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Deadenylation kinetics of mixed poly(A) tails 
at single-nucleotide resolution

Young-suk Lee    1,2,5 , Yevgen Levdansky    3,5, Yoonseok Jung1, 
V. Narry Kim    1,4  & Eugene Valkov    3 

Shortening of messenger RNA poly(A) tails, or deadenylation, is a 
rate-limiting step in mRNA decay and is highly regulated during gene 
expression. The incorporation of non-adenosines in poly(A) tails, or ‘mixed 
tailing’, has been observed in vertebrates and viruses. Here, to quantitate the 
effect of mixed tails, we mathematically modeled deadenylation reactions 
at single-nucleotide resolution using an in vitro deadenylation system 
reconstituted with the complete human CCR4–NOT complex. Applying this 
model, we assessed the disrupting impact of single guanosine, uridine or 
cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. 
CCR4–NOT stalls at the 0, −1 and −2 positions relative to the non-adenosine 
residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but 
exhibit distinct sequence selectivities and stalling positions. Our study 
provides an analytical framework to monitor deadenylation and reveals the 
molecular basis of tail sequence-dependent regulation of mRNA stability.

It has long been considered that poly(A) tails consist purely of 
adenosine stretches. However, the development of methods such as 
3′-untranslated region and poly(A) tail region sequencing (TAIL-seq) 
enabled the sequencing of poly(A) tails and revealed that some mes-
senger RNA poly(A) tails contain intermittent non-adenosine (non-A) 
residues1,2. Recent studies based on long-read sequencing also demon-
strated the widespread presence of mixed tails3,4. Such ‘mixed’ poly(A) 
tails are a consequence of the enzymatic activity of terminal nucleoti-
dyltransferases TENT4A (also known as PAPD7, TRF4, TUT5 and POLS) 
and TENT4B (also known as PAPD5, GLD4, TRF4-2 and TUT3)5,6. While 
the TENT4 homologs do favor adenosine and thus were initially consid-
ered to be poly(A) polymerases, they can incorporate non-A residues, 
albeit less efficiently than adenosines2,7. Among non-As, guanosine is 
preferred, followed by cytosine and uridine.

In vertebrates, TENT4 assembles into two types of complexes: 
the nuclear TRAMP complex composed of ZCCHC7, MTR4 and 
TENT4 (mainly TENT4B)8 and the cytosolic complex, which consists 
of ZCCHC14 and TENT49,10. The TRAMP complex modifies various 
nucleoplasmic/nucleolar transcripts to facilitate their maturation or 

decay by 3′-to-5′ exoribonucleases8. In contrast, the cytosolic TENT4–
ZCCHC14 complex acts on mRNAs to extend their poly(A) tails, delaying 
the deadenylation process and increasing the mRNA half-life10.

Mixed tailing is observed on mRNAs of at least one-fifth of genes in 
vertebrates1,2. Some viruses co-opt the mixed tailing machinery to pro-
mote their proliferation10. For example, transcripts of hepatitis B virus 
and human cytomegalovirus (HCMV) contain specialized cis-acting 
elements with a CNGGN pentaloop, namely the post-transcriptional 
regulatory element11 and SL2.710, respectively. These elements recruit 
ZCCHC14, which brings TENT4 to the viral RNAs, resulting in mixed 
tailing and stabilization of viral transcripts. The post-transcriptional 
regulatory element of the woodchuck hepatitis virus, which harbors 
two CNGGN pentaloops, is widely used to enhance transgene expres-
sion from plasmids and viral vectors12,13.

Shortening of the poly(A) tail is a rate-limiting step in cytoplasmic 
mRNA decay14,15. The multisubunit CCR4–NOT complex is the principal 
factor regulating the length of the poly(A) tails of most eukaryotic tran-
scripts16,17. It possesses two catalytic subunits: a CCR4 homolog belong-
ing to the endonuclease/exonuclease/phosphatase-type exonuclease 
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confirms that our model more accurately recapitulates the dynamics 
of deadenylation.

We then tested our model on an in vitro deadenylation experiment 
with the complete human CCR4–NOT complex (Fig. 1b). A raw gel image 
with deadenylation products and intermediates was pre-processed 
to measure the amount of each RNA intermediate (Fig. 1c) (see Meth-
ods for details). The parameters of our model corresponded to the 
deadenylation kinetics at each nucleotide and were estimated using 
the Levenberg–Marquardt (LM) algorithm29, a general algorithm for 
estimating parameters of a nonlinear model (Fig. 1d). Computer simula-
tion based on these estimated parameters generates a distribution of 
RNA species similar to that of the in vitro deadenylation experiment  
(Fig. 1e), indicating that the parameters of our dynamic model are reli-
able estimates of single-nucleotide deadenylation kinetics.

CCR4–NOT stalls at multiple positions relative to guanosine
To assess the impact of mixed tailing during CCR4–NOT-mediated 
deadenylation, we designed synthetic RNA substrates with pure 
poly(A) tail sequences or mixed tails (Fig. 2a). The substrate with a 
pure poly(A) tail (A20) contains a ‘body’ composed of seven nucleo-
tides (5′-UCUACAU-3′) followed by a homopolymeric poly(A) stretch 
of 20 nt. The mixed-tailed substrate (A20G) is identical to A20 except 
for the two guanosine residues at positions 7 and 14 from the 3′ end. Of 
note, in our previous work, we utilized synthetic RNAs with a terminal 
or penultimate guanosine to measure the reaction rate of 3′-to-5′ trim-
ming2. But this earlier work did not take into account the possibility of 
the random incorporation of non-A residues within the poly(A) tail. By 
embedding the guanosine well within the poly(A) tail, these substrates 
better reflect the physiological scenarios and permit a comprehensive 
survey of the substrate specificity of deadenylases.

The in vitro deadenylation experiment was conducted with the 
human CCR4–NOT complex consisting of all eight core subunits, 
including CCR4a/CNOT6 and CAF1/CNOT720. The products were 
resolved by denaturing polyacrylamide gel electrophoresis26. In par-
ticular, the experiments were conducted for multiple reaction time 
points (that is, 2, 4, 6, 8, 12, 16, 24, 32 and 48 min) to achieve high- 
resolution measurements of the change in RNA abundance at each 
nucleotide position (Fig. 2b). Subsequent image analysis, data 
pre-processing and parameter estimation was applied to measure 
the deadenylation kinetics at single-nucleotide resolution (nucleotides 
per minute; nt min−1).

As expected, with the A20 substrate, we observed no RNA accumu-
lation near positions 7 and 14 (Fig. 2c, left and Fig. 2d, left). Substantial 
RNA accumulation started at position 19 and afterward, suggesting 
that stalling of the deadenylation process begins at the antepenulti-
mate (or −2) position relative to the seven-nucleotide body. It is worth 
emphasizing that the deadenylation estimates are maximum likeli-
hood estimates, and the error bars represent the range of the true 
parameter value (see Online Methods for details). Unexpectedly, the 
deadenylation kinetics was not constant as a function of the poly(A) 
tail. Instead, we observed an increase in the deadenylation rate for the 
first four nucleotides followed by a gradual deceleration (Fig. 2d, right). 
The relatively low rate at the beginning may reflect the lag time for the 
complete assembly of the enzyme–substrate complex. The subsequent 
decrease may be due to the low processivity of the deadenylases, which 
stochastically dissociate from the substrate.

For the A20G substrates, we observed a substantial accumulation 
at positions 6 and 13 (Fig. 2c, right and Fig. 2e, left), which are the penul-
timate (or −1) positions to the respective guanosine residues. We then 
applied our mathematical model and discovered a substantial decrease 
in deadenylation rate at three positions (Fig. 2e, right). Pausing at the 
penultimate and terminal positions is consistent with our previous 
observations2. We further observe a modest but substantial stalling 
at the antepenultimate (−2) position. Stalling effect of guanosine is 
most pronounced at the −1 position (position 6), which is 2.42 times 

family and a CAF1 homolog, a DEDD-type exonuclease18,19. Humans have 
two CCR4 paralogs (CCR4a/CNOT6 and CCR4b/CNOT6L) and two CAF1 
paralogs (CAF1/CNOT7 and POP2/CNOT8/CALIF). Each catalytic subu-
nit has a distinct function: CCR4 trims poly(A) tails coated with cyto-
plasmic poly(A) binding protein, while CAF1 is active on poly(A)-free 
of poly(A) binding protein17,19. In addition, the mammalian CCR4–
NOT complex contains six non-enzymatic subunits: CNOT1, CNOT2, 
CNOT3, CNOT9/CAF40, CNOT10 and CNOT1120. CNOT1 serves as the 
essential scaffold on which the complex assembles21. CNOT9, CNOT2 
and CNOT3 physically interact with RNA-binding proteins to elicit 
transcript-specific deadenylation22 and decapping23. The reconstitu-
tion of the complete human CCR4–NOT complex from purified recom-
binant components revealed at least two of the three nonenzymatic 
modules (CNOT9, CNOT10:CNOT11 and CNOT2:CNOT3) are required 
for maximal deadenylation activity20.

Increasing experimental evidence indicates that the non-A resi-
dues within the mixed tail negatively impact deadenylation and extend 
the mRNA half-life, that is, in addition to the adenylation activity, which 
extends the length of a poly(A) tail2,10,24,25. To assess the quantitative 
impact of mixed tailing on deadenylation, it became necessary to estab-
lish a mathematical framework and rigorously validate the derived 
kinetic parameters with biochemical data. Two critical experimental 
considerations for the successful implementation of mathematical 
modeling were (1) the ability to assay deadenylation as a time course 
with single-nucleotide resolution and (2) strict compositional control 
in a fully recombinant system with the ability to incorporate catalytic 
mutations in individual subunits. In this Article, we describe in vitro 
deadenylation assays and estimate the deadenylation kinetics on pure 
poly(A) and mixed-tailed substrates in precisely controlled biochemical 
contexts. This approach offers a unique opportunity to measure the 
exact impact of mixed tailing in the context of deadenylation.

Results
Dynamic model of deadenylation kinetics
To measure the deadenylation kinetics of mixed tails, we designed a 
mathematical model that does not assume a constant reaction rate for 
each nucleotide but instead accounts for the possible changes in kinet-
ics within a molecule, for example, when encountering a non-adenosine 
residue. Existing methods estimate the average reaction rate by com-
puting the modal poly(A) tail length and then fitting this to a linear 
model26. This approach inadvertently assumes a descriptive model in 
which all the molecules in the reaction undergo deadenylation at the 
same time (Extended Data Fig. 1a). Previous analyses of biochemical 
deadenylation experiments26 were based on the concept of a ‘modal’ 
poly(A) tail length: that is, the poly(A) tail length of a single most 
abundant RNA species observed at a given time point. This approach 
is mathematically equivalent to a descriptive model and does not take 
into account the deadenylation dynamics of other RNA species with 
different, ‘non-modal’ poly(A) tail lengths.

To address this, we decided to develop an analytical framework 
in which biochemical reactions are dynamic rather than deterministic 
events, which is an intrinsic property of in vitro deadenylation experi-
ments (Fig. 1a). We further assume that the deadenylation process 
follows the first-order Markov property to mathematically decouple 
the kinetics of hydrolysis of each nucleotide (see Methods for details). 
For example, under the first-order Markov property, the hydroly-
sis rate of the second adenosine is independent of that of the first 
adenosine. This model resembles previous mathematical models of 
deadenylation15,27 but does not assume constant kinetics. Instead, our 
approach is analogous to the mathematical model used to measure 
the polyadenylation kinetics of the TRAMP complex on transfer RNA28. 
Simulated deadenylation using the dynamic model exhibits a distribu-
tion of multiple deadenylation intermediates, unlike the descriptive 
model that gives a single intermediate at a given time point (Extended 
Data Fig. 1b). This observation of an improved fit to biochemical data 
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greater than at the 0 position (position 7). Similar results were observed 
with longer poly(A) tails of 60 nucleotides (Extended Data Fig. 2a–c) 
and under conditions of ten-fold substrate excess (Extended Data  
Fig. 2d,e), suggesting that our biochemical conditions faithfully reflect 
the intrinsic kinetic properties of the human CCR4–NOT complex.

Pyrimidines are most effective in stalling deadenylation
To investigate the impact of other non-A residues, we designed syn-
thetic RNA substrates with two intermittent uridine or cytidine residues 
instead of guanosine (Fig. 3a). TENT4 enzymes incorporate not only 
adenosines and guanosines but also uridines and cytidines, albeit at 
lower frequencies2. In the context of targeted mixed tailing, such as in 
HCMV RNA2.7, at least 10% of their 3′ end tails contain single pyrimidine 
residues10. This suggests that pyrimidines may contribute substantially 
to the overall decrease of the deadenylation rate although the contri-
bution of pyrimidines has been largely overlooked. Stalling of uridine 
and cytidine residues was observed with both human CAF1 and CCR4 
proteins2, but the magnitude of their stalling effects remains unknown.

With the pyrimidine-containing substrates (A20U and A20C), 
we observed RNA accumulation at three positions: antepenultimate 
(−2), penultimate (−1) and terminal (0) positions (that is, positions 5, 
6, 7 and 12, 13, 14) (Fig. 3b, left, Fig. 3c, left and Extended Data Fig. 3a). 
Modeling revealed that the deadenylation rates at −2 positions were 
comparable to their respective −1 and 0 positions (Fig. 3b, right and 
Fig. 3c, right). Compared to our analysis of guanosine residues, the 
removal rates of uridine and cytidine are lower, particularly at the −2 

and 0 positions, which is evident by the distinct accumulation pattern 
of the pyrimidine experiments. Therefore, single pyrimidine residues 
exhibit a greater stalling effect than guanosine residues owing to the 
position-dependent specificity of the human CCR4–NOT complex. 
Moreover, this indicates that the CCR4–NOT slows down already two 
nucleotides in advance of encountering any non-A residue, hinting at 
the possibility that its molecular basis of poly(A) recognition lies on 
the three nucleotides of the 3′ end.

To investigate the physiological relevance of this accumulation at 
the −1 position, we re-examined our TAIL-seq data on HCMV-infected 
cells10. Previously, we found that HCMV RNA2.7 is highly expressed and 
undergoes extensive mixed tailing. Tail modification at the 0 and −1  
positions of HCMV RNA2.7 is considerably higher than other positions 
for all three non-As (Extended Data Fig. 3b), which is consistent with 
paused deadenylation induced by non-A residues in vitro. Of note, tail 
modification at the −1 position has been largely overlooked owing to 
the abundance of this modification being generally low in mammalian 
cells1,2. We further found that tail modification at the −2 position is 
less prominent in cells than in vitro, which suggests that other cel-
lular trans-factors may prevent the accumulation of modified tails at  
the −2 position.

Stalling behavior of CAF1
The CCR4–NOT complex contains two distinct catalytic subunits: 
CCR4 (CNOT6 or CNOT6L) and CAF1 (CNOT7 or CNOT8). Previously, 
we reported that CAF1 stalls at the penultimate (−1) while CCR4 stalls 
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Fig. 1 | Mathematical modeling of deadenylation kinetics at single-nucleotide 
resolution. a, Schematic of a dynamic model of deadenylation. b, In vitro 
deadenylation assay with human CCR4–NOT complex. c, Heatmap presentation 
of the deadenylation assay data. Position 1 represents the A20 RNA substrate, 
and position 21 represents the tailless 7-mer RNA. Column-specific unity-based 

normalization was applied for data visualization. d, Parameter estimation 
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at the 3′ terminus (0) of guanosine residues2, suggesting that the two 
enzymes exhibit differential selectivity for non-A residues in poly(A) 
tails. We sought to examine the contribution of each enzyme in the 
context of the entire CCR4–NOT. First, we conducted in vitro dead-
enylation experiments using the CCR4–NOT complex reconstituted 
with wild-type CAF1 and a catalytic mutant of CCR4 (E240A)30, thus 
ensuring that CAF1 is the only active deadenylase subunit. Structural 
predictions and modeling of the Schizosaccharomyces pombe Caf1 
protein interacting with a polyadenosine sequence suggested that a 
helical structure resulting from base-stacking effects in polyadeno-
sine is recognized by the active site of the CAF1 enzyme, which can 
accommodate up to five nucleotides24. No noticeable kinetic changes 
were observed near positions 7 and 14 of the A20 substrate (Fig. 4a and 
Extended Data Fig. 4a) as with the wild-type complex. However, with 
the mixed-tailed A20G, deadenylation rates substantial decreased at 
positions 5 and 6 and positions 12 and 13 (Fig. 4b and Extended Data  
Fig. 4a), which are the antepenultimate (−2) and penultimate (−1) posi-
tions relative to the guanosine residues. The stalling effect at the ter-
minal (0) positions was less pronounced in comparison.

With uridine and cytidine substitutions, a substantial decrease 
in the deadenylation rates occurred at all three nucleotide positions 
(Fig. 4c,d and Extended Data Fig. 4b), consistent with CAF1 recogniz-
ing the pyrimidine residue two nucleotides in advance. This suggests 

that CAF1’s substrate specificity lies in the last three nucleotides of 
the poly(A) tail.

CCR4 is highly specialized for pure poly(A) tails
The second catalytic subunit of the CCR4–NOT complex is CCR4 
(CNOT6 or CNOT6L). It is tethered to the CNOT1 scaffold protein via 
CAF131, and it belongs to the endonuclease/exonuclease/phosphatase 
exonuclease family32. The structure of the catalytic domain of human 
CCR4 and poly(A) DNA revealed a possible three-nucleotide pocket 
that may be responsible for its poly(A) specificity30.

To investigate CCR4’s contribution to deadenylation, we reconsti-
tuted the CCR4–NOT complex with a catalytic mutant of CAF1(D40A)33, 
leaving CCR4 as the only active deadenylase subunit in the complex. 
Note that, for these CAF1 mutant experiments, the deadenylation 
process did not complete within 48 min (Fig. 4e and Extended Data 
Fig. 4c). To preserve the integrity of the modeling, we only estimated 
the first 11 positions from the 3′ end, including the first non-A residue 
at position 7 (see Methods for details).

A20G exhibited substantial accumulation at position 7 (Fig. 4f, left 
and Extended Data Fig. 4c), indicating the decrease in CCR4 activity 
during the hydrolysis of the 3′ terminal guanosine. Subsequent analy-
sis revealed a substantial reduction in deadenylation rate at positions  
6 and 7 (penultimate and terminal, respectively) but not at position 
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5 (antepenultimate) (Fig. 4f, right). This analysis indicates that CCR4 
stalls at the penultimate and terminal positions but not the antepe-
nultimate position. Based on these observations, CAF1 is primarily 
responsible for the kinetic slowdown at the antepenultimate (−2) posi-
tion from the single guanosine residue.

The pyrimidine experiments with A20U and A20C showed a similar 
pattern, but principal accumulation occurred at position 6 instead 
of position 7 (Fig. 4g,h and Extended Data Fig. 4d), suggesting the 
deceleration for pyrimidine residues occurs one nucleotide earlier 
than for guanosine residues. Modeling revealed that the deadenylation 
rates decreased at all three positions but were less pronounced at the 
antepenultimate (−2) position. This is consistent with the notion that 
similar to CAF1, CCR4 also recognizes the last three nucleotides of the 
poly(A). Thus, CAF1 and CCR4 may exhibit similar specificity for single 
pyrimidine residues. However, in terms of the extent of stalling effect, 
CCR4 appears to be more specialized for pure poly(A) tails than CAF1.

Quantifying the stalling effect of non-adenosine residues
By calculating the inverse of the deadenylation rate, one can estimate 
the time required for nucleotide removal for that position. In effect, 
this removal time provides a quantitative assessment of the deadenyla-
tion specificity of the CCR4–NOT complex (Fig. 5a). The wild-type 
complex stalls at three positions with a guanosine residue, mainly at 
the −1 position. CAF1 is responsible for the stalling at the −2 position, 
while CCR4 pauses at 0 position relative to guanosine. With uridine 
or cytidine, the wild-type complex stalls at comparable levels across 
all three positions, −2, −1 and 0. CCR4 is especially sensitive to inhibi-
tion at the −1 position. It is worth mentioning that our analysis also 
suggests a modest difference between the two pyrimidines in terms 
of CAF1. Cytidine residues exhibit a slightly more inhibitory effect at 
the −1 position than uridine. At the 0 position, uridine mainly disrupts 
the activity of CAF1. All in all, the summed activities of CAF1 (Fig. 5a, 
middle) and CCR4 (Fig. 5a, right) seem to be reflected in the wild-type 
complex activity (Fig. 5a, left).

More importantly, this analytical framework provides the means 
to quantitate the equivalence of a single non-A residue to the number 
of adenosines in terms of the deadenylation reaction time (see Methods 
for details). Based on replicate experiments of independently purified 
CCR4–NOT complexes, we calculated the time required for the removal 
of a single non-A residue relative to that of adenosine (Fig. 5b). CAF1 
takes 6.5 ± 0.3 times longer to remove single guanosine compared to an 
adenosine residue, while uridine and cytosine residues are equivalent 
to 7.5 ± 0.3 and 9.4 ± 0.8 adenosines, respectively (Fig. 5b, left). CCR4 
is strongly inhibited by a single pyrimidine, which is equivalent to 
18.4–21.6 adenosines, further highlighting CCR4’s specificity for pure 
poly(A). Altogether, these observations point to a mechanism of CCR4–
NOT-dependent deadenylation, where each catalytic subunit reacts 
distinctly and selectively when it encounters non-A residues (Fig. 5c).

Finally, we applied this approach to experiments with wild-type 
enzymes to measure the deadenylation rate of the full CCR4–NOT 
complex (Fig. 5d). For the first residue (position 7), single guanosine 
corresponds to 5.6 ± 0.7 adenosines, uridine corresponds to 7.8 ± 1.2 
adenosines and cytidine 10.7 ± 1.6 adenosines. We observed a similar 
trend for the second residue (position 14). However, this combined 
effect is less than the sum of each subunit, suggesting that the two 
enzymes do not simply work additively in deadenylation. This quantita-
tive analysis reveals the exact impact of non-A residues (Fig. 5e) and an 
unexpected selectivity of non-A residues in the deadenylation process 
of the CCR4–NOT complex.

Discussion
The discovery of non-A residues within the poly(A) tail has opened the 
possibility that the poly(A) tail may regulate the kinetics of deadenyla-
tion in a sequence-dependent manner2. Previous in vitro experiments 
from our laboratory and others have demonstrated this possibility but 
were unsuccessful in quantifying the precise stalling effect of each 
non-A residue2,24,25. To address this challenge, we designed a mathemati-
cal model that closely parameterizes the deadenylation process. With 
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this model, we were able to describe the kinetics of deadenylation at 
single-nucleotide resolution. When applied to enzymatic reactions 
with pure poly(A) sequences, this model indicates that the rate of their 
hydrolysis is not constant but is in fact variable.

Further, applying the model in reactions with mixed tails revealed 
that the human CCR4–NOT complex stalls at the antepenultimate, 
penultimate and terminal positions (−2, −1 or 0) relative to a single 
non-A residue. Experiments with catalytically inactivated mutants 
hint at the distinct but dynamic roles of the two catalytic subunits of 
the CCR4–NOT complex (Fig. 5c). CAF1 stalls at the antepenultimate 
position by recognizing the non-A residue which is located 2 nt ahead. 
It was proposed that the active site of CAF1 is capable of accommo-
dating as many as five nucleotides24. However, modification at this 

antepenultimate position seems not to be the dominant form based on 
our published TAIL-seq data. One can speculate a mechanism involving 
different exonucleases (for example, PAN2/3 or the exosome) or factors 
regulating the activity of CCR4–NOT.

While CAF1 pauses at the antepenultimate position, CCR4 removes 
the single adenosine to proceed with the poly(A) tail shortening process. 
Then, the penultimate non-A acts as a sort of ‘speed bump’ for both 
enzymes. This speed bump has been previously left unnoticed for it being 
relatively low in cells. In this study, the tail modification at the −1 position 
is closely re-examined as we find that it is the major single-nucleotide 
modification of highly mixed-tailed RNAs. It may be worth investigating 
beyond the steady-state tail modifications in cells and measuring its 
pre-steady state as done with the length of poly(A) tails15,34. Finally, at the 
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terminal position, CAF1 is responsible for the removal of the single non-A 
residue as CCR4 instead pauses at this position. Thus, the two enzymes 
may take turns or may be ‘tag-teamed’ during the course of mixed tail 
removal. We term this the ‘tag-team’ mechanism.

To investigate the physiological relevance of this accumulation at the 
−1 position, we re-examined our TAIL-seq data on HCMV-infected cells10. 
Previously, we found that HCMV RNA2.7 is highly expressed and under-
goes extensive mixed tailing. Tail modification at the 0 and −1 positions 
of HCMV RNA2.7 is considerably higher than other positions for all three 
non-As (Extended Data Fig. 3b), which is consistent with paused dead-
enylation induced by non-A residues in vitro. Of note, tail modification 
at the −1 position has been largely overlooked owing to the abundance of 
this modification being generally low in mammalian cells 1, 2. We further 
found that tail modification at the −2 position is less prominent in cells 
than in vitro, which suggests that other cellular trans-factors may prevent 
the accumulation of modified tails at the −2 position.

It is possible that this tag-team and speed bump effect of single 
non-As compels the CCR4–NOT complex to switch from a processive 
reaction to a more on–off, distributive deadenylation. That is, the 

intrinsic substrate specificity hints at the possibility that the proces-
sivity of these deadenylases may be interrupted by the encounter 
with the non-A residues. This encounter of non-A residues within the 
poly(A) tail may hinder the processive reaction and influence the CCR4–
NOT complex to revert to distributive deadenylation. In effect, these 
non-A residues may act as another facet for regulating the length of the 
poly(A) tail. While our current in vitro conditions are not optimized for 
processive deadenylation, further explorations of these two modes of 
deadenylation with our approach may reveal additional kinetic proper-
ties of non-A residues.

Combining the effect at all three positions, we were able to quan-
tify the equivalent number of As for a single non-A residue in the context 
of deadenylation. A guanosine residue is equivalent to approximately 
six adenosines with both enzymes, and uridine/cytidine corresponds 
to 8–11 adenosines (Fig. 5d,e). It is currently unknown to what extent 
non-As are incorporated into mRNA tails. Our earlier measurements 
using in vitro assays showed that mixed tails contain 20–25% of non-As 
when equimolar concentrations of nucleoside triphosphates were 
used for mixed tailing reactions catalyzed by TENT4A and TENT4B2. 
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However, quantifying the in vivo mixed tailing rate remains a challenge. 
Existing sequencing methods such as TAIL-seq underestimate mixed 
tailing frequency1 and must account for multiple trimming enzymes 
involved in poly(A) tail modifications, which substantial affect the 
tail sequences. Nevertheless, our data suggest that mixed tails in the 
context of in vitro transcribed mRNAs may help stabilize the RNA and 
increase the duration of gene expression for applications in vaccina-
tion and gene therapy. For example, if a synthetic mixed tail of 100 nt 
contains ten intermittent guanosines, uridines or cytidines, that will 
be equivalent to a pure poly(A) of 150, 170 or 200 nt, respectively. This 
equates to up to a twofold increase in the time required to complete 
the shortening of the poly(A) tail.

In the case of CAF1, a non-A corresponds to around 8 adenosines, 
but for CCR4, a single pyrimidine is equivalent to 18 adenosines. This 
striking difference demonstrates that CCR4 is much more sensitive to 
non-A than CAF1 and uncovers the distinct nucleotide specificity of 
these two deadenylases. In human cells, CCR4 and CAF1 play largely 
redundant roles in regulating the poly(A) tail, but it is plausible that 
their relative contribution may vary depending on the transcript and 
their associated factors17,19,20,35–37. Our mathematical framework can be 
used to dissect the exact impact of individual regulatory factors such as 
PABP, GW182, TOB and PAIP proteins by reconstituting a biochemical 
deadenylation system with these factors and longer RNA molecules. 
Extending this towards the modeling of this dynamic process within 
cells when, for example, combined with an inducible expression system 
and poly(A) tail length measurement assay will be the focus for future 
work. Of note, although other deadenylases such as PAN2/PAN3 and 
PARN do not play a major role in mRNA deadenylation, they may par-
ticipate in shortening mixed tails and are worth further investigation18.

While the physiological context of mixed tailing remains poorly 
understood, it is worth emphasizing that mixed tailing is critical for 
some viruses. In unbiased clustered regularly interspaced short palin-
dromic repeats knockout screens, TENT4 and its co-factor ZCCHC14 
were identified as critical pro-viral factors for the replication of hepa-
titis A virus38 and hepatitis B virus9. TENT4 and ZCCHC14 also mediate 
the mixed tailing of HCMV RNA2.710. This unexpected convergent 
evolution across three unrelated viral families (Picornaviridae, Hepad-
naviridae and Herpesviridae) highlights the regulatory potency and 
importance of mixed tailing. Mixed tailing may also be important in 
animal development. Caenorhabditis elegans homolog gld-4 is highly 
expressed in germ cells and required for meiotic progression39. It was 
also reported recently that mixed tailing increases following fertiliza-
tion and decreases later in human embryo development40. All in all, 
our current study provides the means to interpret the impact of mixed 
tailing on mRNA deadenylation from a quantitative perspective.
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Methods
Protein purification
Detailed protocols for purification and reconstitution of the full 
human CCR4–NOT complex and its variants are described in our 
previous paper20. Briefly, the full-length CNOT1, CNOT2, CNOT3 and 
CNOT9/CAF40 proteins were recombinantly co-produced using 
baculovirus-infected Sf21 insect cells (Thermo Fisher Scientific, cata-
log no. 11497013) and the heterotetrameric subcomplex was purified 
using affinity chromatography. The heterodimeric subcomplexes of 
CNOT10:CNOT11 and CNOT6/CCR4a:CNOT7/CAF1 were recombinantly 
produced and purified from BL21 (DE3) Star Escherichia coli cells 
(Thermo Fisher Scientific, catalog no. C601003) using chromatographic 
separation. The eight-subunit full complex was assembled from three 
purified subcomplexes and separated by size exclusion chromatography.

In vitro deadenylation assay
In vitro deadenylation assays were done as described previously with 
minor modifications. Deadenylation reactions were carried out at 37 °C 
in a buffer containing 20 mM PIPES pH 7.0, 40 mM NaCl, 10 mM KCl and 
2 mM Mg(OAc)2. A purified human CCR4–NOT complex (25 nM) was 
mixed with a synthetic 5′-fluorescein-labeled RNA substrate (50 nM), 
and the reaction was stopped at the corresponding time point by adding 
3× reaction volumes of RNA loading dye (95% (v/v) deionized formamide, 
17.5 mM EDTA pH 8 and 0.01% (w/v) bromophenol blue). The reaction 
products were resolved on a denaturing Tris/borate/ethylenediami-
netetraacetic acid–urea polyacrylamide gel, which was subsequently 
imaged using an Amersham Typhoon Biomolecular Imager (Cytiva).

RNA substrate preparation
The RNAs are labeled with 6-carboxyfluorescein (fluorescein deriva-
tive) at their 5′ ends. Sequences and names are listed in Supplementary 
Table 1. The synthetic RNAs were purchased from biomers.net GmbH.

Data pre-processing and visualization
RNA intensity levels of the in vitro deadenylation assays were quanti-
fied by Multi Gauge V3.0 (Fujifilm). Horizontal alignment with the 
marker lane (that is, A20, A1, A0 and UCU) enabled the identification 
of the poly(A) tail length of each RNA species. The second-order differ-
ence (that is, discrete analog of the second derivative) was computed 
over the horizontal sum of pixel intensity values to identify the verti-
cal pixel positions that separate each RNA species. These positions 
were then finely adjusted by manual inspection. The maximum value 
within these vertical positions was computed, and unity-based nor-
malization was applied across the in vitro deadenylation assay. For 
data visualization, we employed the heatmap with the viridis color 
scheme. Column-specific unity-based normalization was applied to 
highlight the most abundant RNA species for that particular dead-
enylation experiment.

Mathematical model of deadenylation
We make two mathematical assumptions to model the deadenylation 
process at single-nucleotide resolution. First, we assume that deadenyla-
tion for each nucleotide follows the first-order Markov property, where 
the amount of RNA for any given state only depends on its previous state. 
In other words, this model is a first-order stochastic process where its 
state space is defined by the poly(A) tail length. For example, the amount 
of A18 RNAs (that is, RNA with poly(A) tail of length 18) will depend on 
the amount of A19 RNAs but will be independent of the amount of A20 
RNAs. Second, we assume that the deadenylation rate at each nucleotide 
is time independent. That is, the deadenylation rate of A18 RNAs is fixed 
across reaction time points (for example, 12 min and 48 min). These two 
assumptions lead to the following mathematical model:

dxi
dt

= λi+1xi+1 − λixi,

where xi  is the amount of RNA with poly(A) tail of length i, and λi  
is the deadenylation rate (or kinetics) of RNA with poly(A) tail  
of length i.

The mathematical model of deadenylation defined above is 
a nonlinear system of ordinary differential equations. The cost 
function for parameter optimization is the residual or the differ-
ence between the observed and predicted values. Specifically, the 
observed values are the unity-based normalized intensity values 
from the experiment as mentioned in the above section. The pre-
dicted values are generated via computer simulation by the deSolve 
R package41. The parameters (that is, deadenylation kinetics) were 
estimated by the LM algorithm29 as implemented in the minpack.lm 
R package42. The damping parameter is chosen on the basis of the 
LM implementation from the MINPACK FORTRAN library, which 
consists of modules for solving systems of nonlinear equations. The 
robustness of parameter estimation was confirmed by fitting the 
model with a subset of the dataset aside for cross-validation. The 
key pre-processing step in the context of parameter estimation is 
the unity-based normalization step that is applied across the in vitro 
deadenylation assay. The standard errors are computed on the basis 
of the Hessian at the parameter estimates (that is, estimation of 
deadenylation kinetics) and represent the range in which the true 
parameter values reside. That is, non-overlapping error bars suggest 
substantial change in deadenylation kinetics.

A truncated model was used in the case of the CCR4:CAF1D40A 
experiments for reliable parameter estimation. Specifically, the dead-
enylation model was truncated at position 16 from the 3′ end of the 
poly(A) tail. In addition, marginal RNA levels beyond position 16 were 
aggregated and considered additional RNA molecules of position 16 
to avoid under-estimation at or near position 16. Of note, the choice of 
exact truncation position did not substantial affect parameter estima-
tion, given sufficient RNA levels up to that position.

Quantifying the stalling effect in terms of the number of 
additional adenosines
The multiplicative inverse of single-nucleotide deadenylation kinet-
ics (for example, nt min−1) is equivalent to the reaction time for a 
single deadenylation event. Therefore, comparing this reaction time 
between adenosine and any other non-A leads to quantitative estima-
tion of the intrinsic kinetic property of the deadenylase of interest. 
That is, the stalling effect in terms of the number of additional aden-
osines. However, measuring the effect of intermittent non-A incor-
poration, also known as mixed tailing, requires handling additional 
biochemical features of our experimental design. First, the single 
removal of adenosine is not constant but slows down for RNAs with 
short poly(A) tails. Inferring the kinetics of ‘no stalling’ is needed 
for reaction time comparison. Second, the stalling effect begins at 
the antepenultimate and penultimate positions of non-A residue. In 
other words, the deadenylase is stalled at three positions from single 
non-A incorporation.

To address these challenges, we assume that the change in reaction 
time is independent for each of the three positions (that is, −2, −1 and 0). 
Specifically, we define the stalling effect size ζ  as

ζ = z(−2)
z∅(−2)

+ z(−1)
z∅(−1)

+ z(−0)
z∅(−0)

− 2,

where z(i) represents the reaction time for removing the nucleotide 
at position  relative to the non-adenosine residue and z∅(i) represents 
the reaction time of ‘no stalling’ at position . For example, z(−2), z(−1) 
and z(−0) is the reaction time required to remove the nucleotide at 
positions −2, −1 and 0, respectively, relative to the non-A residue. In 
contrast, z∅ is the hypothetical reaction time if the deadenylase 
exhibits no stalling but only slows down as in the A20 control 
experiments.

http://www.nature.com/nsmb
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To infer the hypothetical kinetics of ‘no stalling’, we consider that 
the gradual slowdown of deadenylation in the mixed tail (for example, 
A20G) experiments is proportional to that in the pure poly(A) tail (that 
is, A20) experiments, thus

z (i) − z ( j) ∝ zA (i) − zA( j)

for position i and j where i < j. In other words, the average rate of slow-
down is invariable across independent deadenylation experiments. 
Consequently, the kinetics of ‘no stalling’ z∅ is then

z∅ (i) = z (−3) − ϵ(i),

ϵ(i) = b ⋅ (zA (−3) − zA (i)),

b = z (−3) − z(+2)
zA (−3) − zA(+2)

,

where ϵ(i) represents the gradual slowdown at position , b represents 
the scaling constant between independent deadenylation experi-
ments and zA (i) is the reaction time for the A20 control experiment 
at relative position . The exact relative positions (that is, −3 and +2) 
used to infer ϵ(i) and b did not affect the stalling effect size ζ , given 
that the standard error of the kinetics estimation was relatively low 
at those positions. Note that this formulation of ‘no stalling’ is also 
the basis for the constant −2 in the stalling effect size ζ  equation 
presented above.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available from the corresponding authors upon reasonable 
request. Source data are provided with this paper.

Code availability
Computational tools for estimating the kinetics of a single dead-
enylation event are available at https://github.com/2yngsklab/
deadenylation-kinetics.
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Extended Data Fig. 1 | Mathematical models of deadenylation. a. Schematic  
of a descriptive model of deadenylation. b. In silico deadenylation experiment 
and heatmap analysis comparing the descriptive and dynamic models.  

Column-specific unity-based normalization was applied for data visualization. 
A20 represents RNA with a poly(A) tail length 20, and A1 represents RNA with a 
single-adenosine tail.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Alternative conditions for in vitro deadenylation 
experiments. a. Sequences of the synthetic 7-mer-A60 and 7-mer-A60G RNA 
substrates. b. Representative raw gel images from in vitro deadenylation 
experiment with A60 and A60G RNA substrates (50 nM) and wildtype CCR4-
NOT complex (25 nM) of at least three technical and two biological replicates. 
c. Heatmap analysis for A60G substrates in (B). Column-specific unity-based 
normalization was applied for data visualization. Red arrowheads indicate the 
single-nucleotide positions 15, 30, and 45 from the 3′ end. d. Representative raw 

gel images after five-fold dilution from in vitro deadenylation experiment with 
A20 and A20G RNA substrates (250 nM) and wildtype CCR4-NOT complex (25 
nM) of at least three technical and two biological replicates. e. Heatmap analysis 
for A20 and A20G substrates in (D). Column-specific unity-based normalization 
was applied for data visualization. Red arrowheads indicate the single-nucleotide 
positions 7, 14, and 21 from the 3′ end. f. Estimated deadenylation kinetics (nt / 
min) based on the dynamic model of (E). Error bars represent the standard error 
of parameter estimation.
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Extended Data Fig. 3 | Supporting evidence related to Fig. 3. a. Representative 
raw gel images from in vitro deadenylation experiment with A20U and A20C RNA 
substrates (50 nM) and wildtype CCR4-NOT complex (25 nM) of at least three 
technical and two biological replicates. These images were used to quantitate 

deadenylation kinetics shown in Fig. 3. b. Re-analysis of TAIL-Seq data on HCMV-
infected cells 10. The fraction of modified tails of HCMV RNA2.7 was calculated 
for RNAs with a poly(A) tail length of ≥25 nt (n = 1 TAIL-seq experiments).
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Extended Data Fig. 4 | Supporting evidence related to Fig. 4. Representative raw gel images from in vitro deadenylation experiments with catalytic mutants (A,B) 
CCR4E240A:CAF1 and (C,D) CCR4:CAF1D40A of at least three technical and two biological replicates. These images were used to quantitate deadenylation kinetics  
shown in Fig. 4.
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