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a scataC-seq atlas of chromatin 
accessibility in axolotl brain regions
Weimin Feng1,2,3,14, Shuai Liu2,3,4,14, Qiuting Deng1,3,14, Sulei Fu5,6,14, Yunzhi Yang2,3,4, 
Xi Dai1,2,3, Shuai Wang1,2,3, Yijin Wang2,3,7, Yang Liu2,3, Xiumei Lin1,2,3, Xiangyu Pan8,9, 
Shijie Hao1,2,3, Yue Yuan2,3, Ying Gu  3, Xiuqing Zhang3, Hanbo Li  3,10,11, Longqi Liu  2,3, 
Chuanyu Liu  3 ✉, Ji-Feng Fei  5,12,13 ✉ & Xiaoyu Wei2,3 ✉

axolotl (Ambystoma mexicanum) is an excellent model for investigating regeneration, the interaction 
between regenerative and developmental processes, comparative genomics, and evolution. The brain, 
which serves as the material basis of consciousness, learning, memory, and behavior, is the most 
complex and advanced organ in axolotl. The modulation of transcription factors is a crucial aspect in 
determining the function of diverse regions within the brain. There is, however, no comprehensive 
understanding of the gene regulatory network of axolotl brain regions. Here, we utilized single-
cell ATAC sequencing to generate the chromatin accessibility landscapes of 81,199 cells from the 
olfactory bulb, telencephalon, diencephalon and mesencephalon, hypothalamus and pituitary, and 
the rhombencephalon. Based on these data, we identified key transcription factors specific to distinct 
cell types and compared cell type functions across brain regions. Our results provide a foundation for 
comprehensive analysis of gene regulatory programs, which are valuable for future studies of axolotl 
brain development, regeneration, and evolution, as well as on the mechanisms underlying cell-type 
diversity in vertebrate brains.

Background & Summary
The axolotl (Ambystoma mexicanum) has remarkable regenerative abilities, including the ability to regener-
ate its limbs, heart, tail, and spinal cord1–5, making it as an ideal model for studying vertebrate regeneration, 
comparative genomics, and evolution. With the development of technology, great progress has been made in 
axolotl genome and transcriptome research. In brief, recent advances in single-cell and spatial transcriptomics 
assays have led to profiling the distribution of cell types of the axolotl telencephalon in situ during development 
and regeneration6. Furthermore, by using either species-shared differentially expressed genes or transcription 
factors (TFs), previous axolotl telencephalon studies have shown the conservation between the medial pallium 
neurons and amniote hippocampal neurons7. Interestingly, the axolotl genome has conserved coding regions 
with the human genome but is ten times its size, with the majority of the expansion in non-coding regions. 
With a 32-gigabase-pair genome8, non-coding regulatory DNA sequences in axolotls may be proposed to play 
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a distinctive role in environmental adaptation. However, a comprehensive understanding of cis-regulatory ele-
ments in the axolotl genome, especially in complex organs like the brain, has lagged.

Using techniques such as Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and 
chromatin immunoprecipitation followed by sequencing (ChIP-seq), candidate cis-regulatory elements (cCREs) 
have been mapped to identify and exploit epigenetic features9,10. Due to the extreme cellular heterogeneity of the 
brain, conventional assays that use bulk tissue samples have difficulty identifying cCREs in specific cell types. 
Single-cell ATAC sequencing (scATAC-seq) is a powerful technique that allows us to identify the regulatory 
regions of the genome that are active in individual cells11–14. It was developed to determine chromatin accessibil-
ity in various biological scenarios and the corresponding transcriptional programs. In recent years, scATAC-seq 
has gained significant attention in the field of neuroscience, because it allows for the investigation of the epi-
genetic landscape of cell-type-specific transcriptional regulatory sequences in brain regions15–17. For example, 
regulatory elements linked to Cux2 and Foxp2, which are highly expressed only in layers II–IV and layer VI of 
mice, respectively, are only accessible in cells of the corresponding neuron clusters, reflecting the heterogeneity 
of chromatin accessibility in different layers of the prefrontal cortex15.

In this study, we profiled a comprehensive chromatin accessibility landscape across the axolotl brain with 
scATAC-seq16,18,19, including the olfactory bulb (OB), telencephalon (Tel), diencephalon and mesencephalon 
(DM), hypothalamus and pituitary (HP), and rhombencephalon (Rho). We were able to obtain single-cell chro-
matin accessibility for 81,199 cells after applying quality control. By analysing the chromatin accessibility profiles 
of different cell types, we have identified unique sets of regulatory elements that are specific to each cell type, 
including microglia, GABAergic, glutamatergic, ependymoglia cell (EGC), and so on. Overall, our findings pro-
vide insights into the regulatory mechanisms that underlie the diverse functions of different cell types in axolotl 
brain regions, and serve as a foundation for future studies aimed at understanding the transcriptional programs 
that drive the distinguishing features of axolotl brain regions.

Methods
Tissue collection. The Biomedical Research Ethics Committee of Guangdong Provincial People’s Hospital 
(license number: KY-Q-2022-395-01) approved the use of animals in this study. The d/d strain of axolotl was 
used for all experiments without sex bias in the research. Animals were bred and maintained in freshly dechlo-
rinated tap water at 18–20 °C with a 12 h/12 h light-dark cycle in the Laboratory of Neural Development and 
Regeneration, Guangdong Provincial People’s Hospital. Totally 8 adult axolotls were sacrificed, and OB, Tel, DM, 
HP, and Rho were harvested in this study. In brief, axolotls were deeply anaesthetized using 0.03% ethyl-p-ami-
nobenzoate. Each brain region from 8 animals was dissected from the axolotl head. Then, each brain region was 
pooled into a separate tube for single-nucleus isolation, respectively. The samples were snap-frozen in liquid 
nitrogen and then transferred to a −80 °C freezer for storage before dissociation.

Nuclear isolation from frozen brain tissue. The axolotl brain regions focused on this study were the 
OB, Tel, DM, HP, and Rho (Supplementary Table 1 and Fig. 1a). The single-nucleus preparations were obtained 
using the Omni-ATAC protocol with certain modifications, as previously described20. In brief, nuclei from the 
frozen brain regions were isolated21,22. Tissue was cut into pieces and ground in 2 mL of chilled homogenization 
buffer [HB; 120 mM Tris pH 7.8 (Sigma), 150 mM KCl (Sigma), 30 mM MgCl2 (Invitrogen), 250 mM sucrose 
(Sigma), 0.1% NP-40 (Roche), 1 × Protease inhibitor cocktail (Roche), 1 mM DTT (Thermo Fisher Scientific),  
1% BSA/0.8 × PBS], and incubated on ice for 5 min. The tissue was homogenized by stroking (grinding) to release 
the nuclei. Then, nuclei were filtered through a 30 μM cell strainer (Sysmex Partec) into a 15 mL centrifuge tube. 
After centrifugation at 500 g and 4 °C for 5 min, the nuclei were collected and washed twice with 1 mL of chilled 
blocking buffer [BB, 1% BSA/0.8 × PBS]. After another round of centrifugation, the nuclei were resuspended in 
50 μl of 1% BSA/0.8 × PBS and counted by staining with DAPI.

scATAC-Seq library preparation and sequencing. For the preparation of single-cell ATAC-seq librar-
ies, we employed the DNBelab C Series Single-Cell ATAC Library Prep Set (MGI, #1000021878)19. To investigate 
the transcriptional regulation of different brain regions in axolotl with sufficient and high-quality data, a total of 
39 libraries were generated. Specifically, there were 8 libraries for OB, DM, HP, and Rho, and 7 libraries for Tel. 
After quality control, 25 high-quality libraries were retained, including 6 from the OB, 4 from the Tel, 3 from the 
DM, 6 from the HP, and 6 from the Rho. The barcoded scATAC-seq libraries were generated from the transposed 
single-cell suspensions. In summary, the protocol involved droplet encapsulation, pre-amplification, emulsion 
breakage, collection of capture beads, DNA amplification, and purification. Following this, an indexed sequencing 
library was prepared as per the user guide. Finally, we used the Qubit ssDNA Assay Kit (Thermo Fisher Scientific) 
to measure the concentrations of the sequencing libraries. The library was sequenced on the MGI DNBSEQ-T1 
platform using the following read lengths: 50 bp for read 1, 70 bp for read 2, and 10 bp for the sample index 
sequencing scheme of the China National GeneBank23 (CNGB).

scATAC-seq raw data processing. The processing of scATAC-seq data involved the following steps. First, 
the raw reads were separated into insertions and barcodes and then filtered using PISA (version 1.1) with a minimum 
sequencing quality of 20; the software is available at https://github.com/shiquan/PISA. The sequencing reports for 
the scATAC-seq datasets are summarized in Table 1. Next, the filtered reads were aligned to the axolotl genome8 
using BWA (version 0.7.17-r1188)24, and the resulting BAM files were processed using bap2 (version 0.6.2)25  
to identify barcodes from the same cell (Fig. 1b).

Quality control (QC) of the scATAC-seq downstream analysis. ArchR (version 1.0.2)26 was used to 
filter low quality cells with the following criteria: unique fragments (nFrags) ≥ 1000 and transcription start site 

https://doi.org/10.1038/s41597-023-02533-0
https://github.com/shiquan/PISA


3Scientific Data |          (2023) 10:627  | https://doi.org/10.1038/s41597-023-02533-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

(TSS) score ≥ 4 of each library. Then, we calculated the doublet score by the ‘addDoubletScores’ function with the 
parameters of filterRatio = 2 and potential doublets were removed based on the ArchR26.

scATAC-seq gene activity scores. We used ArchR (version 1.0.2)26 to calculate gene activity scores. 
Briefly, considering the 32-gigabase-pair axolotl genome8, to determine whether each cell was accessible within 
each window, we created 100000 bp windows across the genome. ArchR (version 1.0.2)26 uses a weighted average 
of the accessibility of the peaks, where the weight of each peak is determined by its proximity to the transcription 
start site. We calculated gene activity scores using the ‘addGeneScoreMatrix’ function. Furthermore, due to the 
sparsity of scATAC-seq data, we employed the MAGIC (Markov Affinity-based Graph Imputation of Cells) impu-
tation technique to impute gene activity scores from bolstering signal strength and reducing noise by sharing 
information with similar nearby cells.

Latent semantic indexing (LSi) clustering of scATAC-seq. Analyses of the scATAC-seq data were con-
ducted using ArchR26. LSI dimensionality reduction was performed with ‘addIterativeLSI’ function in ArchR26. 
By using Seurat’s ‘FindClusters’ function, we clustered the data with parameters: reducedDims = ‘IterativeLSI’, 
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Fig. 1 Schematic diagram illustrating the experimental and data analysis processes of scATAC-seq in the axolotl 
brain. (a) Cartoon illustrates the main experimental and analytical processes. Five different regions from the 
brain of adult axolotl were collected for single-cell Assay for Transposase Accessible Chromatin (scATAC-seq). 
Region 1, olfactory bulb (OB); region 2, telencephalon (Tel); region 3, diencephalon and mesencephalon (DM); 
region 4, hypothalamus and pituitary (HP); and region 5, rhombencephalon (Rho). Colors correspond to the 
five regions. (b) Analysis of the scATAC-seq workflow.
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method = ‘Seurat’, and resolution = 0.8. Markers of each cluster were identified by the ‘getMarkerFeatures’ func-
tion26 (FDR ≤ 0.05 & Log2FC ≥ 0.25), and cell type annotation was procured using well-known cell-type-specific 
markers obtained from the MAGIC gene activity score.

integration of library. As our data were produced from the same batch, no significant batch effects were 
observed. The integration of our libraries was performed by simply merging them using ArchR26. To accomplish 
this, we first created a project using ‘ArchRProject’ function. Next, we applied dimensionality reduction to our 
data using the ‘addIterativeLSI’ function with ‘TileMatrix’ matrix. Subsequently, we incorporated UMAP embed-
ding of reduced dimensions object using ‘addUMAP’ function, allowing us to visualize different brain regions by 
‘plotEmbedding’ function. Finally, we calculated the Pearson correlation coefficients between different libraries 
by ‘cor’ function with the gene activity matrix.

peak calling of scATAC-seq. The model-based analysis of ChIP-seq (MACS2)27 (https://github.com/hbc-
training/Intro-to-ChIPseq) callpeak command was used to perform peak calling on the Tn5-corrected insertions 
(representing each end of the Tn5-corrected fragments) for each cell type. In brief, the ‘addGroupCoverages’ 
function was used to create pseudo-bulk replicates for each cell type and the ‘addReproduciblePeakSet’ function 
(parameters: groupBy = ’Clusters’, pathToMA-CS = pathToMacs2, ‘- nomodel’, genomeSize = 2,782,028,915) was 
used to call peaks. Next, the ‘getMarkerFeatures’ function was utilized to define the marker peaks for each cell 
type, and the ‘getMarkers’ function was applied to get the marker peaks.

Motif enrichment analysis. We annotated motif using the ‘addMotifAnnotations’ function of ArchR 
with the default parameters: motifSet = ‘cisbp’, name = ‘Motif ’, species = ‘homo sapiens’, version = 2. Then, 
with the marker peaks, motif enrichment was performed by the ‘peakAnnoEnrichment’ function, and the top  
18 cell-type-specific motifs were shown in the heatmap.

Assigning gene to the scATAC-seq peaks. To assign genes to scATAC-seq peaks, it required axolotl 
genome annotation object and gene annotation object. Firstly, we forged a BSgenome package for the axolotl 
genome annotation following the official tutorial (https://github.com/Bioconductor/BSgenome). Briefly, we 
forged axolotl BSgenome package by the ‘forgeBSgenomeDataPkg’ function with the seed file and the published 
axolotl genome. Then, we created axolotl genome annotation by ‘createGenomeAnnotation’ function (parameters: 
genome = BSgenome.Axolotl). Secondly, to create gene annotation object, we utilized ‘createGeneAnnotation’ 
function and 3 GRanges object (GRanges object containing gene coordinates; GRanges object containing gene 
exon coordinates; GRanges object containing standed transcription start site coordinates for computing TSS 
enrichment scores downstream) as input. Finally, scATAC-seq peaks were assigned genes by creating an ArchR 

Sample ID Total reads Reads Pass QC Estimated number of cells Mean fragments per cell TSS Enrichment Accessible peaks

OB-1 375,820,925 339,441,460 3,651 5,854 20.86 107,713

OB-2 330,716,617 297,016,594 3,594 5,331 20.52 112,426

OB-3 160,832,997 145,264,363 2,922 4,013 19.17 113,486

OB-4 236,547,927 213,626,433 3,243 4,073 17.38 113,332

OB-5 167,666,804 152,023,492 2,793 4,332 18.52 108,282

OB-6 428,341,216 389,533,502 3,441 6,160 20.71 107,890

Tel-1 282,998,946 256,340,446 3,975 5,298 20.98 112,898

Tel-2 170,791,145 154,361,037 3,040 4,385 21.03 114,833

Tel-3 227,647,481 206,999,855 3,376 5,319 20.82 116,451

Tel-4 322,666,500 287,979,852 2,792 6,257 22.21 115,214

DM-1 413,928,279 370,755,560 4,158 5,026 14.44 112,805

DM-2 457,122,784 409,216,317 3,862 5,342 13.62 112,953

DM-3 423,715,798 379,098,525 3,530 6,385 13.85 112,170

HP-1 359,720,792 322,561,635 3,271 6,693 21.59 114,015

HP-2 660,417,261 591,007,407 3,112 8,748 23.20 116,237

HP-3 311,679,700 280,355,891 2,983 6,476 20.93 111,791

HP-4 266,567,225 239,190,771 2,634 5,705 21.74 113,598

HP-5 614,646,512 551,399,386 3,140 8,680 22.72 116,423

HP-6 355,725,790 315,208,623 3,197 5,812 20.71 114,941

Rho-1 604,099,350 539,158,670 2,955 7,493 21.32 114,483

Rho-2 720,833,075 649,038,101 3,338 8,572 20.53 114,006

Rho-3 493,338,543 443,708,686 3,025 8,727 20.87 115,696

Rho-4 427,845,614 386,259,021 2,994 8,268 20.22 115,198

Rho-5 338,051,493 303,840,682 3,190 6,164 19.44 116,404

Rho-6 721,120,639 648,648,015 2,983 8,896 21.75 116,036

Total/Average 9,872,843,413 8,872,034,324 81,199 6,320 19.97 113,571

Table 1. scATAC-seq metadata and mapping statistics.
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project from the provided ArrowFiles with ‘ArchRProject’ function (parameters: geneAnnotation = axolotl gene 
annotation, genomeAnnotation = axolotl genome annotation). With the annotated ArchR project, scATAC-seq 
peaks were assigned genes by using the peak-to-gene assignment algorithm of ArchR based on their proximity to 
the transcription start site (TSS) of the nearest gene.

Gene ontology (GO) enrichment analysis. Gene set enrichment analysis was processed with ‘enrichGO’ 
function (parameters: OrgDb = org.Hs.eg.db, ont = ‘BP’) of the clusterProfiler package (version 4.4.4).  
The marker peaks of cell type used as input (FDR ≤ 0.05 & Log2FC ≥ 0.25) were annotated based on proximity to 
the TSS of the nearest genes.

Data records
We presented chromatin accessibility landscapes for different regions of the axolotl brain, providing valuable 
insights into the epigenetic regulation mechanisms of brain function and cell heterogeneity. Our data set con-
sists of chromatin accessibility landscapes for 81,199 high-quality single-cells from the OB, Tel, DM, HP, and 
Rho regions of the axolotl brain, including 3–6 libraries of each region. Figure 1 provides an overview of the 
laboratory bioinformatical and analysis workflow. Table 1 displays the quality of each library. The raw fastq and 
fragments data have been deposited in the CNGB Nucleotide Sequence Archive (CNP000411828). The raw fastq 
data have also been submitted to the NCBI Sequence Read Archive (PRJNA99067629). Additionally, the peak 
matrices and metadata has been uploaded to Figshare (https://doi.org/10.6084/m9.figshare.22548400.v7)30. The 
Supplementary Table 1 (available at Figshare)30 exhibited libraries correlation between the accession IDs in the 
CNGB or NCBI and the sample IDs.

technical Validation
Quality control of scATAC-seq. In this study, nuclei were extracted from the OB, Tel, DM, HP, and 
Rho of adult axolotl and were prepared for scATAC-seq (see Methods) (Supplementary Table 1 and Fig. 1a)30.  
The total number of raw reads was 9,872,843,413, with 8,872,034,324 reads passing QC (Table 1). The raw data 
were processed via the standard pipeline (Fig. 1b).

After quality control, we obtained a satisfying set of single-cell chromatin accessibility profiles for axolotl 
brain regions (Fig. 2a–c). We eliminated doublets by applying a filterRatio parameter of 2 in ArchR26 (Fig. 2d), 
and subsequently examined the chromatin landscape of the 81,199 single cells to investigate cell-type-specific 
regulatory elements. The average unique fragments of cells remaining after quality filtering was 6,281; the aver-
age of TSS enrichment was 19.97, the average accessible peaks of each library were 113,571 (Table 1). To iden-
tify reproduced peaks between technical replicates, we computed Pearson correlation coefficients to assess the 
similarity between technical replicates across regions, based on gene activity (Fig. 2e). UMAP showed the het-
erogeneity of gene activity in different brain regions, which is probably indicative of differential functioning 
(Fig. 2f,g). For example, the Tel serves as the hub for sensory processing, oversees voluntary movements and 
activities, and is linked to sophisticated cognitive skills such as emotions, learning, and memory31, whereas the 
primary role of the HP is to manage neuroendocrine processes, with the paraventricular region housing cell 
bodies that project to the hypophysis and secrete hormones32.

identification of accessible cell-type chromatin and comparison of regions. We gener-
ated scATAC-seq data across the axolotl OB, Tel, DM, HP, and Rho brain regions. Projecting cells into a 
low-dimensional embedding (optimized iterative LSI) and estimating gene expression by aggregating the acces-
sibility across the regulatory region of the gene26 (gene activity score), we identified 20 cell types (Fig. 3a). In 
brief, we identified three homeostatic EGCs, named asclEGC (Ascl1+, Gfap+, Krt18+, Sfrp1+), chdEGC33 (Chd7+, 
Olig1+, Sox10+, S100a10+) and wntEGC (Nrep+, Wnt3a+). We also detected GABAergic (Gad1+, Gad2+), glu-
tamatergic (Slc17a+) neurons, with GABAergic neurons subtypes of obIN (Foxp2+), scgnIN (Scgn+), nosIN34,35 
(Nos1+), sstIN (Sst+), and glutamatergic subtypes, including nptxEX-1 (Nptx1+,Tbr1+) and nptxEX-2 (Nptx2+)6,7. 
We also observed HP neuron36,37 (HPN, Nefm+, Nova1+) in our data. The brain-resident non-neuronal cell-types 
microglia (MCG, C1qb+, Cd74+), intermediate progenitor cell (IPC, Olig1+), oligodendrocytes (Oligo, Eomes+, 
Olig2+), vascular leptomeningeal cell (VLMC, Lum+, Dcn+), neuronal ciliary38,39 (NC, Ssx2ip+, Ccdc66+) and 
two secreting cell types of GEMs (possibly neurosecretory oxytocin or vasopressin neuron terminals40, Nkx2-
1+, Nr5a1+) and corticotropic cells (Cor, Adh1+, Rab6a+, Tll2+) were distinguished by their markers (Fig. 3b, 
Supplementary Fig. 1, Supplementary Tables 2, 3, Supplementary Tables available at Figshare)30. To better under-
stand the functions of these cell types, we performed GO analysis on the differential peaks specific to each cell 
type. The results of the GO analysis revealed a significant correlation between the identified cell types and their 
corresponding GO pathways. For example, asclEGC was enriched in the function of differentiation or prolifer-
ation pathways, while MGC was enriched in immune-related functions, such as the GO terms of cell activation 
involved in immune response and so on (Fig. 3d).

Chromatin accessibility analysis was used to identify the differential accessibility regions (DARs) of those 
20 cell types (Fig. 3c). For example, peaks were identified specifically within the TSS region of the Gfap marker 
genes that were accessible in both asclEGC and IPC. In addition, signals around Chd7 were specifically enriched 
in the chdEGC region but not in other cell types. These phenomena strongly suggest that our data are of ade-
quate quality. To identify responding cells across regions, we investigated the varied cell-type compositions of 
25 libraries by percent constituency (Fig. 3e). Interestingly, asclEGC increased gradually from the anterior to 
the posterior axis, and wntEGC and chdEGC were specifically enriched in Rho. Next, the diversity of cellular 
compositions across different regions of the axolotl brain was analysed in detail and summarized in Fig. 3f. We 
found asclEGC, HPN, and GEMs have more distinct gene regulation in regions with a large number of different 
up-regulated gene activities. As Gfap is a stem-cell associated protein that, like stem cells, exhibits a similar 
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response to injury31,32,41,42, we analysed asclEGC (with Gfap chromatin accessible) and found Egr1 and Meis1 are 
accessible in OB; Mef2c, Slc1a6, Wnt5b, Lhx2 in Tel; Col and the Nd family in DM; Chd6, Nkx2-3 in HP; Pax7 
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and the Hox family in Rho, respectively (Fig. 3g). Therefore, this analysis strongly suggests that the scATAC-seq 
profiles of axolotl brain regions can effectively and accurately identify the accessible chromatin regions within 
the axolotl genome and provides a direct theoretical basis reference that can be exploited by future studies.
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inferring cell type-specific transcription factors. To gain a better understanding of the regulatory 
mechanisms governing the chromatin landscape, we implemented peak calling to generate a set of 121,697 
cell-type differential peaks based on pseudobulk chromatin accessibility. Then, we used ArchR26 to identify tran-
scription factors that exhibit strong correlation with cell-type-specific open chromatin and compared these results 
with previous studies (Fig. 4). Conformably, the master regulators have been shown to be closely related to spe-
cific functions of cell types. For example, MCG is enriched for motifs of the BCL11 family (BCL11A43, BCL11B44). 
This was supported by the previous study of BCL11A deletion causes apoptosis in immature B cells and common 
lymphoid progenitors, and also results in delayed or deficient lymphoid development of hematopoietic stem cells 
to B, T, and NK cells in adult mice43. Besides, BCL11B prevents autoimmune disorders by controlling multiple 
regulatory T cell gene expression programs44. EGCs are enriched for motifs that distinguish progenitor cells from 
other cell types, in the agreement of the characterization of proliferation in EGCs31,32,41,42. In brief, we observed 
strong enrichment of PLAG1 in asclEGC, which is consistent with regulation of progenitor cell proliferation and 
neurogenesis during telencephalic development of mice45. We also found NEUROD1 is enriched in wntEGC in 
our dataset. NEUROD1 promotes transit-amplifying progenitors that contribute to the generation of the majority 
of the excitatory neurons of the neuroepithelium of the dorsal telencephalon in early development46–48. Moreover, 
chdEGC is enriched with CTCF, which regulates functional neural development and neuronal diversity49. Other 
well-known cell-type-specific motifs such as the Oligo (TBR150, EOMES51), nptxEX-1 (NEUROG2, NEUROD2, 
NEUROD4, NEUROD652, BHLHE22), nptxEX-2 (BACH1, BACH2, the JUN53, NFIC, and FOSL families), nosIN 
(DLX family), and GEMs (RFX family) were enriched in our data. Taken together, cell-type-specific TFs that have 
been reported in previous studies are also present in our data, exhibiting similar patterns of enrichment, which 
indicates the accuracy of our cell type identification and the high-quality of our data. Therefore, we provide a 
resource-rich and high-quality data of chromatin landscape of the axolotl brain.

Usage Notes
The scATAC-seq data processing pipeline, including read mapping and peak calling, were run on the Linux 
operating system. All R source code used for downstream data analyses and visualization are provided online 
(https://doi.org/10.6084/m9.figshare.22548400.v7)30.

Code availability
The R code used to identify cell subclusters and profile cell type-specific chromatin accessible regions of the 
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Fig. 4 Identification of cell-type-specific chromatin transcription factors (TFs). Heat map clusters indicate cell-
type-specific TFs.
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