
1Scientific Data |          (2023) 10:669  | https://doi.org/10.1038/s41597-023-02581-6

www.nature.com/scientificdata

an open dataset with 
electrohysterogram records of 
pregnancies ending in induced  
and cesarean section delivery
Franc Jager  

the existing non-invasive automated preterm birth prediction methods rely on the use of uterine 
electrohysterogram (EHG) records coming from spontaneous preterm and term deliveries, and are 
indifferent to term induced and cesarean section deliveries. In order to enhance current publicly 
available pool of term EHG records, we developed a new EHG dataset, Induced Cesarean EHG DataSet 
(ICEHG DS), containing 126 30-minute EHG records, recorded early (23rd week), and/or later (31st 
week) during pregnancy, of those pregnancies that were expected to end in spontaneous term delivery, 
but ended in induced or cesarean section delivery. The records were collected at the University Medical 
Center Ljubljana, Ljubljana, Slovenia. The dataset includes 38 and 43, early and later, induced; 11 and 8, 
early and later, cesarean; and 13 and 13, early and later, induced and cesarean EHG records. This dataset 
enables better understanding of the underlying physiological mechanisms involved during pregnancies 
ending in induced and cesarean deliveries, and provides a robust and more realistic assessment of the 
performance of automated preterm birth prediction methods.

Background & Summary
According to the World Health Osrganization (WHO), preterm birth, or premature birth, is defined as: Babies 
born alive before 37 weeks of pregnancy are completed1. The WHO estimates that about 15 million babies are 
born prematurely each year, i.e., preterm birth occurs in about 10 percent of all pregnancies. Besides medically 
indicated or induced preterm birth, and preterm premature rupture of membranes2, other pathological pro-
cesses might be responsible for initiating preterm labor, such as intrauterine infection or inflammation, burst 
blood vessels, uterine ischemia, uterine over-distention2, as well as other risk factors, such as hypertension, 
diabetes, conization, uterine abnormalities, alcohol and drug use, smoking, and life style3.

Despite exhaustive research, accurate prediction of preterm birth based on these factors remains far from 
certain. One promising diagnostic tool for better prediction of preterm birth, weeks or even months before 
delivery, is a low-cost, fully- or semi-automated analysis of the uterine electromyogram, recorded from the 
abdominal wall of a pregnant woman, also termed as electrohysterogram (EHG). The mechanical uterine con-
tractions present during pregnancy which are of central importance to diagnose labor are the result of discontin-
uous bursts of action potentials. The EHG records contain these measurable changes of the electrical potentials 
of the uterus thus allowing efficient non-invasive quantitative assessment of the contractions4–10. Applying differ-
ent analysis methods showed that the EHG records contain sufficient information to diagnose labor more accu-
rately than other traditional clinical methods6,9,11,12, and provide adequate data to predict preterm labor8,9,11–14.

The appearance of publicly available Term-Preterm EHG DataBase (TPEHG DB)15,16 (https://physionet.org/
content/tpehgdb/) in 2011, containing 300 preterm and term spontaneous EHG records (see Table 1), recorded early 
(around the 23rd week) or later (around the 31st week) during pregnancy, allowed in-depth studies of non-linear sig-
nal processing techniques and machine learning approaches for accurate classification between entire preterm and 
term EHG records with the goal to predict preterm birth. Due to highly imbalanced sets of preterm and term EHG 
records (38 versus 262), researchers used a synthesis-partition over-sampling approach, based on the SMOTE17, or 
ADASYN18 algorithm, in order to balance the sets. Using this over-sampling approach, a number of studies using 
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the TPEHG DB have reported near-perfect results in distinguishing between preterm and term EHG records19–25. 
In 2021, an important study26 revealed that over-sampling applied after data partitioning, i.e., partition-synthesis 
over-sampling approach, needs to be applied to achieve realistic classification performance, and realistic preterm 
birth prediction in the case of imbalanced sets. Recently, many interesting studies related to preterm birth prediction 
using the TPEHG DB were published using traditional feature engineering27–33 and deep learning34–37 approaches. 
A nice review of the literature dealing with the use of EHG records for the task of predicting premature birth and for 
understanding the underlying physiological processes during pregnancy can be found in38.

Another important publicly available EHG database, the Icelandic 16-electrode Electrohysterogram Database16,39 
(https://physionet.org/content/ehgdb/) published in 2015, containing 122 EHG records (45 pregnancies), recorded 
during the 3rd trimester of pregnancy or during labor (see Table 1), and with human-expert annotated contrac-
tions, allowed distinguishing between pregnancy and labor. Several excellent studies have been published using this 
database. The studies were dedicated to discrimination40 and classification41 between pregnancy and labor groups 
of records, understanding human uterine electrical propagation42, analysis of uterine synchronization43, attenuation 
of maternal respiration signal44, automatic uterine contraction detection45 and contraction clustering46, recognizing 
uterine contractions using convolutional neural networks47, and to detection of preterm birth48.

A study dedicated to characterization of contraction and non-contraction (dummy) intervals of uterine EHG 
records, and automatic classification of preterm and term spontaneous EHG records23, yielded another pub-
licly available dataset, i.e., Term-Preterm EHG DataSet with Tocogram (TPEHGT DS)16,23 (https://physionet.
org/content/tpehgt/). The TPEHGT DS was published in 2018 and contains 13 preterm and 13 term sponta-
neous EHG records (see Table 1), recorded later (around the 31st week), with simultaneously recorded toco-
gram (TOCO) signal (measuring mechanical uterine activity obtained by external tocodynamometer), and with 
human-expert annotated contraction and non-contraction (dummy) intervals. Using this dataset, several novel 
approaches for classification of preterm versus term births were reported. These include the use of entire EHG 
records49,50, or individual contraction and/or dummy intervals23,51–53.

Unfortunately, none of these databases/dataset provide sufficient number of EHG records for reliable assess-
ment of the accuracy of predicting imminent preterm birth. Merging EHG records from different databases/
dataset may be questionable due to the differences in signal acquisition protocols. Since the EHG records of the 
TPEGH DB and TPEHGT DS were acquired under the same acquisition protocol, and using the same recording 
device, several authors merged the EHG records from these two database/dataset in cases of traditional feature 
engineering24,25,32,33 and deep learning approach37.

Current existing methods using uterine EHG records for predicting preterm birth solely base on classification 
between EHG records of which pregnancies ended in preterm spontaneous or term spontaneous delivery mode, 
and do not take into account other delivery modes like induced and cesarean section delivery. A robust and real-
istic approach for accurate prediction of preterm birth that base on the analysis of EHG records should take into 
account also the characteristics of EHG records of term induced and term cesarean section deliveries. Moreover, 
in the last 10 years the number of induced and cesarean deliveries has increased even if there is no apparent 
medical reason54,55. The latest related studies, using EHG records of induced or cesarean section delivery modes, 
focuses on characterization of antepartum, labor, and post-partum records56, characterization of bursts in late 

Database/dataset Description Channels Recording time Duration Annotations Frequency content

TPEHG DB15,16

300 records,

Three EHG bipolar 
signals

Around the 23rd 
week, and around 
the 31st week

≈30 min No

Bandwidth: original 
signals, 0–5 Hz, 
filtered signals, 
0.08–4 Hz; FS = 20 
Hz, 16 bits

300 pregnancies

 - 38 preterm, 38 preg.

 - 262 term, 262 preg.

The Icelandic 
16-electrode 
electrohysterogram 
database16,39

122 records,

16 EHG 
unipolar signals, 
simultaneous 
tocograph traces

During pregnancy 
(the 3rd 
trimester), and 
during labor

Pregnancy ≈61 min 
(19–86 min), labor 
≈36 min (8–64 min)

Contractions, 
possible contr., 
movements, 
position changes, 
fetal movements, 
equipment manip.

Bandwidth: original 
signals, 0–100 Hz; 
FS = 200 Hz, 16 bits

45 pregnancies

 - 2 preterm, 1 preg.

 - 84 term, 30 preg.

 - 20 induced, 7 preg.

 - 16 cesarean, 7 preg.

TPEHGT DS16,23

26 records,

Three EHG 
bipolar signals, 
simultaneous 
TOCO signal

Around the 31st 
week ≈30 min

Contraction 
intervals, non-
contraction 
(dummy) intervals

Bandwidth: original 
signals, 0–5 Hz, 
filtered signals, 
0.08–5 Hz; FS = 20 
Hz, 16 bits

18 pregnancies

 - 13 preterm, 8 preg.

 - 13 term, 10 preg.

 - 5 non-pregnant

This work  
(ICEHG DS62)

126 records,

Three EHG bipolar 
signals

Around the 23rd 
week, and around 
the 31st week

≈30 min No

Bandwidth: original 
signals, 0–5 Hz, 
filtered signals, 
0.08–5 Hz; FS = 20 
Hz, 16 bits

91 pregnancies

 - 81 induced, 59 preg.

 - 19 cesarean, 13 preg.

 - 26 ind-ces., 19 preg.

Table 1. Comparison of publicly available databases/datasets containing EHG records for EHG research, 
discrimination between pregnancy and labor EHG records, discrimination between preterm and term EHG 
records, and for predicting preterm birth.
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antepartum records of pregnant women with complete placenta previa57, differentiation between term spontane-
ous labor and induced late-term labor58, prediction of labor induction success in the first hours after induction of 
labor59, prediction of cesarean section and spontaneous vaginal delivery modes60, and predicting uterine atony 
after spontaneous or cesarean deliveries using post-partum EHG records61. However, these delivery-mode pre-
diction methods relied on antepartum or labor EHG records recorded after the 37th week of gestation and did 
not take into account earlier recorded (before the 37th week) EHG records nor preterm birth prediction.

For these reasons, we decided to build a new EHG dataset with term induced, cesarean, and induced and 
cesarean EHG records, i.e., Induced Cesarean EHG DataSet (ICEHG DS)62, under the same acquisition protocol 
as was used for obtaining uterine EHG records of our previously developed TPEHG DB and TPEHGT DS. The 
ICEHG DS contains 126 EHG records (91 pregnancies), recorded early (around the 23rd week) and/or later 
(around the 31st week) during pregnancy (see Table 1), ending in induced, cesarean, or induced and cesarean 
delivery. Publicly available ICEHG DS62 will allow researchers further studies in order to answer the following 
important questions: (1) Can the induced and cesarean section delivery modes be predicted early, already in the 
23rd, or in 31st week of pregnancy? and, (2) Can the characteristics of the EHG records of induced and cesarean 
section delivery modes influence the understanding of the underlying mechanisms involved during pregnancy, 
and more important, the understanding of the mechanisms responsible for preterm birth? Moreover, the ICEHG 
DS, used alongside the TPEHG DB and TPEHGT DS, will provide a robust and more realistic assessment of the 
performance of automated preterm birth prediction. To address some of these questions, the EHG records of the 
ICEHG DS, alongside the EHG records of the TPEHG DB and TPEHGT DS, have already successfully been used 
in one of our studies63. Characterization and separation of all later recorded preterm and term spontaneous, 
induced, cesarean, and induced and cesarean, groups of EHG records of these three database/datasets, showed 
that the peak amplitude of the normalized power spectra of EHG signals in the frequency band 0.125–0.575 Hz 
(which approximately matches the Fast Wave Low band), efficiently separate between the later preterm group 
and all other later term delivery groups (p = 2.5·10−8), and efficiently separate between the later preterm group 
and any of other later term delivery groups (p ≤ 4.0·10−3)63.

In summary, the areas of EHG research which have the potential to benefit from this new ICEHG DS are 
the following: (1) Development of efficient automated methods for pregnancy monitoring via visualization of 
electrical uterine activity in time and/or frequency domain; (2) Characterization and understanding physiolog-
ical mechanisms involved during pregnancy that lead to induced and/or cesarean section delivery modes; (3) 
Development of non-invasive automated methods for prediction of induced and/or cesarean section delivery 
modes; (4) Mathematical modeling of electrical uterine activity; and, (5) Identification of simple and efficient EHG 
biomarkers for predicting pregnancy outcome. In this paper, we provide a detailed description of the ICEHG DS.

Methods
Data collecting. In the period from 1997 and 2006, a large number of uterine EHG records (a total of 1,211) 
were collected at the Clinical Department of Perinatology, University Medical Center Ljubljana, Ljubljana, 
Slovenia. Records were collected from the general population during routine checkups, and from the patients 
admitted to the hospital with the diagnosis of impending preterm labor. The records were collected either early, 
around the 23rd week of gestation (early records), and/or later in the pregnancy, around the 31st week of gestation 
(later records). The decision for the 23rd and 31st week was for the following reasons: the period from 22nd to 24th 
week of pregnancy (or the end of the second trimester) is an estimated border at which termination of a pregnancy 
is considered as an abortion, or as a delivery (i.e., extreme preterm delivery); while the 31st week of pregnancy 
(within the third trimester) is an estimated border after which a newborn can survive outside the uterus. (Note that 
these borders differ from country to country.) It was expected that characterization of the EHG records collected at 
these two milestones during pregnancy will provide valuable insight into changes of the physiological mechanisms 
involved along pregnancy. From this entire pool of uterine EHG records, in 2011 and in 2018, we developed the 
TPEHG DB15,16 (https://physionet.org/content/tpehgdb/) and TPEHT DS16,23 (https://physionet.org/content/tpe-
hgt/), respectively, and made them publicly available in the Physionet repository. At these times, we were interested 
only in those EHG records with spontaneous preterm and spontaneous term delivery, and not in those ending in 
induced or cesarean section delivery. The availability of TPEHG DB and TPEHGT DS resulted in a large number 
of valuable studies dedicated to predicting preterm birth as outlined in Background & Summary section.

The EHG records selected for the dataset described in this paper, i.e., Induced Cesarean EHG DataSet 
(ICEHG DS), are also coming from the pool of EHG records collected between 1997 and 2006. Obtaining of 
the uterine EHG records was approved by the National Medical Ethics Committee of the Republic of Slovenia 
(No. 32/01/97). All women gave their written signed consent for the EHG data to be shared in a repository. 
The selected records for the ICEHG DS are those collected early and/or later for the pregnancies which were 
expected to have a normal progression toward the spontaneous start of labor and vaginal term delivery, but 
ultimately ended either in term vaginal delivery that failed to start spontaneously and labor had to be induced 
(induced records), in term delivery by emergency cesarean section without prior induction of labor (cesarean 
records), or in term delivery by emergency cesarean section after a failed induction (induced-cesarean records). 
The ICEHG DS is stored in the PhysioNet repository62.

recording protocol. The recording protocol and the recording equipment were those which were also used 
during collecting the records of the TPEHG DB15,16 and TPEHGT DS16,23. The recording equipment consisted 
from a custom made physiological signal measurement device (conforming to the required ISO standards) con-
nected to a personal computer with an integrated eight channel A/D converter. The records were collected from 
the abdominal surface using four Ag2 Cl electrodes. The electrodes were placed symmetrically above and under 
the navel, at the distance of 7 cm (see Fig. 1). The reference electrode was attached to the left woman’s thigh. Prior 
to the attachement of the electrodes, the corresponding area of 12 × 12 cm was cleaned using the acetone and 
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ether. The precise electrode attachment positions were determined by an electrode attachement model made for 
this purpose. In order to lower the resistance between the electrodes, the electrode attachment positions were 
additionally cleaned. The four surface electrodes of the contact area of 20 mm2 were spread with contact con-
ducting gel (electrode gel). In order to improve the quality of the measurements, a special protocol was used64. 
According to this protocol, the measured resistance between each pair of electrodes had to be lower than 20 kΩ. 
If this requirement was not reached, the electrode attachement procedure was repeated.

The acquired EHG records are of length of approximately 30 minutes and consist of three bipolar EHG sig-
nals (Fig. 1). The first acquired bipolar EHG signal was measured between the uper two electrodes, S1 = E2-E1, 
the second bipolar EHG signal between the left two electrodes, S2 = E2-E3, and the third bipolar EHG sig-
nal between the lower two electrodes, S3 = E4-E3. Prior to sampling, the signals were filtered using an analog 
anti-aliasing low pass three-pole Butterworth filter with the cutt-off frequency of 5.0 Hz. The sampling fre-
quency, FS, was 20 Hz. The resolution of the signal acquisition equipment was 16 bits with the amplitude 
range of ±2.5 mV (A/D value of 13107 units corresponds to 1.0 mV). The sampled signals were stored on the 
personal computer hard disk in real time into ASCII files, while general data about the records into separate 
record-configuration ASCII files. No annotations of the records were provided during recording.

A record ID was assigned to each EHG record. Information on the recording time (the week of pregnancy at 
the event of recording) and the accompanied clinical information: age, weight, placental position, and height, 
were noted and stored into an .xlsx table, and added into the corresponding record-configuration ASCII file, 
for each participating women. Moreover, at the event of delivery, the following data were added into each 
record-configuration ASCII file: type of delivery (induced, cesarean, or induced-cesarean), gestation age, new-
born weight, and ID of the pair record if EHG records were collected early and later during pregnancy.

Data processing. In order to provide additional version of the EHG signals of the uterine EHG records 
obtained during recording without extremely slow signal drifts (the analog anti-aliasing filter passed frequencies 
from 0.0–5.0 Hz), the original EHG signals stored in the ASCII files were filtered using a four-pole digital band-pass 
Butterworth filter with the cut-off frequencies at 0.08 Hz and 5.0 Hz, applied bidirectionally to eliminate the 
non-linear phase shift. (The Butterworth filter was selected due to its nice transfer characteristic having no ripple in 
the pass- and stop-bands.) This processing was performed in MATLAB using readmatrix, butter, filter, flip, and plot 
functions. The filtered signals were then added into the original ASCII signal files of the records. An example of the 
EHG signals prior to and after this filtering for a selected record of the ICEHG DS is shown in Fig. 2. After that, the 
ASCII signal files containing original and filtered EHG signals, and the contents of the record-configuration ASCII 
files of the participants, were converted into the WFDB (WaveForm DataBase Software Package) record format 
(https://www.physionet.org/content/wfdb/) using the wrsamp WFDB application to produce binary signal (.dat) 
files containing very original and filtered EHG signals, and ASCII header (.hea) files. The .hea files contain infor-
mation about the general data of the records, and in the comments section the accompanied clinical information 
of the participants. No further processing was performed in addition to this conversion. Further processing of the 
records is expected to be performed by the users of the dataset according to their research aims.

Data records
The ICEHG DS is available in the PhysioNet repository62. All together, the dataset contains 126 three-signal 
30-minute surface EHG records coming from 91 pregnancies that were recorded early around the 23rd week (62 
records) and later around the 31st week (64 records) of pregnancy. Precisely, the dataset includes 38 and 43, early 
and later, induced EHG records of 59 pregnancies (see Table 2); 11 and 8, early and later, cesarean EHG records 
of 13 pregnancies (see Table 3); and 13 and 13, early and later, induced-cesarean EHG records of 19 pregnancies 

Fig. 1 Positions of electrodes. The electrodes were placed symmetrically above and under the navel in two raws 
spaced at a distance of 7 cm23.
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(see Table 4). The mean times of gestation in weeks were 39.8 ± 1.4 for induced, 39.7 ± 1.1 for cesarean, and 
39.4 ± 0.9 for induced-cesarean records.

Names of the records are the following: icehgXXX[X], where XXX[X] represents record ID. The entire list 
of records is contained in the ASCII file named RECORDS. The records are stored in the sub-directories with 
regard to the period of recording and according to the delivery mode, i.e., early_induced, early_cesarean, early_
induced-cesarean, later_induced, later_cesarean, and later_induced-cesarean. The lists of records for each group 
of EHG records per delivery mode (induced, cesarean, or induced-cesarean) are contained in the accompanied 
ASCII files named RECORDS_induced, RECORDS_cesarean, and RECORDS_induced-cesarean. Each raw in 
these three files corresponds to a pregnancy and contains the name of early and/or name of later EHG record of 
the pregnancy; while if considering columns in these three files, the first column contains the names of all early 
EHG records, and the second column the names of all later EHG records, given the delivery mode. To better 
explain the contents of the latter three files, as for an example, the content of the RECORDS_cesarean file is 
shown and described in Fig. 3.

Each EHG record is composed from the following three files:

•	 A figure (icehgXXX[X]_fltrd.jpg) showing the three original EHG signals and their filtered versions (an 
example is shown in Fig. 2);

•	 a binary signal (icehgXXX[X].dat) file containing the three original EHG signals (S1, S2, and S3) and their 
filtered versions;

•	 a header (icehgXXX[X].hea) ASCII file containing the general data of the record and accompanied clinical 
information of the participant.

The signal data in the .dat data files are in the following order:

•	 original, unfiltered, signal S1;
•	 filtered signal S1 using a four-pole band-pass Butterworth filter from 0.08 Hz to 5.0 Hz applied bidirectionally;
•	 original, unfiltered, signal S2;
•	 filtered signal S2 using a four-pole band-pass Butterworth filter from 0.08 Hz to 5.0 Hz applied bidirectionally;
•	 original, unfiltered, signal S3;
•	 filtered signal S3 using a four-pole band-pass Butterworth filter from 0.08 Hz to 5.0 Hz applied bidirectionally.

The top most part of the .hea header files is the general data of the EHG record including: record name, sam-
pling frequency, length of the record in samples, list of signals with their specifications according to the WFDB 
format, calibration constants, and signal labels. The rest of the header files is the comments section containing 

Fig. 2 The electrohysterogram (EHG) signals of the record icehg1185 (induced, delivery in the 41st week, 
recorded early in the 22nd week of pregnancy). Black: original signals, blue: filtered signals. Signal samples of 
the first and last 150 seconds of the filtered signals are set to zero.
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Induced 
deliveries Age

Early 
record

Recording 
time (early)

Weight 
(early)

Later 
record

Recording 
time (later)

Weight 
(later) Height

Placental 
position Gestation

Newborn 
weight

Pregnancy 
No. [year] ID [week] [kg] ID [week] [kg] [cm]

[front/
end] [week] [g]

1 34 691 22.9 65 165 front 38.1 3330

2 33 713 23.1 108 164 front 39.7 4250

3 32 1064 22.7 60 160 front 41.1 3750

4 39 1077 22.3 70 163 front 39.0 3330

5 35 1086 22.1 67 165 end 38.6 2970

6 26 1148 22.6 75 174 front 40.6 4910

7 34 1235 22.7 48 154 front 39.0 2950

8 34 1248 20.9 86 164 end 37.1 2710

9 32 1297 23.4 56 173 end 39.6 3060

10 33 1303 22.7 80 161 end 41.0 3410

11 35 1394 23.4 59 160 front 41.1 3150

12 32 1408 22.3 59 159 end 37.0 2330

13 29 1454 23.1 72 162 front 40.6 3300

14 34 1496 23.6 63 163 front 38.6 3560

15 24 1568 24.1 72 165 front 39.4 2560

16 31 1570 23.6 59 162 end 39.7 3070

17 22 620 23.9 73 1529 31.9 81 168 end 41.1 3930

18 38 656 22.4 77 1385 31.1 82 167 end 41.3 3710

19 26 665 23.1 83 664 30.4 84 165 front 37.1 2860

20 32 757 22.4 68 756 30.6 72 162 end 39.7 3500

21 29 774 25.0 77 775 31.1 83 171 front 41.6 3180

22 32 806 22.4 85 805 30.1 89 158 end 41.1 3700

23 31 907 21.4 78 908 30.4 80 163 end 38.6 2360

24 28 958 22.3 79 956 30.3 82 173 end 40.0 3350

25 32 1011 22.4 70 1010 30.6 75 175 front 41.0 4380

26 35 1081 23.1 69 1079 30.9 72 157 front 37.0 2810

27 28 1124 24.4 65 1527 31.6 71 166 front 41.0 3250

28 33 1180 22.6 61 1179 30.4 64 161 front 39.6 3260

29 27 1185 22.3 62 1184 30.4 65 160 end 40.6 3590

30 33 1243 23.7 66 1238 31.6 62 166 end 40.7 3240

31 27 1361 23.1 80 989 30.9 85 170 end 40.4 3810

32 34 1388 22.4 68 1254 31.3 71 172 front 41.0 3720

33 34 1416 23.3 68 1510 30.3 69 155 end 41.3 3700

34 24 1444 22.7 74 1059 30.6 78 175 front 39.4 3020

35 29 1449 22.9 71 1040 30.9 75 163 end 38.0 3580

36 25 1599 22.1 68 668 31.0 71 175 end 39.6 2820

37 42 1680 23.9 72 865 31.1 80 169 front 39.7 3195

38 30 1698 22.3 72 799 31.3 76 170 end 41.0 3550

39 27 606 30.6 50 161 front 40.4 2710

40 32 629 31.0 63 163 front 41.1 3510

41 26 720 30.4 135 168 end 41.1 3960

42 32 784 31.7 71 160 end 38.6 2200

43 34 790 30.0 68 170 front 41.0 3190

44 27 811 31.6 67 157 end 41.7 4130

45 27 871 30.9 75 170 end 40.0 3090

46 32 924 30.9 76 178 front 41.1 3665

47 30 925 30.6 88 168 end 37.3 3560

48 40 1049 30.7 66 162 end 39.0 3385

49 29 1052 31.7 68 171 end 39.4 3320

50 29 1101 31.3 78 165 front 41.7 4450

51 31 1122 31.9 60 167 end 40.7 3300

52 21 1306 31.6 73 167 end 41.7 3400

53 25 1324 30.3 64 164 front 37.4 2820

54 30 1488 31.0 107 170 front 37.4 3550

Continued
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the accompanied clinical information of the participant. An example of the comments section of the .hea files 
for a selected record is shown in Fig. 4. This comments section contains the following information: record ID, 
type of delivery (Induced, Cesarean, or Induced-cesarean), gestation age in weeks, recording time in weeks, 
age of the participant in years, weight at the recording time in kg, placental position (front/end), height of 
the participant in cm, newborn weight in g, and ID of the pair record (if records were collected early and later 
during pregnancy). Tables 2–4 contain the general data and accompanied clinical information (the contents of 
the comments section of the .hea files) of the participants ending in induced (Table 2), cesarean (Table 3), and 
induced-cesarean (Table 4) delivery.

The records of the ICEHG DS are also available in MATLAB format (.mat signal and .hea header files) in the 
icehgdsmat sub-directory.

technical Validation
The EHG records were recorded in clinical environment. A researcher stayed with the participants throughout 
during recording. There were no limitations for the participants regarding talk or changing the position. The only 
request was not to make fast moves. The researcher continuously monitored signals and the equipment, and peri-
odically, attachment of the electrodes. If the signal traces seemed to be very noisy (spikes, sudden step changes, 
signal bursts not related to contractions), all the electrode connections were verified and connections improved. 
During recording, the researcher did not record, nor annotate, contractions experienced by participant, fetal move-
ments, other contraction-like electrical activities (signal bursts), noise due to movements of the participant (move-
ment artifacts) like spikes and sudden step changes, nor other noise due to, e.g., smile or cough. Unfortunately, 
severe noise and artefacts appeared in some records, therefore not all EHG records were usable for the final dataset.

The EHG records of the final dataset were carefully selected from the pool of EHG records of which preg-
nancies ended in induced, cesarean, or induced and cesarean delivery. For the final selection of the records, the 

Induced 
deliveries Age

Early 
record

Recording 
time (early)

Weight 
(early)

Later 
record

Recording 
time (later)

Weight 
(later) Height

Placental 
position Gestation

Newborn 
weight

Pregnancy 
No. [year] ID [week] [kg] ID [week] [kg] [cm]

[front/
end] [week] [g]

55 32 1525 31.9 70 158 end 40.1 3480

56 32 1562 31.4 61 168 front 38.0 3450

57 35 1565 31.7 77 170 front 39.0 2540

58 28 1638 30.7 82 173 end 41.0 3270

59 24 1692 31.6 67 160 end 41.3 3140

Mean 30.7 22.9 70.7 31.0 75.2 165.5 39.8 3344

Std. 4.3 0.8 10.4 0.5 13.5 5.5 1.4 518

Table 2. General data and accompanied clinical information (the contents of the .hea files of the EHG records 
of the ICEHG DS) of the participants with pregnancies ending in induced delivery. Early and later: recorded 
around the 23rd and 31st week of pregnancy.

Cesarean 
deliveries Age

Early 
record

Recording 
time (early)

Weight 
(early)

Later 
record

Recording 
time (later)

Weight 
(later) Height

Placental 
position Gestation

Newborn 
weight

Pregnancy 
No. [year] ID [week] [kg] ID [week] [kg] [cm]

[front/
end] [week] [g]

60 32 666 22.4 113 170 end 40.7 4070

61 31 976 21.7 83 180 front 40.9 4050

62 30 1089 21.9 62 160 front 38.9 2710

63 25 1187 21.9 77 166 end 39.9 4120

64 34 1443 23.0 78 173 end 38.9 3800

65 25 657 23.0 85 654 30.3 90 170 end 40.9 4110

66 27 673 24.9 75 675 30.6 79 173 front 39.1 3630

67 31 814 23.1 72 851 30.9 75 160 end 40.7 3720

68 32 885 23.3 67 714 30.7 72 168 end 40.3 4000

69 26 1175 22.1 66 1650 31.0 74 165 end 39.3 3300

70 32 1393 21.6 88 1580 30.4 93 167 front 40.6 3390

71 29 1373 31.3 91 178 end 37.1 3110

72 32 1623 31.4 70 171 front 39.0 3010

Mean 29.7 22.6 78.7 30.8 80.5 169.3 39.7 3617

Std. 3.0 1.0 14.0 0.4 9.4 6.0 1.1 473

Table 3. General data and accompanied clinical information (the contents of the .hea files of the EHG records 
of the ICEHG DS) of the participants with pregnancies ending in cesarean delivery. Early and later: recorded 
around the 23rd and 31st week of pregnancy.
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original EHG signals, and the filtered versions of the original EHG signals (using a four-pole digital band-pass 
Butterworth filter with the cut-off frequencies at 0.08 Hz and 5.0 Hz, applied bidirectionally), were thoroughly 
checked, i.e., visually inspected in time domain for the signal quality. Only those EHG records with relativly 
clean signals were included in the final ICEHG DS. Those EHG records showing lose of signal, extreme spikes, 
sudden step changes, or severe noise (bursts) of unreasonable high amplitude and duration, in their signals, or in 
the filtered versions of the signals, were rejected. An example of clean EHG signals (no lose of signal, no spikes, 
no sudden step changes, or severe noise) of a selected EHG record is shown in Fig. 2.

The technique of visual inspection of signals used in this study for selection of the final EHG records of 
the ICEHG DS is the same as that which was used for selecting the EHG records of our previously developed 

Ind-
cesarean 
deliveries Age

Early 
record

Recording 
time (early)

Weight 
(early)

Later 
record

Recording 
time (later)

Weight 
(later) Height

Placental 
position Gestation

Newborn 
weight

Pregnancy 
No. [year] ID [week] [kg] ID [week] [kg] [cm]

[front/
end] [week] [g]

73 28 571 23.1 61 165 front 40.4 3350

74 27 759 24.3 42 147 end 39.1 2850

75 33 959 23.7 77 159 end 38.7 3580

76 33 1091 23.7 77 171 end 40.1 3700

77 35 1131 23.7 64 165 end 41.0 3510

78 29 1682 24.0 59 162 front 40.1 3470

79 37 650 22.9 70 647 30.3 74 160 end 37.4 3300

80 33 985 22.4 65 1141 30.6 68 176 front 38.6 3110

81 27 1019 22.9 64 1430 33.9 69 171 end 38.1 2910

82 25 1053 22.4 68 1473 31.1 72 168 end 38.6 3120

83 37 1098 22.9 73 1096 30.7 76 158 front 38.9 3620

84 35 1330 23.0 58 1655 30.9 58 167 front 40.1 3390

85 32 1530 23.6 59 1218 31.7 62 162 end 39.4 3100

86 26 763 31.7 87 169 end 39.7 3660

87 24 1117 31.0 85 162 end 39.1 2780

88 28 1193 30.3 68 160 end 39.4 3980

89 30 1255 31.1 76 177 end 39.7 4140

90 25 1390 30.9 62 174 end 39.7 3430

91 27 1439 30.9 71 160 front 39.6 3540

Mean 30.1 23.3 64.4 31.2 71.4 164.9 39.4 3397

Std. 4.2 0.6 9.4 0.9 8.5 7.3 0.9 361

Table 4. General data and accompanied clinical information (the contents of the .hea files of the EHG records 
of the ICEHG DS) of the participants with pregnancies ending in induced-cesarean delivery. Early and later: 
recorded around the 23rd and 31st week of pregnancy.

Fig. 3 The contents of the RECORDS_cesarean file. Each raw correspons to a pregnancy ending in cesarean 
section and contains the name (and sub-directory name) of early and/or name (and sub-directory name) of 
later EHG record of the pregnancy. Columns correspond to all early, and all later, cesarean EHG records. A zero 
indicates that no early, or later, EHG record for that pregnancy exists.

https://doi.org/10.1038/s41597-023-02581-6


9Scientific Data |          (2023) 10:669  | https://doi.org/10.1038/s41597-023-02581-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

TPEHG DB and TPEHGT DS. Both, the TPEHG DB and TPEHGT DS, have already been successfuly used by 
many research groups, and resulted in a large number of valuable studies (see Background & Summary sec-
tion). Moreover, the EHG records of the ICEHG DS have already successfully been used in one of our studies63. 
Therefore, we conclude that the technique of visual inspection of signals is reliable.

Usage Notes
The ICEHG DS is intended to study physiological mechanisms involved during pregnancy that lead to induc-
tion, cesarean section, or both. Characterization and separation of the EHG records of the ICEHG DS can 
answer a question whether the induced and cesarean section delivery modes can be predicted early, already in 
the 23rd, or later, in the 31st week of pregnancy.

Moreover, the ICEHG DS is intended to provide more realistic pool of EHG records ending in term delivery. 
Since the same acquisition protocol and the same recording device were used in TPEHG DB15,16 (https://phys-
ionet.org/content/tpehgdb/), TPEHGT DS16,23 (https://physionet.org/content/tpehgt/), and in the ICEHG DS62, 
the EHG records of the ICEHG DS can be used alongside term spontaneous, early and later, EHG records of the 
TPEHG DB and TPEHGT DS to better understand the underlying physiologic mechanisms leading to different 
kinds of term delivery modes. Furthermore, adding the preterm spontaneous, early and later, EHG records of 
the TPEHG DB and TPEHGT DS can answer a question how the characteristics of EHG records of the induced 
and cesarean section delivery modes influence the understanding of the underlying mechanisms responsible for 
preterm birth. Such a composed pool of EHG records from all three database/datasets will provide a robust and 
more realistic evaluation of non-invasive automatic or semi-automatic methods for predicting preterm birth. 
(Note that the EHG records of these three database/datasets contain the same three bipolar signals S1, S2, and S3).

Table 5 summarizes the numbers of uterine EHG records contained in the ICEHG DS, and in our previously 
developed TPEHG DB and TPEHGT DS, with regard to the period of recording (early, later) and delivery mode. 
The percentages of EHG records in the three EHG database/datasets per delivery mode match the estimated per-
centages of types of deliveries in the real world only to a certain degree. According to WHO1, about 10 percent of 
all pregnancies end in preterm birth. Considering the three EHG database/datasets, they contain 11.3% of preterm 
spontaneous EHG records. According to NHS Maternity Statistics65, spontaneous delivery is the most common 
delivery, and has decreased from 66% to 47% in the period from 2011/12 to 2021/22. The three EHG database/data-
sets contain 72.1% of preterm spontaneous and term spontaneous EHG records. Furthermore, according to NHS 
Maternity Statistics65, induced deliveries has increased from 22% to 33% in the period from 2011/12 to 2021/22, 
and cesarean deliveries has increased from 12% to 20% in the period from 2011/12 to 2021/22. The three EHG 
database/datasets contain 17.9% of induced, 4.2% of cesarean, and 5.8% of induced and cesarean EHG records.

In the EHG records of the ICEHG DS three bipolar original EHG signals are stored. The first, S1, was meas-
ured between the upper two electrodes (see Fig. 1), the second, S2, between the left two electrodes, and the third, 
S3, between the lower two electrodes. Signal S1 and signal S3 estimate the uterine electrical activity in the hori-
zontal direction, while signal S2 in the vertical direction. In order to better characterize the electrical activity in 
the vertical direction, the users of the ICEHG DS (and of the TPEHG DB and TPEHGT DS) may synthetically 
derive the fourth bipolar signal, S4, to estimate the uterine electrical activity in the vertical direction between the 
right two electrodes E4 and E1, S4 = E4 − E1. Since S1 = E2 − E1, S2 = E2 − E3, and S3 = E4 − E3, and using 
E4 = S3 + E3 and E1 = E2 − S1, it follows that:

= − = + − + = − + .S E E S E E S S S S4 4 1 3 3 2 1 1 2 3 (1)

Similarly, bipolar signals estimating the uterine electrical activity in both diagonal directions, between the 
electrodes E2 and E4, and between the electrodes E1 and E3, can be derived.

The discrepancies between synthetically derived signal, S4, and the signal as it would be actually measured 
between the right two electrodes E4 and E1, are negligible. The estimated discrepancy between the calculated, 
S4, and actually measured signal, i.e., the standard deviation between the samples of these two signals (calculated 

Fig. 4 The comments section of the icehg1185.hea file of the record icehg1185 (induced, delivery in the 41st 
week, recorded early in the 22nd week of pregnancy, the pair record, recorded later, is icehg1184).
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throughout the 30-minute signals), is less than the difference between two adjacent integer values (0.076 μV) of 
the signal amplitudes (1 mV/13107 = 0.076 μV, where 13107 is the calibration constant relating to 1 mV), and 
close to the quantization error (0.038 μV) of the A/D converter.

The unipolar EHG signals, as measured at the electrodes E1, E2, E3, and E4, are not stored in the EHG 
records, nor it is possible to synthetically derive them form the bipolar signals S1, S2, and S3.

It is good idea to set the values of signal samples of the first and last 150 seconds of the filtered version of the 
signals to zero (or to reject them) due to the transient effects of the Butterworth filter which was used bidirec-
tionally for filtering the signals.

Besides the generic WFDB (WaweForm Software Package) software package (https://www.physionet.org/
content/wfdb/), which was used to derive the EHG records of the ICEHG DS, the users can also use PhysioNet’s 
WFDB for MATLAB and Octave (https://www.physionet.org/content/wfdb-matlab/) and WFDB for Phython 
(https://www.physionet.org/content/wfdb-phython/) for the efficient further analysis of the records of the 
ICEHG DS. The records of the ICEHG DS are already readily available in MATLAB format in the icehgdsmat 
sub-directory. Moreover, the users can use LightWAVE, PhysioNet’s on-line signal viewer and annotation editor 
(https://www.physionet.org/lightwave/).

Code availability
During development of the ICEHG DS, the generic WFDB (WaweForm Software Package) software package 
(https://www.physionet.org/content/wfdb/), and WFDB for MATLAB and Octave (https://www.physionet.org/
content/wfdb-matlab/), of the PhysioNet’s open-source repository were used.
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