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Mass-spectrometry-based proteomic analysis is a powerful approach for discovering new disease biomarkers. However,
certain critical steps of study design such as cohort selection, evaluation of statistical power, sample blinding and
randomization, and sample/data quality control are often neglected or underappreciated during experimental design and
execution. This tutorial discusses important steps for designing and implementing a liquid-chromatography-mass-
spectrometry-based biomarker discovery study. We describe the rationale, considerations and possible failures in each
step of such studies, including experimental design, sample collection and processing, and data collection. We also
provide guidance for major steps of data processing and final statistical analysis for meaningful biological interpretations
along with highlights of several successful biomarker studies. The provided guidelines from study design to
implementation to data interpretation serve as a reference for improving rigor and reproducibility of biomarker
development studies.

ore than 20,000 diseases have been reported to affect
I\/\ humans', of which only a small portion are sup-

ported by accurate, sensitive and specific diagnostic
tests. Even for diseases with well-established diagnostic assays,
such as diabetes, the discovery of new prognostic biomarkers
can enable further studies on disease development and pro-
gression. For example, type 1 diabetes mellitus can be diag-
nosed by measuring blood glucose concentration, but the
disease is known to be preceded by immunological changes
sometimes years before clinical manifestation. Biomarkers for
detecting and discriminating early stages of the disease could
contribute to an improved understanding of the associated
etiology and pathogenicity, while informing new therapies and
prevention targets™. Additionally, biomarkers are urgently
needed to improve many current diagnostic assays, particularly
in the context of personalized medicine, such as for inflam-
matory bowel disease*. There is also a demand for biomarkers
that can predict the outcome of the patient or that can be used
in clinical trials to follow the progression of patients to treat-
ments’. In this context, proteomic analysis of biological sam-
ples, including tissues, blood plasma, exhaled breath
condensate, saliva and urine, are promising approaches for

discovering new biomarkers and advancing knowledge of
disease pathology, prevention, diagnostics and therapeutics
across a wide range of diseases.

Proteomic analysis of human biofluids and tissues can
detect and quantify thousands of proteins, leading to the dis-
covery of many potential biomarkers. However, improper
experimental design, lack of standardized procedures and
quality controls (QCs) (see Box 1 for key terminology) for
sample collection and analyses, and failure to validate identi-
fied biomarkers have led to reproducibility challenges and
identification of biomarkers that are not clinically relevant®'?,
There are some excellent reviews highlighting the main issues
faced during biomarker development®'*'*'* Indeed, experi-
mental rigor and reproducibility have been the theme of ample
discussion in the scientific community. Funding and regulatory
agencies and scientific journals have implemented guidelines to
these aspects of research'”™'”. A systematic review of 7,631
tuberculosis biomarker citations revealed some common
challenges that cause misinterpretation: (1) small number of
samples (underpowered studies), (2) inappropriate control
groups, and (3) overemphasizing P-values for candidate dis-
covery without further validation efforts’. The authors also
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Box 1| Key terminology

NATURE PROTOCOLS

Blinded experiments: in blinded experiments, participants (subjects or researchers) have no access to information that can influence the results of
the study. This procedure reduces or eliminates biases due to expectations of both subjects and researchers.

Isobaric peptide labeling: a technique for sample multiplexing in proteomics analysis. Peptides are labeled with reagents (tags) that are synthesized
with a combination of heavy and light isotope atoms, but with the same final mass (isobaric). Once the peptides are analyzed by tandem MS, these
tags are fragmented into distinct reporter ions that are used for quantification. The reporter ions for individual samples are called ‘channels’.
Currently two sets of isobaric tags are commercially available: tandem mass tags (TMT) (Thermo Fisher Scientific) and isobaric tags for relative
and absolute quantification (iTRAQ) (AB Sciex).

Limit of detection (LOD) and limit of quantification (LOQ): LOD is the lowest concentration of an analyte that can be reliably detected above the
signal background, whereas LOQ is the lowest concentration of the analyte that can be quantified within a predefined range of accuracy and
precision. LOD and LOQ can be the same, but often LOQ is much higher because of the increased measurement variability in low concentrations of
analytes.

Quality control (QC) and quality assurance (QA): QC is a process for checking whether the analysis met a set of predefined quality criteria. QA is
similar to but differs from QC because it assesses the reliability of the overall project, whereas QC is implemented in different steps of the study.

Selected-reaction monitoring (SRM) and transition: also known as multiple-reaction monitoring, an MS technique designed to quantitatively
measure the concentration of specific, targeted analytes. SRM analysis is usually performed in triple quadrupole mass spectrometers, in which the
targeted analyte is selected in the first quadrupole and fragmented and a specific fragment is measured. This process of selection, fragmentation
and measurement of specific fragments is named a ‘transition’ and highly increases the sensitivity of the analysis by eliminating most of the
chemical background noise.

Standard operating procedure (SOP): a predefined protocol with step-by-step instructions of the experiment execution. It has the goal of ensuring
quality and uniformity of the procedures.

Statistical power: the probability correctly finding a differentially expressed protein. It ranges from O to 1 and can be used to determine the
minimum number of samples required to achieve significance based on the variability (of the analyte and the measurement) and the minimum

expected fold change.

found that most of these studies failed to specify whether the
study was performed in a blinded fashion™.

In this tutorial, we describe key points that should be
considered for performing biomarker discovery experiments
based on liquid-chromatography-mass-spectrometry analysis
of human clinical samples. Experimental rationale, possible
failing points and QC considerations are provided for sample
selection criteria, sample preparation, data collection and data
analysis. These recommendations are based on protocols
developed by our group and by colleagues from NIH-funded
consortia that we participate in, such as Clinical Proteomic
Tumor Analysis Consortium (CPTAC), The Environmental
Determinants of Diabetes in the Young (TEDDY), Molecular
Transducers of Physical Activity Consortium (MoTrPAC),
Early Detection Research Network (EDRN), Cancer Moonshot
and Undiagnosed Diseases Network (UDN). Overall, careful
implementation of each of these steps should enhance the rigor
and reproducibility of biomarker studies and the overall like-
lihood of discovering relevant, actionable biomarkers.

Phases of biomarker development

Biomarker development is typically described in the literature
as being divided into three phases: discovery, verification and
validation (Fig. 1)*"?%. The validation phase is itself often
divided into two stages: analytical validation and clinical vali-
dation, with the latter often described as ‘qualification’. Here
we will focus only on the analytical aspects of biomarker
validation. Fewer peptides and proteins are measured and
more samples and subjects are studied as the study moves from
discovery to verification to validation phases”***!. This tran-
sition requires a different set of quality assessments to ensure
the analytical validity of an assay. In general, analytical validity
includes several standard parameters including precision,
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specificity, sensitivity, recovery and stability. Precision includes
a measure of repeatability, which refers to within-day varia-
bility, and reproducibility, which refers to day-to-day varia-
bility”*. Repeated measurements can be used to define an
assay’s coefficient of variation under different conditions and
at different concentrations. The robustness of a coefficient of
variation must be interpreted within the context of what is a
clinically significant change in the analyte. As part of the
validation of reproducibility, it is also important to test whe-
ther an assay produces similar results when performed by
different individuals and in different laboratories.

The discovery phase is focused on the identification of a
large number of candidate biomarkers. This phase is primarily
based on in-depth, untargeted proteomic analysis to identify
and quantify as many proteins as possible’*, leading to the
identification of tens to hundreds of biomarker candidates that
will then be assessed further in the verification and validation
phases. However, due to the cost, logistics and relatively low
throughput of discovery proteomics, this phase is often carried
out using a limited number of samples. Because the discovery
phase involves the putative (yet still highly confident) identi-
fication of peptide (and therefore protein) markers based on
matching experimental tandem mass (MS/MS) spectra to
computationally predicted MS/MS spectra, the initial identifi-
cations must be verified in the same or similar samples as used
for the discovery phase.

The verification phase is focused on confirming that the
abundances of target peptides are significantly different
between disease and control groups compared through quan-
titative measurements. Stable-isotope-labeled, synthetic pep-
tides are often spiked into the samples of interest to facilitate
confident detection and quantification of targeted peptides
using targeted mass spectrometry (MS)-based assays.

NATURE PROTOCOLS | VOL 16| AUGUST 2021|3737-3760 | www.nature.com/nprot


www.nature.com/nprot

NATURE PROTOCOLS

REVIEW ARTICLE

Discovery phase

Verification phase

Validation phase

Identify biomarker Confirm identify and differential Validate biomarker
candidates expression of candidates performance in large cohorts
|
Sample size

Statistical power

Project milestones

Protein
identification

Statistical
analysis

Target
selection

Target
validation

Fig. 1 | Phases of biomarker development studies. Biomarker discovery is usually divided into three different phases: discovery, verification and
validation. In the discovery phase, a small number of samples is submitted for in-depth proteomics analysis where thousands of proteins are measured
to identify biomarker candidates. Often, larger cohorts of samples are analyzed in the subsequent phases, increasing the statistical power. Biomarker
candidates are also downselected each developmental phase based on their performance to accurate predict the disease or condition. In some cases, a
combination rather than individual protein is tested as a biomarker. In the verification phase, biomarker candidates undergo additional proteomics
analysis to verify both their identities and expression in the same or similar samples as in the discovery phase. A few of the most promising candidates
are tested in the validation phase to determine its performance for clinical use.

The confident detection of the putative markers is determined
by coelution and similarity of MS/MS fragment pattern com-
pared with the synthetic peptide standards”. Subsequent steps
of the fold change verification are usually carried out across
clinical samples. Targeted MS provides much more accurate
quantitative measurement of biomarker candidates with rela-
tively high analytical throughput'>*>*”. The number of sam-
ples analyzed in this phase depends on the complexity of the
disease condition, prior research and the analytical assay
platform. It should be determined by power analysis, but often
dozens to hundreds of samples are analyzed to confirm the
differential abundances of the biomarker candidates.

The goal of the analytical validation phase is to confirm the
utility of the biomarker assays by analyzing samples from an
expanded or independent cohort of individuals that have the
same disease as was investigated in the discovery and ver-
ification phases. This provides a measure of robustness of the
biomarkers and of the assays used to measure them. Usually,
only a few (three to ten) of the best biomarker candidates are
tested in the analytical validation phase. There are, however,
many conditions where panels containing multiple biomarkers
have better diagnostic performance’®*’. Therefore, it is
important to consider how many candidates need to be eval-
uated. Similar to the verification phase, the number of samples
should be determined by power analysis and depends on
multiple factors, including the number of candidate bio-
markers used. It can vary from tens to thousands of samples
from patients in an appropriate clinical patient cohort. This
phase is often performed by either immunological assays, such
as ELISA, if available, or targeted MS assays in cases where
specific antibodies are not available. If both the verification and
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analytical validation phases are done using targeted MS, these
phases will have the same design and experimental con-
siderations, so for the purposes of this tutorial we have com-
bined the considerations of both of these phases below.

Subject selection

Critical to making appropriate inference in disease biomarker
prediction is selection of samples representative of both disease
cases as well as the population from which the cases are
drawn™. The limited number of samples that can be analyzed
in the different phases reinforces the importance of properly
selecting the study cohort. Sample matching improves the
comparative analysis and reduces the number of samples
required to obtain proper statistical power. However, this
needs to be done carefully as it limits inference to a general-
izable population, and the process of matching itself may
preclude the ability to evaluate the direct effect of any of the
matched characteristics because the sampling scheme is
inherently biased”'™””. Samples from subjects with disease
should be appropriately paired with those from nondiseased
individuals with similar characteristics for comparison to
reduce confounding factors. Many diseases are differentially
affected by sex, age, body mass index, race/ethnicity, comor-
bidities and preexisting conditions. Therefore, such factors
should be considered during experimental design, and testing
and control groups should be matched as closely as possible
during cohort recruitment. Additional samples or comparison
groups might be needed to account for multiple factors or
outcomes of the disease due to these covariates. Conventional
observational studies may use a number of different approa-
ches for study design, such as secondary assay or analysis of
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Box 2 | Common types of study design and applications
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Animal studies

Animal models can also be used as a platform for performing initial biomarker discovery experiments, and there are several models of human
disease that can be used for initial analyses. The advantage of performing studies in animals is that different factors can be ethically and effectively
controlled, such as age, genetics, food and environment, and more-invasive analyses can be performed (e.g., after necropsy). Additionally, small
animals reproduce more rapidly, allowing for high throughput in generational investigations. A major disadvantage is that animal models do not
necessarily recapitulate the biological and environmental circumstances of human disease; therefore, biomarker candidates must be verified and
validated with clinical samples from human cohorts.

Case studies

In case studies, patients may have been given a pharmaceutical off-label treatment (treatment of a condition that the specific medicine is not
approved for), or a physician may notice some clinical association that other patients may not have experienced. Such studies may be limited to
one or a small number of patients and may be reported with informal or limited comparisons.

Case-control studies

In case-control studies, individuals are selected based on their ultimate outcome status, which is generally the disease outcome of interest. This
study design is particularly efficient for rare diseases or diseases with long lead times. In this type of study, individuals with the condition of interest
are usually readily identified, but appropriate controls must be selected; these should comprise a group who would otherwise have been selected
for the study if they had developed the condition of interest but who do not have competing exposures or outcomes related to the condition of
interest. For a hospital-based study, cases for a cancer study might require a control group who are patients within the hospital and therefore
would have been present for inclusion, but who do not have cancer-related conditions; these may include incidentally injured people of similar age,
such as orthopedic recovery patient populations. This type of control selection is often called the counterfactual condition. An additional method to
increase comparability for case-control study comparisons is to match on key confounders, such as age, sex or other features, but it should be
noted that any matched features cannot be evaluated for association in primary models, so these features cannot comprise features of interest, but
only nuisance features that require adjustment.

Clinical trials

In clinical trials, participants are assigned, generally randomly, into two or more groups to receive different interventions or treatments. Trial
studies are often double blinded, meaning that both study participants and administrators are unaware of the treatment assignments, so that
outcome assessments will not be biased; however, blinding to study data is not always possible. There are many ways to structure and assign trial
studies, but fundamentally, the purpose of these types of studies is to disentangle the role of confounding from the random or placebo effect of the
intervention. Formal randomization, to be effective, should balance comparison groups by pairing treated and control individuals with similar
characteristics. This avoids adding factors, such as age, gender, ethnicity and comorbidities, to the experimental design, which can cause
confounding effects. Proper randomization in clinical trial studies allows for stronger inference than in other observational studies, which are
subject to confounding, bias, and other methodological considerations that may limit causal inference, such as in the effects of drugs or other
treatments.

Cohort studies

Cohort studies involve prospective study of a particular study group based on their exposure status, although retrospective cohort studies also
exist. The difference between cohort and clinical trial studies is that cohort studies are based on the natural or incidental exposure of individuals,
while clinical trials perform interventions in a controlled setting. Cohort studies are especially useful to investigate the risk factors associated with
disease outcomes and for estimating the frequencies of those diseases. Population-based cohort studies must be selected based on membership
within a defined group, with selection carefully defined and designed for inference to some target, such as all individuals living in some area, all
members of a given health membership organization, or all people living with some specific health condition. The exposure should be collected so
that comparisons may be made among cohort participants—those with and without whatever exposure condition. However, selection should not
be tied to exposure status; otherwise, selection bias is likely to occur.

Systematic reviews and meta-analyses

Systematic reviews and meta-analyses comprise formal, critical evaluations of studies in the literature or of many studies across a large
harmonized dataset. These methods allow better statistical power, stronger inference and a basis for evaluation of the accumulated knowledge
compared with individual, primary studies.

clinical trials, cohort, nested case-cohort, case-control, or
others (see Box 2 for details on different types of study design),
with different degrees of bias®*™*° in case and control sample
selection inherent to each design. Modern statistical methods,
such as inverse probability weighting’”*® or Bayesian meth-
ods™, should be used to adjust estimates of effect or estimate
the degree to which selection bias may influence the findings.
Further consideration for making appropriate inference is the
problem of confounding factors*’, which should be typically
addressed either by randomization in experimental studies or
adjustment in observational ones, although the problem of
residual confounding®' can persist in both circumstances.
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Once the cohort is selected, the study should be approved
by an institutional review board or equivalent before the pro-
ject starts. An institutional review board reviews protocols,
consent forms and captured information to assure that the
rights and welfare of the human subjects (sample donors) are
protected.

Power analysis

The number of study subjects and associated samples is
dependent on the selected study design, which is itself
dependent on the scientific question and intended inference*’.
In this context, a power analysis provides an estimate of the
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number of study subjects and associated samples required to
obtain statistical significance for a certain effect size. For binary
outcomes, the effect size is typically a fold change, but for more
complicated designs with multiple treatment groups or long-
itudinal samples, the effect size is set by the goals of the
experiment to be low or high, dependent on the level of effect
that needs to be detected. This is akin to a larger sample
size being required to detect a twofold change versus a
threefold change.

For biomarker studies, one must consider both the epide-
miological and analytical factors that influence the required
number of study subjects. The incidence of disease in the
general population, likely attrition rate and biological varia-
bility in protein expression levels will impact the number of
individuals needing to be recruited. The inherent analytical
variability in the proteomics platform to be used for biomarker
discovery will also contribute to the final cohort size.

Case—control or nested case-cohort studies are approaches
that can be taken to reduce the population size required for
analysis; this is especially useful in situations where you would
want to collect a large amount of data for each individual—
something that would be very difficult to achieve in a classical
cohort study. These designs trade cost for improvements
in statistical power”>**, with a design focused on the outcome
of interest.

Cohort studies track the incidence of diseases or conditions
across a temporal sequence, which can take longer but provide
better capacity for strong causal inference. This type of study
often requires larger sample sizes for the same statistical
power®®, and focuses on the exposures of interest.

It is sometimes convenient to perform secondary analysis of
trials (i.e., querying for different disease outcomes or factors
that were not the main question of the study) or intervention
studies, but some caution should be exercised. Often studies
are sufficiently large and well powered for the primary analy-
sis®®, but the secondary analyses may require statistical
adjustment to correct for confounding factors, making the
study underpowered. It is therefore important to have a sta-
tistical analysis plan for both the primary and the secondary
analysis in place before performing the power analysis.

Power analysis is more complicated in studies where the
analysis involves simultaneously measuring multiple analytes,
because standard approaches to compute power are based on a
single metric of estimated variance, irrespective of the study
design. Even in the same set of MS runs, different peptides
have different variability and require different numbers of
samples for proper statistical power. To manage this issue, the
standard approach is to estimate the variances of all proteins
from a proteomics study where data were collected within a
similar population and sample matrix*’~*’, then select a
threshold based on the minimum percentage of proteins to be
quantified. In this context, the threshold is the statistical power
expected for the majority of the proteins. This threshold is
rarely 100% because variances tend to be highly skewed across
an omics-based dataset, especially for low-intensity peptides/
proteins. A few proteins with extreme variability in either
expression or measurability can drive up the sample size dra-
matically. For example, Levin et al. showed that for a study to
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be properly powered at a minimum of 80% (or 0.8), with a
detectable fold change of 1.5 comparing two groups for all
proteins, the minimum sample size is 60 per group”’. Reducing
the power expectation to 75% of the proteins results in a
minimum sample size of 35, and reducing the power
requirement even further to 50% decreases the minimum
number of samples per group to 16. This will come with the
tradeoff that fewer proteins will be adequately powered for the
comparison of interest. Therefore, it is important to evaluate
during the experimental design the tradeoft of the number of
proteins that will be properly powered for a given sample size
and detectable fold change based on the needs of the study.
As an example of power calculation for a large-scale MS
analysis, the Metabolomics Core for the NIH Common Fund
Undiagnosed Diseases Network (UDN) Phase I evaluated the
number of samples from healthy individuals required for
building a baseline of metabolite and lipid reference values to
be compared against similar profiles from individuals with
disease. In the UDN, each patient had a unique and undiag-
nosed illness; therefore, it was important to have a well-defined
baseline of normal metabolite and lipid profiles to compare
against an N of 1. Using data from previous analyses of similar
samples, the minimum numbers of reference samples were
selected on the basis of power calculations considering a Stu-
dent’s t-test with a type I error of 0.05 and a twofold detectable
change for 80% of the tested molecules. It was found that
102 samples would be necessary for urinary metabolomics, and
136 samples for plasma lipidomics™. In another example, a
proteomics study on the mechanism of pancreatic -cell killing
by proinflammatory cytokines found that only four samples
would be necessary for a twofold detectable change using
Student’s t-test with a type I error of 0.05 for 80% of the
proteins’'. These examples show that the number of required
samples can be drastically different. This difference depends on
the biological and technical variability and the study design.

Sample handling, collection, storage and tracking

Both discovery and validation efforts can be impacted by a
number of preanalytic variables that should be carefully con-
sidered when designing sample collection protocols and when
deciding the characteristics of clinical cohorts for sample col-
lections. Analysis may be influenced by physiologic factors,
including age, sex, body mass index, fasting status, timing of
collection (i.e., circadian or diurnal influences), phase of
menstrual cycle, exercise status, season of collection, medical
comorbidities and interfering medications® . Due to this
biological variability, it is important to keep the experimental/
analytical variance to a minimum to obtain meaningful data.
The impact of these variables can be minimized by strict
matching criteria for prospective collections and through
development and implementation of standard operating pro-
cedures (SOPs) by those responsible for sample collection.
SOPs should include detailed criteria for sample collection and
processing, and whenever possible, manufacturers and lots of
reagents should remain consistent for the duration of a study™®.
Results may be influenced by the type of anticoagulant used in
blood collection tubes or by the type of collection tube used for
other biofluids™. Certain labile analytes may require specific
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additives such as protease inhibitors or antioxidants for sta-
bilization®. To avoid sample degradation, the time between
sample collection, sample processing and number of
freeze-thaw cycles should be minimized and also kept con-
sistent among all samples to avoid introduction of artifacts in
the data. Of note regarding sample preservation, extensive
efforts have been dedicated to evaluating the suitability of
formalin-fixed paraffin-embedded (FFPE) samples for pro-
teomics analysis"®”. These studies have demonstrated that,
when combined with specialized sample preparation protocols
discussed further below, FFPE specimens are well suited to
biomarker discovery studies®"*.

When preparing the sample collection, questionnaires
should be formulated to capture all the relevant metadata,
including sex, age, height, weight, race/ethnicity, comorbidities
and preexisting conditions. Depending on the disease or con-
dition under study, it is also important to capture information
about any prescribed medicines or diets, as they can impact the
composition of the collected sample. For instance, even a meal
has a strong effect on the composition of the plasma pro-
teome®. Once the protocol is approved and the SOP is
established, the samples should be collected in a standardized
way, taking care to prevent degradation (low temperature or
addition of proper preservatives). Sample accessioning (i.e.,
assigning accession numbers) should be performed with care to
avoid mislabeling, and the use of barcoding and printing labels
rather than hand-writing can be employed to minimize the
chances of sample mix-up®.

Once the samples are collected, storing them in a single
batch provides an opportunity to control for variability in how
the researcher handles the samples. Different peptides/proteins
might have different stability based on their physical/chemical
properties”’. Therefore, freeze-thaw cycles should be mini-
mized, and long-term storage should be done at —80 °C. Sta-
bility of the samples can be tested by spiking internal standards
and monitoring their abundances across different freeze-thaw
cycles and storage time. Such experiments can also provide
information on analyte recovery and assay specificity and
sensitivity®®. Caution should be used when analyzing pre-
viously collected samples, especially where details of collection
and storage are not available and when combining samples
from multiple sources™. These factors can introduce variability
in the data.

The importance of sample blinding

Technical bias in assay-based studies can present an additional
source of error”. Small differences in sample handling and
preparation throughout the experiment can cause major dif-
ferences in the results and compromise the integrity of the
study. Therefore, when it is possible, samples should be ran-
domized and deidentified by the statistician, with no subject
information given to researchers who will process and analyze
the samples, to avoid inadvertent differences in sample hand-
ling based on some subject feature, such as case status. Addi-
tionally, attention should be paid to assessing and minimizing,
if possible, batch effects when the number of samples exceeds
the assay batch size. One approach is to randomize cases and
controls across chip or plate locations, to avoid batch clustering
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based on assay chip or plate, date, or reagent. There are some
situations where blinding is not feasible, e.g., when samples
have identifiable characteristics (different color, sizes, texture,
etc.). Other cases where it is difficult to perform completely
blind studies are studies that involve either food or surgery,
where both the subjects and researchers know the control and
treatment groups’’. When blinding is impractical, analyzing
samples from additional independent cohorts helps to
confirm that biomarker candidate identification was not due to
human bias”""?.

Considerations for discovery-phase experiments

The main goal of the discovery phase is to analyze as many
biomarker candidates as possible. To achieve this goal, an in-
depth proteomics analysis is carried out by liquid chromato-
graphy (LC)-MS/MS with a limited number of samples, with a
focus on the depth of proteome coverage. Depending on the
sample complexity, abundant protein depletion and peptide
prefractionation is performed to increase the chances of
detecting proteins present in low abundance. In addition,
peptide labeling with isobaric tags can be used for multiplexing
several samples in a single experiment, which decreases
variability between measurements. Checkpoints along with
QCs and statistical analysis improve the chance of identifying
meaningful biomarker candidates. The overall workflow is
shown in Fig. 2, while checkpoints, expected results, potential
pitfalls and troubleshooting are listed in Table 1.

Abundant protein depletion

Blood plasma and serum are challenging specimens because of
their complex composition and the presence of highly abun-
dant proteins. The most abundant plasma protein, serum
albumin, is present at 35-50 mg/mL in normal conditions,
whereas cytokines are only present in low pg/mL range, dif-
fering by a factor of 10'°. In addition, the 20 most abundant
proteins account for 97% of the total plasma protein mass’”.
These highly abundant proteins represent a major challenge for
proteomic analysis since the MS data collection is biased
towards high-abundance peptides’”. Two main approaches
have been taken: immunodepletion and fractionation by
chromatography.

The removal of highly abundant proteins through immu-
nodepletion allows for better detection of moderate- and low-
abundance proteins’>’°. Unfortunately, immunodepletion can
also codeplete other associated proteins’’. Other methods to
simplify sample complexity, such as denaturing size exclusion
chromatography or extensive high-pH reversed-phase fractio-
nation, have been successfully applied’®, with the trade-off of
an increased number of LC-MS/MS runs. Therefore, the
method of decreasing sample complexity needs to be
considered carefully.

Immunodepletion has to be performed before protein
digestion. If this approach is chosen, we recommend that you
run a QC sample before each batch of samples to be depleted.
Consistently running QCs of well-characterized samples, such
as NIST 1950 plasma, allows the development of baselines for
determining fluctuations in instrument and depletion column
performance. This can be monitored with UV detection and
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Fig. 2 | Considerations for each step of the discovery-phase workflow. The main consideration points for each step of the workflow are shown. Note
that an example for blood plasma analysis is shown, but other sample types may have some additional or fewer steps in the workflow. For tissue
analysis, the immunodepletion step should be replaced by a tissue lysis step, the details of which are documented in the text.

overlaying the elution profiles. For instance, an increase
in the unbound protein peak might represent degradation
of the column or improper buffer pH. Samples should be kept
at low temperatures (i.e., on ice or at 4 °C) to avoid
proteolytic degradation.

Removal of abundant proteins or peptides by chromato-
graphic fractionation is discussed further below as part of the
information relating to the chromatographic separations.

Protein digestion

Sample preparation for proteomic analysis typically includes
the initial homogenization of solid samples, protein solubili-
zation, and lysis, followed by enzymatic digestion and solid
phase extraction to remove contaminants (Table 2). We have
previously found that protein extraction is a major source of
experimental variability””. Therefore, it needs to be performed
in the most consistent way possible. Lysis buffers usually
consist of a buffering agent (e.g., ammonium bicarbonate, Tris-
HCI or triethylammonium bicarbonate) and denaturing agents
(e.g., urea, guanidine hydrochloride, thiourea). They are for-
mulated and optimized to release and improve solubility of
proteins by disrupting hydrogen bonds and hydrophobic

NATURE PROTOCOLS | VOL 16| AUGUST 2021|3737-3760 | www.nature.com/nprot

interactions between and within proteins. When working with
FFPE specimens, harsher extraction conditions are required to
undo the extensive protein crosslinking that occurs during
fixation®*™**. It may also be necessary to start with larger
specimens when working with FFPE tissue, to ensure sufficient
protein amounts for downstream processing. Reduction of
protein disulfide bonds (with dithiothreitol, tris(2-carbox-
yethyl)phosphine) and alkylation of the free SH-groups (with
iodoacetamide, iodoacetic acid, acrylamide or chlor-
oacetamide) improves sample digestion and MS detection of
cysteine-containing peptides®’. Lysis buffer may contain pro-
tease and other inhibitors (e.g., phosphatase inhibitors for
phosphopeptide analysis) to minimize the biodegradation of
extracted proteins. Protease inhibitors should be carefully
chosen to not interfere with the protein digestion step.
Performing protein quantification on the cell lysate is an
important step to ensure the extraction efficiency, calculation
of enzyme needed for sample digestion and allowing control
checks of the following steps. This procedure also allows
normalization of the digest parameters through the study, and
it is essential for the final quality of the digest and the protocol
reproducibility. For protein digestion, trypsin has been
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Table 1 | Checkpoints, expected results, potential pitfalls and troubleshooting

Study stage

Checkpoint

Expected results

Troubleshooting

Experimental
planning

Sample collection

Immunodepletion

Protein digestion

Isobaric labeling

Peptide fractionation

Peptide selection
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Power calculation

SOP for collection

Sample
accessioning

Buffer pH

Elution profile

Protein loading

and yield

Buffer pH

Peptide yield

Digestion
efficiency

Buffer pH

Peptide loading
and yield

Labeling efficiency

Buffer pH

Elution profile

Peptide
characteristics

The study design needs to be chosen carefully,
taking into consideration a power calculation to
determine the number of samples required and
characteristics of the cohort to determine the
criteria for inclusion in the study

A well-defined protocol should be established prior
to collection and followed for all sample collection
and storage throughout the study

Study samples should be coded with
nonidentifiable names for the purpose of blinding
researchers carrying out downstream analyses

Verify buffer pH daily, prior to start of
chromatography to confirm it is within
manufacturer suggested range

The unbound protein peak should be substantially
smaller than the bound protein by area under the
curve measurement

Sample loading should be maintained within
manufacturer recommendations. Protein yields
should be consistent between samples

Check buffer pH prior to processing to ensure
consistent reaction rates and enzymatic activity

Protein yield varies by tissue but should be
consistent between samples. Peptide yield,
measured by BCA assay is usually between 40%
and 60%

The digestion efficiency can be verified by 1D LC-
MS/MS analysis. The digestion efficiency, as
measured by percentage of identified peptides
containing a missed cleavage, should be >25%.
Further, efficiency measurements should be
consistent between samples

Buffer pH should be verified prior to labeling as the
labeling reaction is pH dependent

Peptide loading for labeling reaction should be
verified by BCA assay to ensure proper labeling.
Peptide yield after labeling is usually ~90%

Labeling efficiency should be checked by
postlabeling QC prior to sample mixing as
described above. All the channels should have
similar intensities. Channels with intensities <50%
compared with the neighboring channels cannot be
normalized post hoc

Check buffer and sample pH prior to start of
chromatography

Peaks should be well distributed throughout the
chromatography. Problems in the chromatography
can shift the peak distribution as well as decrease
their intensity

Selected peptides should have different
composition and length for efficient distribution
across LC gradient. Problematic residues should be
avoided (e.g., M, N, Q and W), as well as peptides

Underpowered studies can only be detected
during the statistical analysis. Therefore, this
step should be performed with care to ensure
the proper number of samples

Changing the protocol after the study has
started may lead to nonreproducible data.
Therefore, SOP should be in place before the
sample collection starts

Human biases during sample preparation and
data collection are hard to correct by statistical
normalization. Therefore, sample blinding is an
important step

Prepare fresh buffers

Verify sample loading amount is within
manufacturer recommended range. Verify
column useful lifetime, as antibody columns
degrade with use. Increasing back pressure can
also indicate column degradation

Inconsistent results can be caused by chemical
interference, variations in protein loading
amounts or poor column performance

Fresh buffers should be made and checked with
each batch to ensure proper pH and inhibitor
activity

Inconsistent results can be caused by chemical
interference in protein assays, poor digestion,
improper buffer pH or inconsistent flow rates
during solid-phase extraction (SPE)

High missed cleavage rates can be improved by
increasing protein concentration during
digestion or increasing enzyme-to-

substrate ratio

Prepare fresh buffers

Low recovery after labeling indicates a problem
in postlabeling SPE

Incomplete labeling can be caused by acidic
sample pH or label degradation. Incomplete
drying after SPE might leave residual acids that
reduce the sample pH. Ensure the sample
dryness and pH after dissolving with the labeling
buffer. Store the reagents at —20 °C and
protected from humidity

Prepare fresh buffers

Load sample amounts within the maximum
capacity recommended by the manufacturer.
The column performance degrades over time,
and this can be monitored in the elution profile,
based on peak intensities and retention times.
High back pressures can indicate that the
column has degraded

Use existing software tools to help evaluate
peptide characteristics. Also, selecting multiple
peptides per protein is recommended to

Table continued
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Table 1 (continued)

Study stage Checkpoint Expected results Troubleshooting
with missed cleavages. Three to five peptide maximize the chances of developing good
sequences should be selected for each target assays for every targeted protein
protein
Targeted assay Transition Peptide transitions should provide intense signals, Transitions with nonmatching elution profiles
development selection and all transitions from the same peptide should may be effected by interference and should be

Sample spiking

Data collection

Peptide identification

Data QC

Statistical analysis

Spike in handling

Instrument
performance

Blocking and

randomization

FDR

Review dataset

Normalization

Statistical tests

elute with the same peak shape. Multiple peptide
transitions should be selected for each peptide

excluded from the study. Interference for a large
number of transitions indicates contamination or
peptide coelution. Different target sequences
should be selected, or adjustments to the LC
gradient can be made

Spike-in standard should be created at one time,
and prepared into aliquots to ensure a consistent
spike standard and procedure for each batch of
sample. Mixtures should be stored in proper
conditions (e.g., —80 °C) with backup plans in
case of power outage or system failure

Instrument performance should be checked at
regular intervals using a standard sample of similar
complexity to study samples. Collected data
should have similar intensity, elution profile and
peptide identification rates

A decrease of >10% in intensity or peptide
identifications indicates that the instrument
needs recalibration or cleaning. Changes in
chromatogram shape or back pressure indicate
column degradation

When instrumentation problems occur within a
block, the entire block should be reanalyzed for
consistency

Instrument performance can drift over time. It is
important that samples are batched and
randomized to avoid biases due to sample

run order

The decoy database approach can be used to
control the peptide FDR

Low number of identified peptides might result
from a variety of problems, including sample
contamination, improper digestion, failure in
peptide labeling and issues with the LC-MS/MS
system. Data QC might help diagnosing these
problems (see below in QC)

The QC step diagnoses a variety of problems:
e Contaminants: check for common
contaminants (bovine serum proteins,
albumin, and bacterial proteins). Chemical
contaminants, such as detergents, have
characteristic chromatograms with peaks of
defined intervals. In the case of contamination,
solutions should be freshly prepared
Improper digestion can be detected by number
of missed cleavage sties. Adjust trypsin
concentration and digestion time

Failure in peptide labeling can be determined
by the number of peptides identified without
labeling. Usually labeling is >95% efficient.
The most common problem is the sample pH,
which should be checked before starting the
labeling reaction

Problems in LC-MS/MS system can be
detected by retention time shifts and reduced
peak intensities. Checking the LC systems for
leakages and cleaning the mass spectrometer
solve the most common issues

The completed dataset should be evaluated as a
whole to identify significant deviations in assay
performance and identify outliers. This can identify
samples that need to be rerun or removed from the
dataset

Despite strict controls, data normalization is
required to minimize the impact of technical
variance on the dataset

Hypothesis test used to evaluate differential
protein expression should be selected to match the
study design

considered as the gold standard in proteomics sample pre-
paration, but other enzymes such as endoproteinases Glu-C
and Lys-C can also provide additional information. Walmsley
et al. have shown that trypsin from different sources can add
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substantial variability to the samples®’. Therefore, it is
important to use enzyme from the same lot throughout the
experiment. The experimental conditions for trypsin digestion
can be adjusted for a specific application. Typically, trypsin
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Table 2 | Considerations for protein digestion workflow

Digestion step

Rationale/importance

Tissue homogenization

Tissue samples are heterogeneous. To achieve reproducible results, mechanical disruption

techniques are needed to create uniform homogenates for protein extraction

Protein extraction/solubilization/
denaturation

To ensure broad coverage of the proteome and efficient digestion, proteins with broadly different
physicochemical properties need to be solubilized in the extraction buffer. Buffers can be tailored

to increase extraction efficiency of different protein classes

Protein quantification

Protein should be measured after extraction to verify protein yield, determine amount of enzyme

required, and normalize protein concentration prior to downstream digestion steps

Cysteine reduction and alkylation

To achieve thorough denaturation of proteins, it is critical to reduce disulfide bonds with a

suitable reducing agent. Following reduction, cysteines should be protected with an alkylating
reagent to prevent side reactions of cysteine side chains

Enzyme digestion

Digestion efficiency is determined by the enzyme activity, enzyme concentration and substrate

concentration. Optimal results require using high-grade enzymes, maintaining optimal buffer
conditions for activity, and keeping enzyme and substrate concentrations consistent

Solid-phase extraction (SPE)

Removing contaminants, reagents, and salts post-digestion is critical to achieving robust and

reproducible LC-MS/MS results

Peptide quantification

Peptide should be quantified to verify yield from SPE, and concentration normalized to

standardize loading for isobaric labeling or peptide standard spiking

digestion is performed at neutral pH at 37 °C, and it may take
up to 18 h. The digestion is stopped by reducing the pH of the
sample with trifluoroacetic or formic acid. The acidification of
the samples also allows for better performance on the sample
desalting step and better recovery of the peptides®”. Sample
desalting using solid-phase extraction is vital since it removes
salts and buffers that are not compatible with the following
steps. At this point, quantification of the peptides should be
performed to assess the recovery of the samples and ensure
that variability between samples are in a reasonable range. As
an additional QC step, a small aliquot of digested peptides can
be taken at this point and analyzed by 1D LC-MS/MS analysis
to interrogate digestion quality and identify problematic sam-
ples prior to subsequent steps.

Peptide labeling with isobaric tags and sample multiplexing
There are multiple approaches for quantitative global pro-
teomics analysis, all with advantages and disadvantages'".
Peptide labeling with isobaric tags (e.g., tandem mass tag
(TMT) reagents) has become a popular method in large-scale
discovery studies because it allows in-depth proteome coverage
with sample multiplexing to achieve relatively good throughput
and reduced technical variability®>*’, enabling the discovery of
low-abundance biomarker candidates. The disadvantage of
isobaric labeling is that these approaches often lead to under-
estimation of fold changes between samples due to interfering
signals coming from reagent impurities, background noise and
cofragmented peptides®’. On the other hand, label-free analysis
by data-dependent acquisition or data-independent acquisition
provide more accurate fold changes. One disadvantage of the
label-free approach is that only one sample can be analyzed at
a time, compared with up to 16 in the TMT experiments.
Compared with TMT-labeled experiments, data-dependent
acquisition and data-independent acquisition analyses often
lead to low coverage of the proteome in challenging samples,
such as plasma and serum®®™, since TMT-labeled samples are
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more amenable to fractionation prior to LC-MS/MS. Pre-
fractionation of data-dependent acquisition and data-
independent acquisition samples adds the challenge of
increasing the analysis time and may introduce more varia-
bility to the samples. Despite all these approaches being
powerful and successfully used for global proteomics analy-
sis” "%, in this section, we will mainly cover isobaric
tag labeling because of its popularity and the complexity of
overall workflow.

To facilitate the comparison between multiple sets of TMT
experiments, a ‘universal’ reference sample can be included in
one of the multiplexing channels for each TMT set. This
reference sample can be just an aliquot mixture of all the
samples. It can be used to normalize signal intensities across
different TMT sets and also serves as a standard for QC ana-
lysis. There are two important steps in peptide labeling and
multiplexing: (1) ensure the right pH of the samples since it
affects the efficiency of peptide derivatization, and (2) quantify
peptides before labeling and multiplexing. We have found that
remaining acids from solid phase extractions can lower the pH
of the samples, drastically reducing the efficiency of TMT
labeling. We have also observed that post hoc data normal-
ization is effective for only small variations of sample loading.
A postlabeling QC is also recommended. To achieve this, a
small aliquot is taken from each sample prior to quenching the
labeling reaction, mixed, and analyzed by LC-MS/MS to
determine the efficiency of labeling for each channel. Because
the labeling reaction is left unquenched, samples with low
labeling efficiency can often be effectively rescued by adding
additional label.

Peptide-level fractionation

Digestion of tissue lysates, whole cells or body fluids can
generate >500,000 peptides per sample’”. In shotgun pro-
teomics, the depth of the analysis is partially limited by the
tandem mass spectra scan rates. Therefore, reducing the
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Fig. 3 | Monitoring instrument performance with standard samples. In our laboratory, we use a tryptic digest of the bacterium Shewanella oneidensis
as a standard sample to check the LC-MS/MS performance. This standard is run before and after each batch of samples. a, Number of identified
peptides in S. oneidensis runs. Note a slow decay in the number of identified peptides, which is almost unnoticeable in consecutive runs but has a major
effect across time. The number of peptide identifications was reestablished after cleaning the instrument. b,c, Chromatograms from analysis of
S. oneidensis before and after instrument cleaning, respectively. This shows the cumulative reduction in instrument performance across time.

complexity of the sample by prefractionating the peptides
improves the proteomic coverage’. Peptide fractionation prior
to the LC-MS/MS analysis also helps with the problem of ratio
compression. Ratio compression refers to a phenomenon
where the measured fold changes are smaller than the real
abundance differences present in the samples, and is a known
issue in experiments where peptides are labeled with isobaric
tags. This problem is caused by cofragmentation of multiple
coeluting peptides (and anything else that would create a high
chemical background) such that the peak contains reporter ion
fragments from both the selected peptide and these interfering
factors®’. Prefractionation of peptides results in a lower che-
mical background and better separation of peptides from each
other, reducing the ratio compression issue”.

There are several types of chromatography that can be used
for peptide prefractionation, including strong-cation exchange,
hydrophilic interaction and reverse phase (reviewed in refer-
ence”’). High-pH reverse-phase separation has become
increasingly popular as the first dimension for tryptic peptide
fractionation in a biomarker discovery workflow. For large
projects, assay variables should be as consistent as possible, i.e.,
buffers, columns, gradients and temperatures of separation, to
have the most reproducible measurements. Indeed, even small
fluctuations in pH can lead to major shifts in retention times”.
Monitoring elution profiles with UV detection also helps to
ensure that the separation is reproducible. For preservation of
sample quality, peptides are stored dry in vials to be rehydrated
prior to LC-MS/MS analysis.
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Data collection

Many parameters must be monitored for the LC-MS/MS data
collection to be effective. Calibrations should also be performed
following mass spectrometer manufacturer recommendations
to ensure the accuracy of the measurements. The performance
of the instrument should be assessed by regularly running well-
characterized standard samples. For a robust assessment of the
instrument performance, the standard samples should have
similar complexity and properties to the samples to be ana-
lyzed. The mass spectrometers should be serviced when the
analysis of standard samples indicates suboptimal perfor-
mance, which is determined by comparing with the historical
performance of the instrument (e.g., a QQ or Bland-Altman
plot). For instance, in our laboratory, we use the tryptic digest
of the bacterium Shewanella oneidensis as the standard sample.
However, each laboratory can develop their own QC sample
based on material availability. There are several QC standards
from bacterial and mammalian cells, as well as human bio-
fluids, commercially available. The analysis of this standard
sample on a high-resolution mass spectrometer such as
Q-Exactive (Thermo Fisher Scientific) with a 100 min chro-
matography gradient usually leads to the identification of
~12,000 peptides. We clean the instrument once these numbers
drop below 11,000 identified peptides, which restores the
number of identifications (Fig. 3). Peak width and other
metrics can also give indication of specific problems with the
LC or the mass spectrometer99. Therefore, it is important to set
baselines for multiple parameters to assess the overall
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performance of the instrument. Samples should be blocked and
randomized when analyzed to avoid bias due to instrument
performance decay'’”'”". Our data and those from other
groups have shown that even normal decay in instrument
performance can introduce confounding factors to the
data'’"'%?, Standards should run before and after a block of
samples. The block size is determined considering mass spec-
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trometer performance drift over time and separation length.
This allows breaks between blocks to clean, calibrate and
perform preventative maintenance. Randomization should be
done within blocks. Complete randomization can lead to
imbalances (i.e., more control samples run first and more of
the test samples run after, or vice versa), which can reintroduce
some confounding factors'’". Without blocking, data collection
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would need to be restarted from the beginning to avoid
bias due to the instrument performance differences before and
after servicing.

Data QC

The quality of the sample and data is crucial for obtaining
meaningful results. Therefore, in our protocol, we implement
QC measurements for each major procedure step. Quantifi-
cation of proteins and peptides is a good way to assess whether
a sample is being lost during depletion, digestion and labeling
steps. During the crucial period of data collection, it is desir-
able to assess the quality of data acquired in real time. Rela-
tively few tools have been developed for real-time monitoring
of LC-MS data quality. We recently introduced the Quality
Control Analysis in Real Time (QC-ART) software, a tool for
evaluating data as they are acquired to dynamically flag
potential issues with instrument performance or sample
qualitymz. QC-ART identifies local (run-to-run variations) and
global (across large sets of data) deviations in data quality due
to either biological or technical sources of variability. For
instance, QC-ART can detect trends in signal intensity decline
or reduction in the number of identified peptides, which can
result from instrument performance decay'’’. Chromato-
graphic shifts, especially in the first and last quartile of the
elution time, may represent problems in column integrity,
solvent composition or tubing dead volumes. The QC-ART
procedure is similar to that of Matzke et al.'” in the context of
the statistical outlier algorithm employed but adds a dynamic
modeling component to analyze the data in a streaming LC-
MS environment.

In addition to real-time monitoring tools, several QC
methods exist for checking data postcollection to remove low-
quality data that would degrade downstream statistics
(reviewed in reference'®*). Data QC allows the detection of
important differences in the samples that might not result from
drifts in instrument performance or problem in sample pre-
paration. For instance, QC-ART was able to detect minor
differences in chromatography profiles between samples, with
reduction of some peak intensities but appearance or increase
of others (see highlighted region of Fig. 4a). A deeper inves-
tigation led to the identification of oxidation in amino acid
residues (Fig. 4b), such as cysteine, tryptophan and tyrosine
(Fig. 4c,d), which, despite being previously described, were
underappreciated during analysis of plasma samples. By
recognizing and specifically searching for these oxidations, the
proteome coverage was significantly improved (P < 0.05) (Fig.

4e,£)'". Therefore, QC not only identifies technical issues, but
can also lead to the identification of characteristics of the
samples that are different across the cohort, such as post-
translational modifications.

Data analysis

Currently, there are excellent tools for peptide identification,
such as  MS-GF+4,  MSFragger, Andromeda and
TagGraph'*>™'%. Although most of these tools work in an
almost completely automated fashion, an important aspect of
the peptide identification is to control the number of false-
positive identifications. The most common approach is to use a
target-decoy database for sequence searching, which allows
calculation of the false-discovery rate (FDR)'?’. Most com-
monly, FDRs are kept at 1% at the protein and peptide levels to
maximize the balance between rigor in peptide identification
and yield of biological information. Less-stringent FDRs can
introduce a substantial number of false-positive identifications,
while more stringent FDR criteria may exclude biologically
relevant peptides. The balance of these choices will depend on
the scientific question, and whether it is preferable in the study
context to identify more false positives or more false negatives.
Manual inspection of the spectra can also be performed, but it
is only practical for small numbers of peptides since it is labor
intensive and requires well-trained personnel. For instance, in
our laboratory, we only manually inspect spectra from post-
translationally modified peptides that we use to study signaling
mechanisms. True-positive peptides usually have sequentially
matching tandem mass fragments''’. In addition, the tandem
mass analysis of some posttranslational modifications gen-
erates diagnostic fragments that can be used to further
confirm their presence. For subsequent targeted proteomics
experiments, peptides will also be validated in the verification/
validation phases using their heavy labeled internal
standard versions.

Once a set of peptides is identified, their intensity infor-
mation is extracted for the quantitative analysis. In the first
quantification step, normalization is focused on accounting for
the bias introduced due to technical and biological variation.
Common normalization strategies include total abundance
normalization to the average or median, linear-regression-
based approaches, quantile normalization and variance stabi-
lization normalization (Vsn)'''~''* (Table 3).

Despite these considerations, there is no consensus in the
community on a single best strategy to normalization, and the
optimal approach can vary based on sample type, study scale

<« Fig. 4 | Identification of unexpected peptide modifications with data QC analysis. a, Total-ion chromatogram from analysis of three LC-MS/MS runs

from corresponding high-pH reversed-phase chromatography fractions of different multiplexed sets of isobaric-tagged samples. The runs were
analyzed by QC-ART, and the flagged run is highlighted. The highlighted region has a different peak profile compared with the unflagged runs. b, A
selected m/z range of the region highlighted in a. The analysis reviewed a shift of 15.99 Da, corresponding to the mass of an oxidation, on the peptide
GQVYCYELDEK, which does not contain the methionine residues, which are commonly searched during peptide identification. ¢, Workflow of the MSGF
+ database searches to identify new oxidized residues. The searches considered oxidation in any residue and used Ascore'® to ensure the site of
modification. d, Normalized counts of oxidized amino acid residues. ef, Average number of peptide (e) and protein (f) identifications per fraction of
reanalyzed data. The blue bars represent the database search performed considering methionine oxidation as the only possible modification, whereas
the red bars also considered methionine, cysteine, tryptophan and tyrosine oxidations. This shows that not only can QC analysis find runs with drift in
in sample preparation and instrument performance, but it can also find runs that have distinct profiles due to unexpected posttranslational
modifications. The asterisks represent P < 0.05 by t-test. Reproduced from ref. '°% with permission from the American Society for Biochemistry and

Molecular Biology.
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Table 3 | Common normalization methods for proteomics data

Method Description

Median intensity
measured for the sample

Global linear regression
samples

Local linear regression
then iteratively refined

Quantile normalization

Scale each peptide abundance value within a sample to the sampled median computed from all peptides
Scale each sample to a reference linear distribution, typically generated as the median regression line across all
Scale each sample to a reference fitted curve; usually the initial curve is generated from all the data points and

Replace each data point of a sample with the mean of the corresponding quantile

Vsn Scale each data point based on a model that accounts for the dependence of the variance on the mean intensity
and a variance-stabilizing data transformation

and the complexity of the sample matrix (e.g., cell lines, tissue,
plasma). For example, global-based normalization makes two
assumptions that might not hold'">: (i) that the amount of
peptide detected is proportional to the amount of protein
present and (ii) that the total concentration of protein within
all samples in an experiment is constant.

If the biological effect of a condition is to increase
(or decrease) the total amount of protein produced in the
sample, or generate different types of proteins resulting
in a change in the relationship between total proteins and
peptides quantified, then global normalization strategies
would introduce bias. Examples of this are conditions where
the abundance of inflammatory proteins is at a level where
lower-abundance proteins are no longer detectable in
the analysis.

Webb-Robertson et al.'"”, proposed a strategy called Sta-
tistical Procedure for the Analyses of peptide abundance
Normalization Strategies (SPANS), which performs multiple
normalizations and uses metrics of variability and bias to make
recommendations. More recently, Valikangas et al.''* noted
that the number of methods available in SPANS is limited and
performed a comprehensive review of multiple normalization
approaches. They found that Vsn was the most effective for
reducing variation between technical replicates and performed
well for evaluation metrics associated on differential expression
statistics. The goal of Vsn normalization is to bring the samples
to the same scale by first performing a transformation to
remove variance caused by systematic experimental factors and
then, second, apply a generalized log2 transformation. Since
Vsn is focused on addressing the relationship between the
variance and mean intensity for the example data used by
Valikangas et al., it also underestimates the log2 fold changes of
spiked in proteins. Supervised approaches to incorporate more
accurate estimates of variance also show great promise in
managing the differences in measured protein across sam-
ples''®'"”. These approaches use machine learning algorithms,
mostly random forest and support vector machines, to identify
and quantify batch effects or other systematic experimental
factors, from which they adjust for these effects. The primary
issue with this approach currently is that the accuracy of these
approaches for smaller datasets has not been well quantified.
In general, most guidance regarding normalization of
proteomics data suggests careful consideration of both data
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and scientific goals of the analysis in order to select the most
appropriate method.

Statistical analysis is generally performed in a univariate
manner, evaluating each protein independently using an
appropriate test based on the experimental design. For discrete
outcomes, standard approaches such as a standard t-test,
ANOVA or the generalized linear mixed-effects model
(GLMM) are the usual approaches in order of experimental
complexity. For example, in a simple bench biology experiment
of a cell line, a simple #-test may be adequate, but in a complex
analysis with multiple levels of a factor or multiple experi-
mental parameters, an ANOVA would be well suited. Further,
in complex cohort studies where repeated measures of subjects
may be taken or other covariates, such as age, need to be
adjusted for, a GLMM is a flexible strategy to perform statistics.
However, in some cases, nonparametric equivalents of these
tests should be utilized if the underlying assumptions of
the model are not met (e.g., a standard ¢-test yields meaningful
information only if the distribution of the data is normal;
if the distribution is not normal, then one could use a
Wilcoxon rank sum test). Quantitative outcomes are most
commonly evaluated using linear- and nonlinear-regression-
based approaches.

Proteomic experiments generate a large number of peptides/
proteins, and each are evaluated independently using one of
the tests previously described (e.g., ANOVA, Wilcoxon rank
sum test). This yields a large number of test statistics (P-
values), for which the standard type 1 error used to draw a
significance threshold is no longer accurate and an approach
must be taken to obtain a more accurate measure of the
uncertainty or error level. This is commonly referred to as an
FDR calculation. There are many approaches to perform this
task, such as a Bonferroni correction, which simply defines a
protein as significant if the P-value is less than 0.05/P, where P
is the total number of proteins statistically analyzed''®. This is
one of the most conservative approaches to adjusting for this
error. Alternatively, there have been multiple methods devel-
oped to control the FDR, such as Benjamini and Hochberg,
Strimmer, and g-values, the latter of which is probably the
most widely used''”'*°. In general, these approaches perform a
correction based on an estimate of the ratio of false positives to
true positives at a defined test statistic (P-value), which is
estimated from the data.
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Fig. 5 | Considerations for each step of the validation-phase workflow. The main consideration points for each step of the workflow are shown.

It should be noted that the utilization of FDR calculations is
extremely challenging for specific experimental designs, such
as ANOVA and GLMM when testing multiple factors or time-
based factors. Thus, it is not unusual to evaluate the data
generated in the discovery phase using multiple type 1 error
thresholds, sorting, machine learning'"'** or network-
based'*»'** inference to identify the best candidates for tar-
geted analyses.

Considerations for experiments of the verification and
validation phases

Verification and validation phases for selected biomarker
candidates from discovery phase are mostly performed with
targeted MS-based assays or targeted proteomics analy-
sis’®'*>1%° Targeted proteomics is a complementary techni-
que, where candidate biomarker peptides are measured
alongside heavy-isotope-labeled synthetic counterparts. This
not only improves the quantification process but also ensures
that the correct peptide is being measured with high level of
specificity. Selected-reaction monitoring (SRM, also known as
multiple reaction monitoring) on a triple quadrupole mass
spectrometer and parallel reaction monitoring on a high-
resolution mass spectrometer (e.g., Q-Exactive) are commonly
applied targeted MS techniques. In general, targeted MS assays
provide high accuracy, selectivity and sensitivity, because they
use two-stage mass filtering of both precursor and fragment
ions with high resolution. Recent advances in MS have made it
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possible to perform large-scale candidate biomarker validation
involving hundreds of peptides'*’™"*’.

Similar to the discovery phase, the validation phase has an
extensive workflow from sample selection to assay develop-
ment and data collection, to final data analysis (Fig. 5).
Checkpoints, expected results, potential pitfalls and trouble-
shooting are listed in Table 1.

Biomarker candidate prioritization

Biomarker discovery studies can lead to the identification of
hundreds to thousands of candidates. Unfortunately, logistics
and cost often limit the number of biomarker candidates that
can be studied in the following verification and validation
experiments. There is no community consensus on how can-
didates should be prioritized, and several strategies have been
described, including prioritization based on statistical sig-
nificance, machine learning analysis, functional-enrichment
analysis, correlation with published literature, and integration
of multi-omics datasets. Frequently, the main criteria for
prioritizing biomarker candidates are their statistical sig-
nificance and fold change when comparing cases versus
controls' ™.

Machine learning approaches are powerful methods to
prioritize biomarker candidates based on their performance in
predicting the disease outcome'”’. A suite of machine learning
techniques, such as logistic regression, random forests and
support vector machines have been used to build predictive
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models of disease; however, the true power of this approach is
in the identification of a multivariate biomarker panel. Various
approaches, such as random forest feature importance
metrics'** are common, as well as Bayesian integration and
statistical sampling strategies that can be used to extract feature
sets from disparate datasets'”’. While machine learning has
been shown to be effective for selecting candidates, other more
basic analyses, such as linear regression, can be as effective in
many cases. For instance, Carnielli et al. have successfully
verified biomarker candidates selected based on their associa-
tion with the clinical characteristics of the patient, using linear
regression”*. Functional-enrichment analysis can also provide
insights about the disease or condition and is applicable to lists
of biomarkers identified either by univariate statistics or
machine-learning-based biomarker discovery. This type of
analysis allows the user to determine pathways that are likely to
be altered in disease. Often, proteins from the same pathway
have similar regulation; depending on the purpose of the study,
you could purposefully choose protein candidates that repre-
sent different pathways (diversity of effect) or study those that
are involved in the same pathway (mechanistic insight).
Information from the literature can be very helpful, since a
better understanding of the disease process can allow for the
selection of more meaningful biomarker candidates, such as
key regions of pathways (e.g., regulatory members and bot-
tlenecks). Finally, a powerful approach is the integration of
data from multi-omics measurements, which can select
biomarkers that have positive correlations between their levels
of transcript and proteins, for example, or enzymes and

metabolites'?.

Targeted peptide selection

After candidate prioritization, multiple peptides per protein are
selected based on their detectability and SRM suitability. Sui-
table peptides for SRM assays typically need to be 6-25 amino
acids in length, fully tryptic and without any missed cleavage
sites (lysine and arginine before proline, KP/RP, are not con-
sidered missed cleavage)'**. Peptides with different chemical
properties (molecular weight, amino acid composition, length
and hydrophobicity) should be included because peptides with
similar characteristics will coelute. The duty cycle of the
instrument limits the number of peptides that can be mon-
itored simultaneously. Therefore, selecting targets across the
length of the chromatographic separation, for example, with a
retention time prediction tool'*”, allows maximization of the
number of targeted peptides. Coelution can also cause signal
interference between multiple peptides. Rost et al. developed a
tool named SRMCollider that predicts interference between
peptides and can be used to exclude problematic transitions'*°.
Some amino acids have properties that are not ideal for
developing assays. Methionine, asparagine and glutamine
residues are prone to spontaneous modification into oxidized
methionine, aspartate and glutamate, respectively'”*. Sequen-
ces containing these amino acids should be avoided. In addi-
tion, some sequences are hard to chemically synthesize'’’;
analysis requires that you have a corresponding heavy-isotope-
labeled standard, so one should choose a sequence that is easy
to synthesize.
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In deciding which standards to make, we recommend
analysis of the alkylated version of cysteine-containing peptides
(e.g., carbamidomethylation), because free cysteine residues
can oxidize or dimerize into disulfide bonds. For the standard
peptides, carbamidomethylated cysteine can be directly incor-
porated during synthesis.

All the candidate peptides need to be searched against the
human proteome to ensure their uniqueness. In general, at
least three unique peptides per protein should be selected at
this stage as some peptides are excluded during assay devel-
opment because of interfering signals or poor detectability.

LC-SRM assay development

Once the biomarker peptides have been chosen, LC-SRM
assays are developed in three main steps: transition selection,
gradient optimization and best peptide selection.

Transition selection

The importance of the first step is to choose transitions that are
both specific and sensitive. Initially, five or six transitions per
precursor ions are selected for developing the targeted pro-
teomics assays based on their intensity in the tandem-mass
spectra'*®. Some peptides may have more than one precursor
ion, depending on the distribution of charge states. Next,
stable-isotope-labeled peptide standards are spiked into a
nonhuman peptide matrix (e.g., bacterial lysate, bovine serum
albumin or chicken plasma digests) in multiple concentrations
and analyzed by LC-SRM. The different concentrations of
spiked standard peptides help to differentiate the actual signal
versus the background. The best precursors and transitions are
determined based on the highest signal intensity and least
interference. A final number of two to four transitions per
peptide are usually included in the assay. In addition, the
collision energy can be optimized for individual transitions to
further improve the sensitivity. This feature is available in

139

Skyline, a popular software used for LC-SRM analysis .

Optimize the LC gradient

In experiments measuring hundreds of peptides, it is crucial to
have a well-balanced gradient. Peptides should not be aggre-
gating in a narrow window of retention time. Instead, they
should be well distributed across the entire gradient length.
This will make it possible to schedule more transitions without
a decrease in dwell time and sensitivity. Selection of peptides
with distinct characteristics, as mentioned above, helps to
distribute the peptides across the length of the gradient. Once
the gradient is optimized, the last assay development step is to
select peptides with the best performance.

Choose the best peptides

The best performing peptides are the ones that have good
endogenous detectability, little matrix interference, and good
correlation between peptides representing the same protein.
This can be accessed by spiking the stable-isotope-labeled
peptide standards in a set of test samples and monitoring the
performance of all the peptides in an LC-SRM study. In gen-
eral, at least one to two peptides per protein are included in the
final targeted proteomics assay.
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Assay evaluation

The sensitivity of the assay can be accessed by the limit of
quantification (LOQ) and limit of detection (LOD) for pep-
tides. There are three approaches to obtain the LODs
and LOQs: (1) reverse response curve of increasing con-
centrations of stable-isotope-labeled internal standard peptides
with endogenous peptides as reference, (2) forward calibration
curve of increasing concentrations of unlabeled peptides
in a matrix without the targeted proteins, and (3) a matrix-
matched calibration curve approach by diluting sample
matrix and a pooled reference matrix of diverged species at
various ratios'*’. Additional characterization experiments
can also be conducted, including the evaluation of repeat-
ability, selectivity, stability and reproducible detection of
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endogenous analytes " .

Sample preparation
Biomarker validation studies have many similarities, with
important considerations discussed above for discovery studies
and some additional considerations to accommodate the
increased throughput required to sufficiently expand the
patient cohort. Our approach to increasing sample processing
throughput has been to carry out the procedure in multiwell
plates””. Targeted proteomics measurements require less
sample input and fewer preparation steps, making it feasible to
carry out preparation in commercially available 96-well plates.
Working in plate format requires some modifications to
standard laboratory practices to maintain uniform application
of SOPs across larger sample batches. First, when making
reagent additions, the use of liquid handling robots is highly
recommended, to increase both the speed and accuracy.
Adding reagent to 96 or 192 wells using a single-channel
pipette will introduce substantial differences in treatment
conditions between sample 1 and sample 192. Furthermore,
having a large number of repetitive tasks in a workflow makes
it more prone to intermittent errors, such as missed samples,
which will result in outliers and lost patient measurements
from the study. Secondly, we have found that the largest
contributor to sample variance in our plate-based sample
preparation is nonuniform temperature during sample incu-
bations””. Due to the geometry of the 96-well plate, samples in
inner wells can experience a different temperature than those
in outer wells. For this reason, it is critical to evaluate tem-
perature distribution, for your incubator and chosen deep well
plate. Lastly, QC for large processing batches is required to
gain an accurate estimation of the variance across the entire
study, which may take place over the course of years. To do
this, we recommend the creation of a pooled sample containing
aliquots from existing patients in the study, whenever possible.
This sample is then included in multiple randomized positions
on each well plate and carried through the entire analysis
process'*. In addition to determining variance, these samples
serve as instrument QCs for maintaining optimal assay
performance.

Stable-isotope-labeled standard peptide spiking and storage
In LC-SRM analysis, samples are spiked with heavy-isotope-

labeled versions of each targeted peptide. To create consistent
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samples for SRM analysis, it is important to normalize the
protein concentration using a suitable assay such as the
bicinchoninic acid (BCA) assay. Adjusting all samples to the
same concentration serves the dual purpose of creating more-
stable light-to-heavy ratios for data analysis, and ensures the
consistent sample loading necessary for reproducible chro-
matography. For projects with large cohort of samples, it is
important to plan for enough stable-isotope-labeled standard
peptide mixtures to use during the study of the entire cohort.
Standard peptide mixture is often prepared in acidified solu-
tion, such as 0.1% formic acid in water with 15-30% acet-
onitrile. The mixture is prepared into aliquots in multiple vials,
and each vial is enough for all the samples in a 96-well plate.
The mixture aliquots are stored in a —80 °C freezer until their
further usage®’.

Immunoaffinity enrichment

Peptide immunoaffinity enrichment is a technique often cou-
pled with targeted MS for improving the detection and
quantification of low-abundance peptides. In this approach,
heavy-isotope-labeled peptides are spiked into samples prior to
enrichment, and they are captured along with their endogen-
ous counterparts by specific antibodies'**™"**. This procedure
decreases the overall sample complexity, boosting the signal of
the targeted peptides. A few checkpoints in this approach are
to ensure equal spiking of peptides and antibodies to the
samples, and to ensure the correct pH for optimal capture'*’.
Crosslinking antibodies to the beads can reduce the amount of
these molecules in the samples and reduce the chemical

background noise of the analysis'*’.

Data QC

The day-to-day QC and quality assurance (QA) in data
acquisition can be quite overwhelming for a targeted pro-
teomics study of thousands of samples. A graphical-user-
interface-based software tool, Q4SRM'*, can be used to
rapidly access the signal from all stable-isotope-labeled stan-
dard peptides once the data acquisition is done and flags those
that fail QC/QA metrics.

Data analysis

For LC-SRM data analysis, we usually use Skyline software'*.
Raw files were imported into Skyline along with peptide
transitions. Normally, it is done in batch mode; for example,
data files processed in the same 96-well plate can be imported
and processed in one single Skyline file. Manual inspection of
the data is often required to ensure the correct peak assignment
and peak boundaries. While going through the manual
inspection in Skyline, it is a good idea to inspect both graphs of
retention time and peak area of individual peptides over all the
samples to check any unusual behaviors. The total peak area
ratio of endogenous peptides over stable-isotope-labeled
internal standard peptides can be exported directly from Sky-
line for downstream analysis.

Establishing the robustness of the targeted MS assays
For large-scale validation phase using targeted MS assays, it is

critical to fully characterize assays for each surrogate peptide
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for its performance to ensure the robustness of these assays in

such applications. Recently, the Clinical Proteomic Tumor

Analysis Consortium (CPTAC) and other groups have pub-

lished assay characterization guidelines for ensuring robustness

of the assays®”'*’"'°?, These guidelines recommend the fol-
lowing items:

(I)  Response curve: assays should be checked against a
sample with similar complexity. For example, assays for
human plasma analysis can be checked in chicken plasma,
which has similar complexity but different peptides. This
allows determination of the LOD and LOQ, and if the
assay has a linear dose-response curve.

(2)  Selectivity: assays should be analyzed without internal
standards and with low and medium concentrations
(based on the linear curve) with multiple biological
replicates to determine their selectivity.

(3)  Stability: the stability of peptides can be tested by spiking
samples with internal standards and assessing the peak
area variability after storage in different storage conditions
(4, —20 and —80 °C), over time (weeks to months), and
through free-thaw cycles.

(4)  Repeatability and reproducibility: assays can be tested by
preparing and analyzing representative samples multiple
times independently in different days.

These recommendations should be taken into close con-
sideration before implementing assays for large-scale valida-
tion efforts. Once the assays are fully characterized, SOPs
should be established for implementation.

Examples of successful biomarker studies
All successful biomarker studies involve multidisciplinary
teams of clinicians, analytical chemists and statisticians. They
require rigorous experimental design, considering potential
technical issues and adequate numbers of samples.

To highlight the technical aspects described in this tutorial,
we discuss a few examples of successful MS-based biomarker
studies using different analytical pipelines (Table 4).

Type 1 diabetes

Zhang et al.'> performed a biomarker study comparing serum
from individuals with type 1 diabetes to controls. The dis-
covery experiment consisted of ten pooled sera from indivi-
duals with type 1 diabetes compared with controls of healthy
individuals; each pool consisted of five individuals. Samples
were depleted of 12 abundant proteins, digested with trypsin
and analyzed by LC-MS. The analysis resulted in the identifi-
cation of 24 differentially abundant proteins, which were ver-
ified by LC-SRM analysis of sera from 50 individuals with type
1 diabetes versus 100 healthy controls. The peptides were
further examined in a third blind cohort of 10 individuals with
type 1 diabetes versus 10 healthy controls, and against a cohort
of 50 individuals with type 1 diabetes paired against 50 indi-
viduals with type 2 diabetes to test the biomarker performance
to distinguish between the two diabetes forms. The study
identified platelet basic protein and C1 inhibitor, both
achieving 100% sensitivity and 100% specificity. Of these
proteins, C1 inhibitor was particularly good in discriminating

between the two types of diabetes'>”.
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Oral squamous cell carcinoma

In a study of oral squamous cell carcinoma, Carnielli et al.
explored the histopathological features to identify bio-
markers’*. In this type of cancer, morphological features, such
as the invasive tumor front and the inner tumor region, are
good indicators of the disease prognosis'”*. Therefore, they
performed proteomics of laser capture microdissected tissue
from 20 samples taken from each of six regions: small neo-
plastic island (abnormal tissue growth), large neoplastic island,
and stroma from both invasive tumor front and inner tumor.
Biomarker candidates were verified by immunohistochemistry
(IHC) and were prioritized based on statistical significance,
correlation protein abundance in different morphological fea-
tures with clinical characteristics, positive staining in the
Human Protein Atlas, and limited studies on oral cancers’.
IHC was performed for neoplastic islands of 125 cases and
stroma of 96 cases. To find out whether the profiles of the
biomarker candidates could be seen in saliva, they also per-
formed LC-SRM analyses for 14 cases with no metastatic
cancer and 26 cases with metastatic cancer. They found that
the expression of CSTB, NDRGI1, LTA4H, PGK1, COL6Al
and ITGAV proteins alone or in combination is a good pre-
dictor of the disease outcomes and could lead to potential
diagnostic assays”".

Chronic kidney disease

In another example of a biomarker study, Good et al. devel-
oped a panel of 273 urinary peptides, named CKD273, to study
biomarkers of chronic kidney diseases. This panel was devel-
oped using a capillary electrophoresis coupled to MS (CE-MS)
platform by analyzing a group of 379 health subjects and 230
patients with various biopsy-proven kidney diseases”’.
CKD273 was developed using a support vector machine model
to discriminate between CDK and control groups. This panel
was used in a clinical trial to test the performance of the
hypertension medicine spironolactone in preventing diabetic
nephropathy’. The study followed up 1,775 participants, of
which 216 had a high risk of developing diabetic nephropathy,
and of these, 209 were included in the trial cohort and were
assigned spironolactone (n = 102) or placebo (n = 107).
CKD273 was able to predict kidney disease. However, spir-

onolactone failed to prevent progression of the disease'™.

Ovarian cancer

Perhaps one of the most successful examples of biomarker
development is the OVAI panel for ovarian cancer. OVAl
panel is composed of CA125, prealbumin, apolipoprotein Al,
B2-microglobulin and transferrin, with the last four of them
being discovered by surface-enhanced laser desorption ioni-
zation (SELDI)-time of flight (TOF) MS'*”"7?, In SELDI-TOF,
samples are deposited on top of an affinity matrix that binds to
limited numbers of proteins based on their physical-chemical
properties, reducing the complexity of the samples. Matrices of
different properties can be used to bind to different panels of
proteins'*°. Zhang et al. analyzed 57 samples from patients
with ovarian cancer paired against 59 healthy controls from
two different centers that were divided into two different sets
for discovery and cross-validation. Candidate biomarkers were
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validated against two independent sets with 137 ovarian can-
cer, 166 benign tumor and 63 healthy control samples. These
finding were further validated by immunoassays of another
independent set containing 41 ovarian cancer, 20 breast cancer,
20 colon cancer, 20 prostate cancer and 41 healthy control
samples’'. We should note that, despite the initial promising
reports for the discovery and validation of biomarkers, SELDI-
TOF was not robust enough for clinical use, and immunolo-
gical assays were used for biomarker qualification. This is due
to the complexity of the instrument, on which small changes in
settings can have major impacts on its performance. The time
required to perform the measurements is also an important
factor as the instrument calibration and detector can drift over
time. This is not an issue for ELISA, as whole plates can be read
in seconds to a few minutes.

The final assay was tested in the clinic and approved
by the Food and Drug Administration (FDA) for clinical
use'”’. However, OVAl has limited application since
it has suboptimal performance for screening patients for
ovarian cancer. OVAL is only used to predict the malignancy

. 158
of the disease ™°.

Concluding remarks

There is an urgent need for diagnostics that can be applied to a
variety of diseases and conditions. In certain scenarios,
including the current coronavirus disease 2019 pandemic,
precise tests are needed to diagnose and predict disease out-
come. However, biomarker development is a complex task with
several phases and multiple failure points. To date, many
published biomarker studies are not conclusive or not repro-
ducible because of the failure to consider important factors
during project planning and execution. A systematic review of
solid tumor biomarkers showed that the low number of sam-
ples and lack of proper validation of biomarkers are some of
the major challenges of the field'””. This highlights that better
planning, scientific rigor and QCs are necessary to develop
biomarkers that can diagnose or predict the outcome of disease
with high accuracy, sensitivity and specificity. Detailed SOPs
and consistency during experiments are key elements to ensure
reproducibility.

Advances in MS instrumentation will also have a major
impact in the field in the near future. Challenges for analyzing
an adequate number of samples are the low throughput and
high cost of data collection. Typically, a LC-MS/MS run takes
1-2 h to be acquired. However, sample multiplexing with
isobaric tags, faster chromatography and additional separation
techniques, such as ion mobility spectrometry, have potential
to drastically increase the speed and reduce the cost of analy-
sis'®""'% Therefore, they will have an important role in
enabling the analysis of adequate numbers of samples for
biomarker development. Technology improvements along with
standardized guidelines, such as the one provided by this
tutorial, will contribute to the identification of biomarkers that
are biologically meaningful and useful in the clinic.

Data availability
All the data discussed in this review are associated with the

supporting primary research papers.
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