Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Trinucleotide repeats and ssDNA gaps

Unveiling the toxicity of single-stranded DNA gaps through a yeast model

A study on a yeast model explores how ssDNA gaps induce cell death and genomic instability, implicating Rad9 and Rad51 in gap repair and protection. Gaps forming secondary structures trigger chromosome fragility, deletions, rearrangements, or cell death pathways, showing how gaps are a vulnerability in cancer cells with opportunity for selective targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anti-cancer agents enhance gaps and toxic secondary structures.

References

  1. Cong, K. & Cantor, S. B. Mol. Cell 82, 2363–2369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wong, R. P., Petriukov, K. & Ulrich, H. D. DNA Repair 105, 103163 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Polleys, E. J., Del Priore, I., Haber, J. E. & Freudenreich, C. H. Nat. Commun. 14, 2469 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whelan, D. R. et al. Nat. Commun. 9, 3882 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ferrari, M. et al. PLoS Genet. 11, e1004928 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferrari, M., Rawal, C. C., Lodovichi, S., Vietri, M. Y. & Pellicioli, A. Nat. Commun. 11, 3181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, G. & Leffak, M. Cell Biosci. 2, 7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benson, F. E., Stasiak, A. & West, S. C. EMBO J. 13, 5764–5771 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freudenreich, C. H., Kantrow, S. M. & Zakian, V. A. Science 279, 853–856 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Cejka, P. & Symington, L. S. Annu. Rev. Genet. 55, 285–307 (2021).

    Article  PubMed  Google Scholar 

  11. Guiblet, W. M. et al. Nucleic Acids Res. 49, 1497–1516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ait Saada, A. et al. Nucleic Acids Res. 51, 3722–3734 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen, D. et al. Nat. Commun. 13, 226 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panzarino, N. J. et al. Cancer Res. 81, 1388–1397 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Cong, K. et al. Mol. Cell 81, 3128–3144.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by R01 CA254037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon B. Cantor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whalen, J.M., Cantor, S.B. Unveiling the toxicity of single-stranded DNA gaps through a yeast model. Nat Struct Mol Biol 30, 870–872 (2023). https://doi.org/10.1038/s41594-023-01031-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01031-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer