 276, 4357–4364 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. Kononenko, A. V. et al. A portable BRCA1-HAC (human artificial chromosome) module for analysis of BRCA1 tumor suppressor function. Nucleic Acids Res. 42, e164 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  62. Kim, J.-H. et al. Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing. Genome Res. 19, 533–544 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Usdin (NIDDK, NIH) for the generous gift of the p32.9 plasmid, E. Bouhassira (Albert Einstein College of Medicine) for providing us with the RL5 cell line, D. Gennert for technical assistance, and A. Neil for his invaluable editorial help. This work was supported by NIH grants R01GM60987 and P01GM105473 to S.M.M. and R01CA093729 to K.M.V.

Author information

Authors and Affiliations

Authors

Contributions

A.V.K., T.E., K.M.V. and S.M.M. designed the study; A.V.K. and T.E. performed experiments; A.V.K., T.E. and S.M.M. analyzed data; A.V.K., T.E., K.M.V. and S.M.M. wrote the manuscript.

Corresponding author

Correspondence to Sergei M. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Mutations found in the TK domain of the HyTK gene in various FMR1-(CGG)n-HyTK cassettes.

DNA bases in the TK domain of the wild-type HyTK gene that underwent mutagenesis are shown in bold. Mutations found in the cassettes with (CGG)0, (CGG)53, and (CGG)153 repeats are shown in green, blue, and red, respectively; mutations found in the cassette with (CGG)153 repeats upon treatment with Pold3 siRNA are shown in orange; and G7 and C6 mutation hotspots are highlighted in yellow. V, insertion; Δ, deletion; D, duplication; FV, insertion to frameshift; FΔ, deletion to frameshift; X, complex mutation; AT and TT, tandem base substitutions.

Supplementary Figure 2 PCR analysis of repeat lengths for clones originated after treatment of the FMR1-(CGG)153-HyTK cell line with Pold3 siRNA.

Lane 1 shows the original repeat; lanes 2–4, 6, 8, and 9 show expanded repeats; and lanes 5 and 7 show unchanged repeat. Mutations found within the HyTK gene are shown at the top of the corresponsing lane.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Table 1

Reporting Summary

Supplementary Dataset 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononenko, A.V., Ebersole, T., Vasquez, K.M. et al. Mechanisms of genetic instability caused by (CGG)n repeats in an experimental mammalian system. Nat Struct Mol Biol 25, 669–676 (2018). https://doi.org/10.1038/s41594-018-0094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0094-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing