Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A 50 year history of technologies that drove discovery in eukaryotic transcription regulation

Abstract

Transcription regulation is critical to organism development and homeostasis. Control of expression of the 20,000 genes in human cells requires many hundreds of proteins acting through sophisticated multistep mechanisms. In this Historical Perspective, I highlight the progress that has been made in elucidating eukaryotic transcriptional mechanisms through an array of disciplines and approaches, and how this concerted effort has been driven by the development of new technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The transcription cycle consists of distinct steps that are targets of regulation.
Fig. 2: Dissecting eukaryotic transcriptional mechanisms in cells: the OPreO strategy.

Similar content being viewed by others

References

  1. Roeder, R. G. & Rutter, W. J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224, 234–237 (1969).

    Article  CAS  PubMed  Google Scholar 

  2. Roeder, R.G. 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-019-0287-x (2019).

  3. Sawadogo, M. & Roeder, R. G. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc. Natl. Acad. Sci. USA 82, 4394–4398 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsui, T., Segall, J., Weil, P. A. & Roeder, R. G. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255, 11992–11996 (1980).

    CAS  PubMed  Google Scholar 

  5. Burley, S. K. & Roeder, R. G. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65, 769–799 (1996).

    CAS  PubMed  Google Scholar 

  6. Kornberg, A. Ten commandments: lessons from the enzymology of DNA replication. J. Bacteriol. 182, 3613–3618 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruddle, F. H. A new era in mammalian gene mapping: somatic cell genetics and recombinant DNA methodologies. Nature 294, 115–120 (1981).

    CAS  PubMed  Google Scholar 

  8. Weeks, J. R., Coulter, D. E. & Greenleaf, A. L. Immunological studies of RNA polymerase II using antibodies to subunits of Drosophila and wheat germ enzyme. J. Biol. Chem. 257, 5884–5892 (1982).

    CAS  PubMed  Google Scholar 

  9. Gilmour, D. S. & Lis, J. T. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol. Cell. Biol. 6, 3984–3989 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rougvie, A. E. & Lis, J. T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795–804 (1988).

    CAS  PubMed  Google Scholar 

  11. Rasmussen, E. B. & Lis, J. T. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl. Acad. Sci. USA 90, 7923–7927 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kao, S. Y., Calman, A. F., Luciw, P. A. & Peterlin, B. M. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330, 489–493 (1987).

    CAS  PubMed  Google Scholar 

  13. Eick, D., Kohlhuber, F., Wolf, D. A. & Strobl, L. J. Activation of pausing RNA polymerases by nuclear run-on experiments. Anal. Biochem. 218, 347–351 (1994).

    CAS  PubMed  Google Scholar 

  14. Krumm, A., Meulia, T., Brunvand, M. & Groudine, M. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev. 6, 2201–2213 (1992).

    CAS  PubMed  Google Scholar 

  15. Chodosh, L. A., Fire, A., Samuels, M. & Sharp, P. A. 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J. Biol. Chem. 264, 2250–2257 (1989).

    CAS  PubMed  Google Scholar 

  16. Yamaguchi, Y., Wada, T. & Handa, H. Interplay between positive and negative elongation factors: drawing a new view of DRB. Genes Cells 3, 9–15 (1998).

    CAS  PubMed  Google Scholar 

  17. Marshall, N. F. & Price, D. H. Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol. Cell. Biol. 12, 2078–2090 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).

    CAS  PubMed  Google Scholar 

  20. Wu, C. H. et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev. 17, 1402–1414 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, J. et al. Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing. Mol. Cell 50, 711–722 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vos, S. M. et al. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 560, 607–612 (2018).

    CAS  PubMed  Google Scholar 

  23. Winston, F., Chaleff, D. T., Valent, B. & Fink, G. R. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107, 179–197 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Muse, G. W. et al. RNA polymerase is poised for activation across the genome. Nat. Genet. 39, 1507–1511 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 39, 1512–1516 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Core, L. J. et al. Defining the status of RNA polymerase at promoters. Cell Rep. 2, 1025–1035 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3, e02407 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Mayran, A. & Drouin, J. Pioneer transcription factors shape the epigenetic landscape. J. Biol. Chem. 293, 13795–13804 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pugh, B. F. & Venters, B. J. Genomic Organization of Human Transcription Initiation Complexes. PLoS One 11, e0149339 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Kouzine, F. et al. Global regulation of promoter melting in naive lymphocytes. Cell 153, 988–999 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Peterlin, B. M. & Price, D. H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).

    CAS  PubMed  Google Scholar 

  33. Gressel, S. et al. CDK9-dependent RNA polymerase II pausing controls transcription initiation. eLife 6, e29736 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Shao, W. & Zeitlinger, J. Paused RNA polymerase II inhibits new transcriptional initiation. Nat. Genet. 49, 1045–1051 (2017).

    CAS  PubMed  Google Scholar 

  35. Boettiger, A. N. & Levine, M. Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science 325, 471–473 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Duarte, F. M. et al. Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation. Genes Dev. 30, 1731–1746 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vihervaara, A. et al. Transcriptional response to stress is pre-wired by promoter and enhancer architecture. Nat. Commun. 8, 255 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

    CAS  PubMed  Google Scholar 

  39. Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    CAS  PubMed  Google Scholar 

  41. Wissink, E.M., Vihervaara, A., Tippens, N.D. & Lis, J.T. Nascent RNA analyses: tracking transcription and its regulation. Nat. Rev. Genet. https://doi.org/10.1038/s41576-019-0159-6 (2019).

  42. Kruesi, W. S., Core, L. J., Waters, C. T., Lis, J. T. & Meyer, B. J. Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. eLife 2, e00808 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338 (2010).

    CAS  PubMed  Google Scholar 

  44. Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225–1228 (2016).

    CAS  PubMed  Google Scholar 

  45. Rhee, H. S. & Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Cui, K. & Zhao, K. Genome-wide approaches to determining nucleosome occupancy in metazoans using MNase-Seq. Methods Mol. Biol. 833, 413–419 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kouzine, F. et al. Permanganate/S1 Nuclease Footprinting Reveals Non-B DNA Structures with Regulatory Potential across a Mammalian Genome. Cell Syst. 4, 344–356 e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mailler, E., Paillart, J. C., Marquet, R., Smyth, R. P. & Vivet-Boudou, V. The evolution of RNA structural probing methods: From gels to next-generation sequencing. Wiley Interdiscip. Rev. RNA 10, e1518 (2019).

    PubMed  Google Scholar 

  51. Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    CAS  PubMed  Google Scholar 

  52. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Natsume, T. & Kanemaki, M. T. Conditional Degrons for Controlling Protein Expression at the Protein Level. Annu. Rev. Genet. 51, 83–102 (2017).

    CAS  PubMed  Google Scholar 

  54. McDaniel, S. L. et al. Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic Genome Activation. Mol. Cell 74, 185–195.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bensaude, O. Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity? Transcription 2, 103–108 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Shi, H., Hoffman, B. E. & Lis, J. T. RNA aptamers as effective protein antagonists in a multicellular organism. Proc. Natl. Acad. Sci. USA 96, 10033–10038 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Blau, J. et al. Three functional classes of transcriptional activation domain. Mol. Cell. Biol. 16, 2044–2055 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahat, D. B., Salamanca, H. H., Duarte, F. M., Danko, C. G. & Lis, J. T. Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation. Mol. Cell 62, 63–78 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    CAS  PubMed  Google Scholar 

  60. Banerji, J., Rusconi, S. & Schaffner, W. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).

    CAS  PubMed  Google Scholar 

  61. Gasperini, M. et al. A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens. Cell 176, 377–390.e19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fulco, C. P. et al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863–1876 (2001).

    CAS  PubMed  Google Scholar 

  64. Kostrewa, D. et al. RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 462, 323–330 (2009).

    CAS  PubMed  Google Scholar 

  65. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  Google Scholar 

  66. Patel, A. B. et al. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science 362, eaau8872 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560, 601–606 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Laird, C. D. & Chooi, W. Y. Morphology of transcription units in Drosophila melanogaster. Chromosoma 58, 193–218 (1976).

    CAS  PubMed  Google Scholar 

  69. Zobeck, K. L., Buckley, M. S., Zipfel, W. R. & Lis, J. T. Recruitment timing and dynamics of transcription factors at the Hsp70 loci in living cells. Mol. Cell 40, 965–975 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mir, M. et al. Single Molecule Imaging in Live Embryos Using Lattice Light-Sheet Microscopy. Methods Mol. Biol. 1814, 541–559 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Conic, S. et al. Imaging of native transcription factors and histone phosphorylation at high resolution in live cells. J. Cell Biol. 217, 1537–1552 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Core, L. J. et al. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat. Genet. 46, 1311–1320 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Henriques, T. et al. Widespread transcriptional pausing and elongation control at enhancers. Genes Dev. 32, 26–41 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    CAS  PubMed  Google Scholar 

  76. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Chen, H. et al. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Roeder, R. G. Multiple forms of deoxyribonucleic acid-dependent ribonucleic acid polymerase in Xenopus laevis. Isolation and partial characterization. J. Biol. Chem. 249, 241–248 (1974).

    CAS  PubMed  Google Scholar 

  79. Zawel, L. & Reinberg, D. Initiation of transcription by RNA polymerase II: a multi-step process. Prog. Nucleic Acid Res. Mol. Biol. 44, 67–108 (1993).

    CAS  PubMed  Google Scholar 

  80. Peterson, C. L. & Tamkun, J. W. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20, 143–146 (1995).

    CAS  PubMed  Google Scholar 

  81. Grunstein, M. & Hogness, D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA 72, 3961–3965 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kadonaga, J. T., Carner, K. R., Masiarz, F. R. & Tjian, R. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51, 1079–1090 (1987).

    CAS  PubMed  Google Scholar 

  83. Lander, E. S. Initial impact of the sequencing of the human genome. Nature 470, 187–197 (2011).

    CAS  PubMed  Google Scholar 

  84. Fuda, N. J., Ardehali, M. B. & Lis, J. T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks members of his lab for valuable comments. The work is supported by US Public Health Service Award R01 GM025232 from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Lis.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information: Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lis, J.T. A 50 year history of technologies that drove discovery in eukaryotic transcription regulation. Nat Struct Mol Biol 26, 777–782 (2019). https://doi.org/10.1038/s41594-019-0288-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0288-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing