Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a mitochondrial fission dynamin in the closed conformation

This article has been updated

Abstract

Dynamin 1-like proteins (DNM1-L) are mechanochemical GTPases that induce membrane fission in mitochondria and peroxisomes. Their mechanism depends on conformational changes driven by nucleotide and lipid cycling. Here we show the crystal structure of a mitochondrial fission dynamin (CmDnm1) from the algae Cyanidioschyzon merolae. Unlike other eukaryotic dynamin structures, CmDnm1 is in a hinge 1 closed conformation, with the GTPase domain compacted against the stalk. Within the crystal, CmDnm1 packs as a diamond-shaped tetramer that is consistent with an inactive off-membrane state. Crosslinking, photoinduced electron transfer assays, and electron microscopy verify these structures. In vitro, CmDnm1 forms concentration-dependent rings and protein–lipid tubes reminiscent of DNM1-L and classical dynamin with hinge 1 open. Our data provides a mechanism for filament collapse and membrane release that may extend to other dynamin family members. Additionally, hinge 1 closing may represent a key conformational change that contributes to membrane fission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CmDnm1 catalytic activity and self-assembly.
Fig. 2: The crystal structure of the CmDnm1 monomer.
Fig. 3: The crystal structure of the CmDnm1 tetramer.
Fig. 4: Biochemical validation of CmDnm1 hinge 1 closed conformation in solution.
Fig. 5: Validation of the CmDnm1 tetramer in solution.
Fig. 6: CmDnm1 nucleotide hydrolysis cycle and activation model.

Similar content being viewed by others

Change history

  • 08 August 2018

    In the version of this article initially published, the file with supplementary figures had formatting problems. This has now been corrected.

References

  1. Smirnova, E., Shurland, D. L., Ryazantsev, S. N. & van der Bliek, A. M. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351–358 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Smirnova, E., Griparic, L., Shurland, D. L. & van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245–2256 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Low, H. H., Sachse, C., Amos, L. A. & Löwe, J. Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139, 1342–1352 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kishida, H. & Sugio, S. Crystal structure of GTPase domain fused with minimal stalks from human dynamin-1-like protein (Dlp1) in complex with several nucleotide analogues. Curr. Top. Pept. Protein Res 14, 67–77 (2013).

    CAS  Google Scholar 

  5. Wenger, J. et al. Functional mapping of human dynamin-1-like GTPase domain based on x-ray structure analyses. PLoS One 8, e71835 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chappie, J. S. et al. A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147, 209–222 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yan, L. et al. Structural basis for mechanochemical role of Arabidopsis thaliana dynamin-related protein in membrane fission. J. Mol. Cell Biol. 3, 378–381 (2011).

    Article  PubMed  CAS  Google Scholar 

  8. Rennie, M. L., McKelvie, S. A., Bulloch, E. M. M. & Kingston, R. L. Transient dimerization of human MxA promotes GTP hydrolysis, resulting in a mechanical power stroke. Structure 22, 1433–1445 (2014).

    Article  PubMed  CAS  Google Scholar 

  9. Chen, Y. et al. Conformational dynamics of dynamin-like MxA revealed by single-molecule FRET. Nat. Commun. 8, 15744 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fröhlich, C. et al. Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J. 32, 1280–1292 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. DeVay, R. M. et al. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J. Cell Biol. 186, 793–803 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cao, Y. L. et al. MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature 542, 372–376 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gao, S. et al. Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity 35, 514–525 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Gao, S. et al. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465, 502–506 (2010).

    Article  PubMed  CAS  Google Scholar 

  15. Faelber, K. et al. Crystal structure of nucleotide-free dynamin. Nature 477, 556–560 (2011).

    Article  PubMed  CAS  Google Scholar 

  16. Reubold, T. F. et al. Crystal structure of the dynamin tetramer. Nature 525, 404–408 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Mears, J. A. et al. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20–26 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L. & Dyda, F. G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature 465, 435–440 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Alvarez, F. J. D. et al. CryoEM structure of MxB reveals a novel oligomerization interface critical for HIV restriction. Sci. Adv. 3, e1701264 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Antonny, B. et al. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 35, 2270–2284 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nishida, K. et al. Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc. Natl. Acad. Sci. USA 100, 2146–2151 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Imoto, Y. et al. Single-membrane-bounded peroxisome division revealed by isolation of dynamin-based machinery. Proc. Natl. Acad. Sci. USA 110, 9583–9588 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koch, A. et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278, 8597–8605 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. Narayanan, R., Leonard, M., Song, B. D., Schmid, S. L. & Ramaswami, M. An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function. J. Cell Biol. 169, 117–126 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ford, M. G. J., Jenni, S. & Nunnari, J. The crystal structure of dynamin. Nature 477, 561–566 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Low, H. H. & Löwe, J. A bacterial dynamin-like protein. Nature 444, 766–769 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. Mattila, J. P. et al. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature 524, 109–113 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Doose, S., Neuweiler, H. & Sauer, M. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10, 1389–1398 (2009).

    Article  PubMed  CAS  Google Scholar 

  31. Mansoor, S. E., Dewitt, M. A. & Farrens, D. L. Distance mapping in proteins using fluorescence spectroscopy: the tryptophan-induced quenching (TrIQ) method. Biochemistry 49, 9722–9731 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. De Vecchis, D. et al. A membrane-inserted structural model of the yeast mitofusin Fzo1. Sci. Rep. 7, 10217 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Binns, D. D. et al. Correlation between self-association modes and GTPase activation of dynamin. J. Protein Chem. 18, 277–290 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 16, 6676–6683 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Okamoto, P. M., Tripet, B., Litowski, J., Hodges, R. S. & Vallee, R. B. Multiple distinct coiled-coils are involved in dynamin self-assembly. J. Biol. Chem. 274, 10277–10286 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. Tuma, P. L. & Collins, C. A. Activation of dynamin GTPase is a result of positive cooperativity. J. Biol. Chem. 269, 30842–30847 (1994).

    PubMed  CAS  Google Scholar 

  37. Chen, Y. J., Zhang, P., Egelman, E. H. & Hinshaw, J. E. The stalk region of dynamin drives the constriction of dynamin tubes. Nat. Struct. Mol. Biol. 11, 574–575 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nat. Cell Biol. 3, 922–926 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. Strack, S. & Cribbs, J. T. Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain. J. Biol. Chem. 287, 10990–11001 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhang, Y., Gao, X. & Garavito, R. M. Biochemical characterization of human dynamin-like protein 1. J. Biochem 150, 627–633 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Mozdy, A. D., McCaffery, J. M. & Shaw, J. M. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151, 367–380 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gandre-Babbe, S. & van der Bliek, A. M. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19, 2402–2412 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Palmer, C. S. et al. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12, 565–573 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhao, J. et al. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J. 30, 2762–2778 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Morlot, S. et al. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 151, 619–629 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. Danino, D., Moon, K. H. & Hinshaw, J. E. Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J. Struct. Biol. 147, 259–267 (2004).

    Article  PubMed  CAS  Google Scholar 

  48. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  PubMed  CAS  Google Scholar 

  49. Low, H. H., Moncrieffe, M. C. & Löwe, J. The crystal structure of ZapA and its modulation of FtsZ polymerisation. J. Mol. Biol. 341, 839–852 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–8 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Headd, J. J. et al. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallogr. D. Biol. Crystallogr. 68, 381–390 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Laskowski, R. A., Macarthur, M. W., Moss, D. S., Thornton, J. M. Procheck - a program to check the stereochemical quality of protein structures.J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  55. Loo, T. W. & Clarke, D. M. Determining the dimensions of the drug-binding domain of human P-glycoprotein using thiol cross-linking compounds as molecular rulers. J. Biol. Chem. 276, 36877–36880 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Beamline staff at the ESRF for data collection support and T. Pape for in-house EM facility support. We acknowledge the gift of C. merolae genomic DNA from T. Kuroiwa. We are grateful to A. Chernyatina and J. Liu for manuscript feedback. This work was supported by a Wellcome Trust Fellowship (097328/Z/11/Z) to H.H.L. O.B. was supported by a BBSRC Doctoral Training Partnership with Imperial College.

Author information

Authors and Affiliations

Authors

Contributions

O.B. and H.H.L. designed experiments. H.H.L. initially purified native protein, obtained crystals, and determined structure. O.B. purified proteins and performed all other experiments including GTPase, crosslinking, and PET assays and generated EM data. H.H.L. and O.B. wrote the paper.

Corresponding author

Correspondence to Harry H. Low.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohuszewicz, O., Low, H.H. Structure of a mitochondrial fission dynamin in the closed conformation. Nat Struct Mol Biol 25, 722–731 (2018). https://doi.org/10.1038/s41594-018-0097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0097-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing