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Computer-assisted systems are becoming broadly used in medicine. In endoscopy, most research 
focuses on the automatic detection of polyps or other pathologies, but localization and navigation of 
the endoscope are completely performed manually by physicians. To broaden this research and bring 
spatial Artificial Intelligence to endoscopies, data from complete procedures is needed. This paper 
introduces the Endomapper dataset, the first collection of complete endoscopy sequences acquired 
during regular medical practice, making secondary use of medical data. Its main purpose is to facilitate 
the development and evaluation of Visual Simultaneous Localization and Mapping (VSLAM) methods 
in real endoscopy data. The dataset contains more than 24 hours of video. It is the first endoscopic 
dataset that includes endoscope calibration as well as the original calibration videos. Meta-data and 
annotations associated with the dataset vary from the anatomical landmarks, procedure labeling, 
segmentations, reconstructions, simulated sequences with ground truth and same patient procedures. 
The software used in this paper is publicly available.

Background & Summary
Endoscopes traversing body cavities are routine. However, their potential for navigation assistance or device 
autonomy remains mostly locked. In order to unlock it, computer-assisted endoscopes would require spatial AI 
(Artificial Intelligence) capabilities, i.e., being able to estimate a map of the regions that are traversed, along with 
the endoscope localization within such map. This capability is known in the robotics literature with the acronym 
VSLAM (Simultaneous Localization and Mapping from Visual sensors). Spatial AI and VSLAM will augment 
endoscopies with novel features, including augmented reality insertions, detection of blind zones, polyp meas-
urements or guidance to polyps found in previous explorations. In the long term, VSLAM will also support 
utterly new robotized autonomous procedures. For our purposes in this paper, the goal of VSLAM is to build a 
per-patient map, in real-time, during endoscope insertion in a first procedure. This map will be exploited and 
perfected during the withdrawal of such first procedure, and in any other future one.

There are mature methods for out of the body VSLAM1,2. However, bringing them to endoscopy implies over-
coming new barriers. The light source is co-located with the endoscopes, and hence is moving and is close to the 
body surfaces. The body surfaces have poor texture and abundant reflections due to fluids. The scene geometry 
includes a prevalent deformation. The video combines slow observation of areas of interest, with fast motions 
and long occlusions of the endoscope lenses.

Our contribution in this paper is the Endomapper dataset3, which makes available, for the first time, 96 high 
quality calibrated recordings of complete routine endoscopies (Fig. 1), making secondary use of medical data, 
i. e., just recording standard procedures that were going to be performed in any case, without any modification. 
Compared to ad-hoc recordings, secondary-use ones show realistic features and hence contain the actual chal-
lenges VSLAM will face in routine practice.

No other public dataset offers a comparable volume of fully calibrated endoscopies in HD (see Table 1). 
Heilderberg4 is a very interesting dataset that contains images of the colon from laparoscopic procedures. 
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However, this view of the colon is not compatible with our goal of building 3D reconstructions of the interior of 
the gastrointestinal tract. CVCClinicDB, GIANA and Kvasir focus on polyps detection since they are often used 
to benchmark CAD (Computer Aided Diagnosis) systems. Other datasets focus in segmentation of elements of 
interest, such as tools in instrument-kvasir or polyps in Kvasir-seg. However, they only provide sparse image sets 
or short videos (less than 30 seconds). More similar to ours, Colon10k provides images from short sequences for 
place recognition and reconstructions. In contrast, we offer hours of real calibrated video, corresponding to the 

Fig. 1  Overview of the Endomapper Dataset.

Dataset Purpose Type of Data Size of Dataset Availability

CVC-ClinicDB32 Polyps segmentation Images 612 images Open Academic

Endoscopic artifact detection33 Artifact Detection Images 5,138 images Open Academic

GIANA 202134 Polyp detection, segmentation and 
classification Short Videos and Images 38 videos and 3000 images By request

Kvasir35
Anatomical landmarks, Pathological 
findings, Therapeutic interventions and 
Quality of mucosal views

Images 4000 images Open Academic

Kvasir-Seg36 Polpy segmentation Images 8000 images Open Academic

Nerthus37 Bowel preparation Short Videos 21 videos (5525 frames) Open Academic

HyperKvasir26
Anatomical landmarks, Pathological 
findings, Therapeutic interventions and 
Quality of mucosal views

Images & Short Videos 110079 images (10662 
labeled) & 374 short videos Open Academic

Colon10k21 Place recognition Images 10126 images Open Academic

Instrument-kvasir38 Tool segmentation Images 590 images Open Academic

Endomapper (ours) VSLAM Complete real endoscopies 96 videos (~24 hours) By Request

Table 1.  Overview of existing datasets of endoscopies in the gastrointestinal tract.
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complete procedures. Apart from these real imaging datasets, it is worth mentioning works that create simulated 
data of the colon, either using 3D models, like Rau et al.5, Bobrow et al.6 and Incetan et al.7, or a realistic phan-
tom, like Ozyoruk et al.8. Similar to these works, we also include a few simulated sequences to harness the extra 
information of these scenes as a means to evaluate the methods developed. In particular, due to the monocular 
nature of the dataset, no ground truth geometry is available for quantitative evaluation. To address this issue, we 
include photorealistic sequences from a simulated colon, with ground truth geometry for the deforming scene 
and endoscopy trajectory.

The Endomapper dataset includes colonoscopies, gastroscopies, and calibration videos along with geometric 
and photometric calibration parameters. More than half of the sequences are screening colonoscopies, for which 
the standard procedure implies a thorough and slow exploration, being close to typical operation modes for 
VSLAM and that can serve as a bridge to more challenging sequences. To research map reuse and recognition in 
a second exploration, colonoscopies corresponding to the same patient but separated in time by several weeks 
are also included in the data.

Regarding metadata, some endoscopies include a description of the procedure made by the endoscopist, in 
the form of text footage. The text describes the anatomical regions traversed, re-explorations of the same region, 
the performed interventions or the tools used. This footage indexes the videos to identify interesting sections 
for VSLAM.

Building on our dataset, the community can provide derived or metadata results to support subsequent 
research. Some examples of these derived data are included in the dataset: 1) anatomical regions segmentation, 
at frame level, performed by a doctor after visualizing the video; 2) tools segmentation in selected video sec-
tions, which can boost the tool segmentation performance in the specific endoscopy domain; 3) Structure from 
Motion (SfM) reconstructions using COLMAP9, which provides up-to-scale 6 DoF endoscope trajectory and 3D 
models for the video segments corresponding to smooth explorations of non-deforming scenes. The SfM output 
has proven valid to supervise learning tasks such as image matching10 or image retrieval11.

Endomapper offers a sweet point of challenge, including easy video segments where state-of-the-art algo-
rithms perform reasonably. However, all these methods also fail at some point, signaling what are the research 
challenges to face. We believe that the dataset will spur research that identifies challenges and foster progress of 
VSLAM in gastrointestinal environments.

Finally, we have made publicly available 7 software repositories corresponding to photometric and geometric 
calibration from calibration videos, simulated colon sequences generation and technical validation. Section 
Code Availability contains the details of these repositories containing the software, including installation and 
usage instructions.

Methods
The methodology used to create the dataset is explained in this section. First, we present a description of the 
recording procedure for the sequences in the dataset, including the description of the capture system and the 
type of recordings. Then, we describe the calibration procedure and the methodology used in both geomet-
ric and photometric calibration. Finally, we also briefly summarize the methods used to create each type of 
meta-data.

Recording endoscopies procedure.  The acquisition of the sequences in the dataset was performed in the 
Hospital Clinico Universitario Lozano Blesa, in Zaragoza (Spain), using an Olympus EVIS EXERA III CV-190 
video processor, EVIS EXERA III CLV-190 light source, and EVIS EXERA III CF-H190 colonoscope or EVIS 
EXERA III GIF-H190 gastroscope. The acquisition system is composed of a computer and a data acquisition card 
connected to the endoscopy tower via a Digital Visual Interface (DVI). Two different acquisition cards have been 
used: Epiphan Video DVI2USB 3.0 and Magewell Pro Capture DVI. The videos were recorded at 1440 × 1080 at 
40fps and 24RGBbits (Epiphan) or 1440 × 1080 at 50fps and 24RGBbits (Magewell). The output image given by 
the endoscopy tower is cropped to remove personal information. The videos were manually edited to remove any 
frame recorded when the camera was out of the body of the patient. During the span of the project, the recordings 
were done one day of the week and synchronized with the medical staff involved. The patients were not selected 
based on their symptoms or pathology, we followed without interference the hospital’s schedule which was 
mostly focused on the colorectal cancer screening program. The Endomapper technical staff was present in all the 
recording sessions to secure the quality of the acquisitions, but without interfering with the medical procedure.

Use of human participants.  The recordings were made under the ethical approval of the CEICA Ethics 
Committee (Comité de Ética de la Investigación de la Comunidad Autónoma de Aragón (CEICA), meetings 
04/03/2020 acta 05/2020, 23/09/2020 acta 18/2020, 20/04/2022 acta 08/2022 and 16/11/2022 acta 20/2022). 
Informed consent was obtained from all subjects. According to this approval, the collection can be publicly 
accessed under certain conditions (see Section Usage Notes).

Calibration.  The dataset uses 10 different colonoscopes and 8 different gastroscopes. The calibration 
sequences for all the colonoscopes and gastroscopes where acquired in a single session using a Lambertian pat-
tern (obtained from calib.io). Figure 2 shows two frames of the calibration videos imaging the calibration pattern. 
The Lambertian pattern corresponds to an array of circles from the Vicalib12 library. The physical size of the 
pattern used is 5,61 × 9,82 cm.

Geometric calibration.  The calibration videos are processed by Vicalib12 to obtain the endoscope intrinsic 
parameters according to the Kannala & Brandt model13,14. The calibration defines eight intrinsic parameters, 
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four projective parameters (in pixels) fx, fy, Cx,Cy and four distortion coefficients k1, k2, k3, k4. We process 1 out of 
20 frames and outlier matches are removed. Next, the projection model yielding the projection in pixels u = (u, 
v), for a 3D point with coordinates X = (x, y, z) with respect to the camera frame is described as:

= + =u f x C x r x
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radius and θ = arctan2(r, z) is the angle between the incoming ray and the optical axis.

Photometric calibration.  The light source and camera of the endoscope are calibrated to obtain a model able to 
reproduce the photometry of the recordings. In the endoscope, the distances between the light sources and the 
camera are small and mostly symmetrical. Following Modrzejewski et al.15, we assume that these sources can be 
modelled as a single virtual light and adopt the Spot Light Source model (SLS), which was shown to offer a good 
compromise between complexity and accuracy. In addition, the light spread function and the camera vignetting 
are jointly estimated assuming radial symmetry. With this model, the light radiance going from the endoscope 
to a 3D surface point X is

σ σ μ= R S LX P D X P X P X P( , ) ( , , , ) ( , ) ( , ) , (3)SLS 0

where P is the light center, σ0, is the light’s intensity value and D is the principal direction in which light propa-
gates with a spreading factor μ, that modules the radial attenuation R. As the light traverses the scene, its radi-
ance decreases as a function of the distance travelled d X P� �= − , following an inverse-square law 
S dX P( , ) 1/ 2= . Finally, L(X, P) is the unit vector of the light’s outgoing direction. The corresponding intensity 
value X( )I  on the image is:

I ( )f gX X P( ) ( , ) ( , )cos , (4)r i r tSLS
1/

σ θω ω=
γ

where a bidirectional reflectance distribution function (BRDF) ω ωf ( , )r i r  defines how light is reflected from the 
surface to the camera. The projection of the light beam on the geometry introduces a cosine term of the angle θ 
between the incoming light ray ωi and the surface normal. Finally, the endoscope applies an automatic gain gt, 
that can vary at every t-th time instant, and a gamma curve (γ = 2.2) to improve the perceived dynamic range of 
the image.

The parameters of this model are estimated by optimising a photometric loss on the white areas of the Vicalib 
pattern (Fig. 2). The results of the calibration provide a 2D weighting of the photometric effects caused by the 
vignetting and the light spread function, that can be used to compensate them (Fig. 3).

Simulated colon.  The VR-Caps7 simulator is used to generate photorealistic synthetic image sequences of a 
3D colon model obtained from a Computed Tomography. Since this is a simulation, we have full access to scene 
configuration: camera calibration, deformations, trajectory and illumination, hence to the ground truth geometry, 
camera pose and 3D deforming scene. For the same endoscope trajectory, we generated different sequences with 
more aggressive deformations to allow ablative studies with respect to the deformation magnitude. Deformations 
applied are described by the next equation:

ω= + + + +( )V V A t V V Vsin , (5)y
t

y x y z
0 0 0 0

where Vx
0, V y

0 and Vz
0 are the coordinates of the surface point at rest. We can control the magnitude and velocity 

of the deformations according to the parameters A and ω respectively, which corresponds to the maximum 
excursion and velocity of the deformations respectively. We also modified the colon texture to increase its con-
trast. The code to create these simulated sequences is available in the repository EM_Dataset-Simulations (see 
Section Code availability, https://github.com/endomapper/EM_Dataset-Simulations).

Fig. 2  Two examples of calibration images (left, middle). The calibration pattern (right).
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Meta-data.  For a set of selected recordings, we provide several types of meta-data useful for plenty of poten-
tial research lines, but in particular for VSLAM. This subsection presents a description of the meta-data and the 
annotation methodologies.

Text footage.  The endoscopist performing each procedure provided a description of it, that was registered 
during the exploration. It includes the anatomical regions traversed, the interventions, the medical findings 
such as polyp approximated size, the tools used, or the sections with NBI (Narrow-Band Imaging) illumination. 
This description is made available as text footage synchronized with the corresponding videos. This metadata 
can be useful, for example, to identify the sections of the video that are more promising for VSLAM, such as the 
re-observations of the same region or interactions with tools of known size.

Anatomical regions.  Anatomical section recognition is useful to create topological maps of the colon. These 
maps can be used to create smaller reconstructions with less probability of errors. Some colonoscopy procedures 
were annotated by the medical staff of the project after the recording. Multiple careful visualizations were neces-
sary to delimit the ten anatomical regions, that are shown in Fig. 4.

Tools segmentation.  Tool segmentation is one of the challenges for spatial AI in colonoscopies. Since they 
occlude the view and cause failures in other algorithms, many works in the literature mask them out. Tools were 
manually segmented using Odin CAT tool16, which allows to maintain a mask between frames, giving a more 
robust annotation.

COLMAP 3D reconstruction.  Traditional SIFT-based rigid SfM algorithms are able to produce partial recon-
structions from colonoscopy videos. We include some examples of the output of COLMAP9,17 processing in our 
sequences, which provides a first approximation for the up-to-scale camera trajectory and the scene’s sparse 
structure. This information can be organized to produce weak supervision in the form of sparse depth maps, 
local correspondences between frames, image-to-image labels (frames depicting the same place) or relative cam-
era pose transformation between frames. Several computer vision tasks like depth prediction, image match-
ing, image retrieval and visual localization can greatly benefit from this kind of supervision. Megadepth18 is a 
well-known dataset that uses this SfM procedure to obtain 3D point clouds, similar to ours. It is being exten-
sively used for deep learning supervision10,19,20. Other works employed SfM to identify co-visible frames in the 

Fig. 3  Example of photometric calibration results.

Fig. 4  Illustration of the anatomical regions labeled.
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recordings, which has proven to be useful to train CNNs for place recognition in landmark images11 and in 
colonoscopy sequences21,22.

For our recordings, we apply exhaustive guided matching between all the images in the sequence to asso-
ciate frames that are temporally distant. We use our camera calibration and we do not optimize it during the 
COLMAP bundle adjustment. The minimum triangulation angle is relaxed to 8 degrees during the initialization 
of the models. The rest of the parameters are left as default.

Recordings from the same patient.  One of the main obstacles in colon reconstruction is the consistency between 
colonoscopies in longitudinal studies. Thanks to the colorectal cancer screening program, colonoscopy pairs 
from the same patient were registered. This would help to evaluate the lifelong capabilities of the developed 
VSLAM algorithms.

Data Records
This section describes the dataset structure and details of the meta-data available. The dataset is available on the 
Synapse platform3 and is subject to access controls (see Section Usage Notes). A summary of the dataset struc-
ture can be seen in Fig. 5. At publication time, there is a total of 96 real sequences and their duration goes from 
less than ten minutes to more than half an hour. The file DatasetSummary.xls in the dataset main folder 
includes a summary of the acquisition details of each sequence in the dataset.

Video recordings.  Data is stored in the directory Sequences. Each procedure has a corresponding direc-
tory Seq_XXX (XXX is the sequence number) that contains:

	 1.	 The directory meta-data, that contains all the meta-data files associated to the sequence. These files are 
described in the next section.

	 2.	 The video Seq_XXX.mov, in which the actual recording is. The video codec is H26423, a lossy compres-
sion using the profile High 4:4:4 with 4.2 level and a bit rate of 7Mbps. It offers an optimal size vs. quality 
trade-off for lossy compression.

	 3.	 The thumbnail version, Seq_XXX_thumbnail.webm, that contains a compressed version of the 
recording for easy and quick visualization. This version uses the free codec libvpx24, at 320 × 240 
resolution.

	 4.	 A subtitle file, Seq_XXX.srt, if the video has text footage in the form of text subtitles.
	 5.	 The metadata file, Seq_XXX_info.json, where sequence number, endoscope number and the type of 

metadata of the procedure is stored.

Additionally, the folder Lossless_sequences contains the lossless versions of the videos. This format 
uses codec ffv1 version 3 with a bitrate of 310 Mbps.

Camera calibration.  All the calibration information is included in the directory Calibrations. There is 
a directory Endoscope_XX (XX is the endoscope number) for each endoscope that contains:

Fig. 5  Directory structure of the dataset.

https://doi.org/10.1038/s41597-023-02564-7
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	 1.	 The calibration video Endoscope_XX.mov. This version is the lossy H264 version. The lossless version 
can be found in the lossless folder mentioned before.

	 2.	 The Geometric calibration parameters Endoscope_XX_geometrical.xml.
	 3.	 The Photometric Calibration parameters Endoscope_XX_photometrical.xml.

Geometric calibration.  The file Endoscope_XX_geometrical.xml is the output calibration from 
Vicalib12. This XML file contains the intrinsic parameters of the camera (fx, fy, Cx, Cy, k1, k2, k3, k4) following the 
Vicalib output format.

Photometric calibration.  The photometric calibration file, Endoscope_XX_photometrical.xml, con-
tains the calibrated parameters of the light source and the camera of the endoscope. An endoscope’s <rig> 
may have one or more <camera> tags, associated with one or more <light> sources. Currently, only a single 
camera and a single virtual light are supported.

Each camera tag has a particular <camera_model>. This model has a single parameter, the value of the 
gamma γ response function in Eq. (4). Regarding the light source, the <light_model> has four parameters: 
the intensity value σ0, the light spread factor μ and two vectors for the light centre P and the principal direction D.

Simulated colon.  All the data related to the simulated colon is included in the directory Simulated 
Sequences. There is a directory seq_X (X is the sequence number) for each sequence obtained from the sim-
ulation. The directory contains:

	 1.	 The directory rgb with the RGB images of the sequence in png format.
	 2.	 The directory depth with the depth images for each RGB image of the sequence stored in exr format.
	 3.	 A file rgb.txt with a list of file names of all RGB images of the sequence.
	 4.	 A file depth.txt with a list of the file names of all depth images of the sequence.
	 5.	 A file trajectory.csv containing the ground truth camera trajectory.
	 6.	 A file calibration.txt containing the simulated camera calibration.
	 7.	 A file info.txt containing the deformations applied, its parameters and units.

Meta-data.  This section contains the details and formats for each type of meta-data. The file 
DatasetSummary.xls details the availability of the metadata in each sequence of the dataset.

Text footage.  Two files: Seq_XXX.json and Seq_XXX.srt are included inside the root and meta-data 
folder. The .json file contains a structure with the timestamp and the associated text. The text footage is also 
included in .srt format to ease the visualization synchronized with the video. The references to identify the 
tools used during the procedure are stored in the meta-data directory.

Anatomical regions.  Table 2 shows the detailed number of frames labelled for each region in each video. 
The dataset contains this information in a file named Anatomical_Regions_XXX.txt with the format 
Frame###;region label; in each line.

Tool segmentation.  There are 4086 frames with tools segmented across four different colonoscopies as detailed 
in Table 3. The segmentations for each video can be found in file tool_segmentation_XXX.xml. This 
file contains, for each segmented frame, the id of the frame and a list of 2D point coordinates that define the 
tool segmentation as a binary polygon. The segmentation was done using a proprietary Odin CAT tool16. Some 
examples can be seen in Fig. 6.

COLMAP 3D reconstruction.  Table 4 summarizes the reconstruction results for the Endomapper sequences. 
The reconstructions are stored following the text format of COLMAP (https://colmap.github.io/format.html). 
We provide text files showing the images contained in each cluster reconstructed by COLMAP, as well as the 
images that COLMAP considered covisible, i.e. images that have at least one 3D point in common. Figure 7 
shows two examples of these reconstructed clusters.

Sections Total Frames rectum sigmoid descending esplenic transverse hepatic ascending ileocecal ileum cecum

Seq_003 78439 1519 2840 7640 320 3440 1840 58720 320 1800 0

Seq_011 25840 1480 11920 4440 2200 3320 2480 0 0 0 0

Seq_013 33360 360 2720 3600 2200 4200 2360 13400 1520 0 3000

Seq_093 78480 920 14040 18960 6400 4640 2160 7200 2640 0 21520

Seq_094 52560 400 21360 8400 1000 6000 760 8800 2400 0 3440

Total 268679 4679 52880 43040 12120 21600 9600 88120 6880 1800 27960

Table 2.  Summary of the anatomical sections per video and label.

https://doi.org/10.1038/s41597-023-02564-7
https://colmap.github.io/format.html


8Scientific Data |          (2023) 10:671  | https://doi.org/10.1038/s41597-023-02564-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Same patient recordings.  A file SamePatient.json is stored in the root folder containing which sequences 
are from the same patient and the time that separates both sequences.

Technical Validation
Firstly, we detail an error analysis of the calibration and a comparison of the calibration parameters among 
endoscopes. Secondly, we test state-of-the-art SfM and VSLAM algorithms on typical colonoscopy sequences. 
Finally, the anatomical region and tool segmentation labels are validated on state-of-the-art recognition algo-
rithms. All the code used in this section is publicly available in the Endomapper repositories https://github.com/
Endomapper.

Calibration validation.  Geometric calibration.  The software used to compute the geometric cali-
bration and to obtain the validation and comparisons shown in this section is available in the reposi-
tory EM_Dataset-GeometricCalibration (see Section Code availability, https://github.com/endomapper/
EM_Dataset-GeometricCalibration). The geometric calibration was computed from the calibration videos using 
the Vicalib12 tool, tuning the parameters for each endoscope calibration separately. The parameters are detailed 
in the repository.

To compare the different calibrations visually, we have undistorted a grid using each calibration. Figure 8 
shows the differences between each endoscope, the 10 colonoscopes and 8 gastroscopes correspondingly.  

Sequence Frames segmented

Seq_003 3168

Seq_013 254

Seq_093 435

Seq_094 229

Table 3.  Summary of the frames with tool segmentation.

Fig. 6  Examples for the tool segmentation mask in Seq_009.

Sequence Total frames Frames reconstructed Clusters obtained

Seq_001 14824 5809 (39,18%) 50

Seq_002 23375 8133 (34,79%) 50

Table 4.  Summary of COLMAP 3D reconstruction.
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The results show that the calibrations are equivalent around the center of the images and differences between 
them are significant only in the image borders.

To further analyze the calibration results, we analyzed the reprojection error. For all the calibrations, the 
RMSE is between 0.3 and 0.4 pixels. We have selected two endoscopes, one colonoscope (Endoscope_06) and 
one gastroscope (Endoscope_18), as prototypes. Figure 9 displays the inliers reprojection error distribution for 
the selected endoscopes. Here we can see that the error of the inliers is uniformly distributed around the image, 
and that only at the image boundaries there are fewer measurements. The calibrations are then expected to be 
very accurate in general, being the most inaccurate areas the ones closer to the borders.

The projection function that relates the incoming ray angle θ with the distorted radius rd is plotted in Fig. 10. 
Here we can see that both types of endoscopes are almost equal and very close to an orthogonal projection 
fisheye lens13. Finally, in Fig. 11 we show the view angle of both prototype endoscopes. There we can see that 
the gastroscope has a lower view angle than the colonoscope on the edges, which is why each type of endoscope 
needs to be calibrated separately.

With this analysis we conclude that the individual calibrations obtained from the videos are accurate (RMSE 
is low, covers most image and is consistent with all endoscopes). We believe that accurate calibration informa-
tion boosts the performance of the geometric methods.

Photometric calibration.  The software used to compute the photometric calibration and to obtain the validation 
shown in this section is available in the repository EM_Dataset-PhotometricCalibration (see Section Code availa-
bility, https://github.com/endomapper/EM_Dataset-PhotometricCalibration). The photometric calibration was 
computed from the calibration videos for each endoscope separately.

We selected 38 frames per sequence, looking for a variety of distances from the camera to the calibration 
pattern. On each frame, we consider a 120° field of view. The centre of the virtual light converges about 4 mm 
behind the tip of the endoscope, thus being able to model all real lights with a single beam. The gamma value 
is experimentally fixed to γ = 2.2, which is also a broadly used value. The endoscope applies a continuous gain 
control, progressively increasing or decreasing the gain. Relative auto-gain is estimated with respect to the first 
image of the sequence. Consequently, the σ0 value is unobservable and it is fixed to one.

The resulting models are validated in a different set of images of the Vicalib pattern. The photometric errors 
in Table 5 show the validation results of eight colonoscopes and eight gastroscopes. In the colonoscopes, the 
calibration is able to estimate the pixel intensities of the images with an RMSE of 2.9 grey levels. In gastroscopes, 
lights are not symmetrically placed on the tip of the endoscope. Consequently, RMSE increases slightly, up to 
3.3 grey levels.

SfM/SLAM validation.  COLMAP validation.  COLMAP is able to estimate sparse reconstructions for dif-
ferent sections along a sequence, see some examples in Fig. 7. As it can be seen, the 3D point cloud and the camera 
trajectory look reasonable, showing a tubular shape with cameras traversing it. The covisibility information is 
always accurate, as the geometrical checks in COLMAP avoid frames that do not observe the same place to be 
incorrectly reconstructed in the same model.

Covisibility information was exploited in22, where a CNN was trained with COLMAP reconstructions from 
our sequences for the task of image retrieval. The system22 is able to recognize frames observing the same place 
in the colon, even when the frames come from different colonoscopies of the same patient. In Fig. 12, we can see 
some examples of successfully retrieved between two colonoscopies of the same patient performed within two 
weeks of each other.

Fig. 7  Two clusters from the COLMAP reconstruction after processing Seq_001. For each cluster, it is shown a 
3D view of the frames’ poses and colon map points and five RGB images as summary of the cluster frames.
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Fig. 8  Comparison of how a regular pixel grid is undistorted by the calibration of each endoscope. 
Colonoscopes and gastroscopes are separated for easier visualization.

Fig. 9  Distributions of error in the images in prototype calibrations. The line representing the error is not 
magnified, observe that most of them appear as points as errors are mostly smaller than one pixel.

Fig. 10  Relation between the incoming ray angle θ with the distorted radius rd. The dotted curves represent the 
ideal orthogonal and equisolid projection models. The right image is a zoom of the curves to show the small 
differences between the colonoscope and the gastroscope.
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The 3D reconstructions look reasonably accurate and can be of great help as a weak supervision for training 
depth, camera pose or image retrieval networks. The software used to compute the reconstruction shown in 
this section is available in the repository EM_Dataset-ColmapValidation (see Section Code availability, https://
github.com/endomapper/EM_Dataset-ColmapValidation).

ORB-SLAM validation.  ORB-SLAM31 is the reference system for sparse real-time visual SLAM. We have used 
it to process the whole Seq_015 video, to build the map and estimate the endoscope pose. To achieve a real-time 
performance the image size is reduced from 1440 × 1080 to 720 × 540 and one out of every two frames are 
skipped. To address non-rigidity, the reprojection error acceptance threshold has been increased by a ×2 factor 
with respect to its default value for rigid scenes, which helps in preventing tracking losses. The Kannala-Brandt 
camera model has proven to be essential to extract and triangulate features close to the borders of the image, 
where distortion is significant. As argued, an accurate calibration enables the use of the whole image for geomet-
ric computation, boosting accuracy and robustness.

ORB-SLAM3 has been able to estimate 133 sub-maps of small size (see Table 6 for a summary of the map 
specifications). The camera has been localized successfully with respect to a map in 25% of the frames. The time 
between video frames is 40 ms, and ORB-SLAM3 is able to run in real time, with an average tracking time of 
23 ms and maximum of 37 ms. Figure 13 shows a sub-map where the camera undergoes a forward-backward 
motion The map contains 54 keyframes, 3682 points and 349 frames.

From this analysis we conclude that our EndoMapper dataset offers the challenges of real endoscopy explora-
tion such as scene deformation, multiple occlusion, changes in lighting, and clutter due to cleaning water or tools 
that eventually result in frequent tracking losses. Classical discrete feature VSLAM methods like ORB-SLAM3 
can run on these videos in real-time, localizing the camera in 25% of the frames. However, the scene model is 
fragmented in a myriad of very small rigid sub-maps. The clear challenge is multiple mapping techniques oper-
ating in Endoscopy able to merge sub-maps with common areas.

The software and the detailed tuning used to compute the ORB-SLAM3 reconstructions shown in this sec-
tion is available in the repository EM_Dataset-ORBSLAM3Validation (see Section Code availability, https://
github.com/endomapper/EM_Dataset-ORBSLAM3Validation).

Anatomical region validation.  The anatomical region labels have been validated by fine-tuning differ-
ent models for anatomical region recognition. The software used to evaluate the anatomical regions recogni-
tion is available in the repository EM_Dataset-AnatomicalRegions (see Section Code availability, https://github.
com/endomapper/EM_Dataset-AnatomicalRegions). Following works in medical image25 and datasets26, we 
fine-tuned four different CNNs that are known to perform well on medical image classification: EfficientNet V227, 
MobileNetv228, DenseNet29 and ResnetV230. With MobileNet and EfficientNet, we look for a model requiring low 
computational resources. DenseNet and ResNet were chosen for its performance in image classification. For the 
fine-tuning, we train the models during 100 epochs following the learning rate decay in Thanh et al.27 and use 4 

Fig. 11  View angles plotted on top of calibration images from each prototype endoscope. The iso-lines are 
plotted in 20° intervals.

Colonoscope 02 03 04 05 06 07 08 09 Mean

RMSE 3.10 3.09 2.46 2.47 3.08 3.74 2.70 2.90 2.94

Gastroscope 11 12 13 14 15 16 17 18 Mean

RMSE 3.54 3.07 3.50 3.55 3.15 3.36 3.60 2.96 3.34

Table 5.  Summary of photometric calibration errors.
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Query from Seq_035 Images retrieved from Seq_027

Fig. 12  Examples of successful retrieval from different sequences of the same patient. The left column contains 
the queries from the current sequence (Seq_035) while the rest of the columns are the first three retrieved 
images from the previous sequence (Seq_027).

# Keyframes # Map points # Frames

Mean 22 1444 91

Median 18 1340 57

Min 11 398 16

Max 60 4145 643

Table 6.  Summary of the size of the 133 sub-maps obtained after processing Seq_015.
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sequences (Seq_003, Seq_011, Seq_013, Seq_093) for training and Seq_094 for testing. Seq_094 was chosen as the 
test sequence because it has the best balance between classes. The metrics used to evaluate this experiment were 
Top-1 and Top-3 accuracy, defined as the accuracy for which the true class matches the most probable prediction 
and any of the 3 most probable predictions, respectively. Table 7 presents the results for the anatomical region 
recognition.

ResNet is able to perform better in Top-1 accuracy and similarly in Top-3. This shows that this model is the 
best overall. It is also interesting to note that MobileNet is able to obtain a close performance with a smaller 
computational footprint, being interesting for real-time systems. It is also worth remarking that Top-1 accuracy 
is low in comparison to other computer vision tasks, suggesting that anatomical region classification is a chal-
lenging research problem. Indeed, the differences between sections are very subtle, even for the trained eye. In 
any case, the results on Top-3 accuracy are promising and show that the EndoMapper data is a relevant tool to 
advance the performance in this problem.

Tools segmentation validation.  The tool segmentation labels have been validated by training and testing 
several models for binary tool segmentation as proposed in Tomasini et al.31. This work compares the perfor-
mance of various models on three different datasets, including the EndoMapper dataset labels. All the models 
were trained from scratch on EndoVis17 dataset and fine-tuned on Kvasir-Inst and EndoMapper. The perfor-
mance results obtained can be seen in Table 8. Examples of binary segmentation of images from the Endomapper 
dataset obtained using the different models can be seen in Fig. 14.

The lower mIoU of all models on our EndoMapper dataset compared to that of other datasets high-
lights the challenge of the EndoMapper tool segmentation labels. It is interesting to note that the efficient 
MiniNetV2 reaches similar performance to state-of-the-art models on all datasets while requiring less 
memory and inference time. The software used to evaluate the tool segmentation models is available in the 

Fig. 13  ORB-SLAM3 sub-map in Seq_015 between frames 54420 and 55170. The camera undergoes a forward-
backwards motion. Right, 3D map in top view, keyframes in blue, map points in red. Left images corresponding 
to 4 keyframes spread over the trajectory.

Model Top-1 Accuracy (%) Top-3 Accuracy (%)

EfficientNet V2-M 17.61 48.00

MobileNet V2 20.40 60.17

DenseNet-161 24.87 66.77

ResNetV2-101 26.08 66.09

Table 7.  Top-1 and Top-3 accuracy of the anatomical region recognition models. All models were fine-tuned 
in 4 sequences(Seq_003,Seq_011,Seq_013,Seq_093) on top of ImageNet pre-trained weights, and tested on 
Seq_094.
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repository EM_Dataset-ToolSegmentation (see Section Code availability, https://github.com/endomapper/
EM_Dataset-ToolSegmentation).

Usage Notes
The dataset is available on the Synapse platform3. The dataset can be publicly accessed under the following 
conditions: 1) Limited to research on how to obtain relevant medical information from images or video. 2) 
Redistribution of the data is not allowed. 3) Requires a Statement of Intended Use, which includes a description 
of how you intend to use this data. 4) You further agree to cite the DOI of the collection and the publication 
in any publication resulting from this content as follows: a) Azagra, P. et al. Endomapper dataset of complete 
calibrated endoscopy procedures. https://doi.org/10.7303/syn26707219 (2022). Synapse. b) Azagra, P. et al. 
EndoMapper dataset of complete calibrated endoscopy procedures. Scientific Data. 5) Images of the collection 
can be included in the scientific citing publications. 6) Video segments can be used to produce multimedia 
material in the citing scientific publications.

Code availability
The dataset can be used without any further code. All the code used for the calibration, simulated 
sequences generation and technical validation are publicly available as repositories at https://github.com/
Endomapper. The instructions for installing and using them are available in Synapse https://www.synapse.
org/#!Synapse:syn52137895.
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