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Screening of Microbial Volatile 
Organic Compounds for Detection 
of Disease in Cattle: Development 
of Lab-scale Method
Devin L. Maurer1, Christine K. Ellis2, Tyler C. Thacker   3, Somchai Rice   1, Jacek A. Koziel   1, 
Pauline Nol4 & Kurt C. VerCauteren2

The primary hurdle for diagnosis of some diseases is the long incubation required to culture and confirm 
the presence of bacteria. The concept of using microbial VOCs as “signature markers” could provide a 
faster and noninvasive diagnosis. Finding biomarkers is challenging due to the specificity required in 
complex matrices. The objectives of this study were to (1) build/test a lab-scale platform for screening 
of microbial VOCs and (2) apply it to Mycobacterium avium paratuberculosis; the vaccine strain of 
M. bovis Bacillus Calmette-Guérin; and M. kansasii to demonstrate detection times greater those 
typically required for culture. SPME-GC-MS was used for sampling, sample preparation, and analyses. 
For objective (1), a testing platform was built for headspace sampling of bacterial cultures grown in 
standard culture flasks via a biosecure closed-loop circulating airflow system. For (2), results show that 
the suites of VOCs produced by Mycobacteria ssp. change over time and that individual strains produce 
different VOCs. The developed method was successful in discriminating between strains using a pooled 
multi-group analysis, and in timepoint-specific multi- and pair-wise comparisons. The developed 
testing platform can be useful for minimally invasive and biosecure collection of biomarkers associated 
with human, wildlife and livestock diseases for development of diagnostic point-of-care and field 
surveillance.

Bovine tuberculosis (bTB) is a zoonotic disease of international public health, trade, agricultural, and wildlife 
management significance1,2. The disease is caused by Mycobacterium bovis, a member of the Mycobacterium 
tuberculosis complex3–5. It is estimated that in 2014, 9.6 million new cases human tuberculosis (hTB) and 1.5 
million associated deaths occurred worldwide6, with the majority caused by M. tuberculosis; however, zoonotic 
tuberculosis is often under-reported. Muller et al. 2013 reported that approximately 10–37% of hTB cases may be 
caused by M. bovis infection, especially in developing countries where the prevalence of livestock bTB may reach 
10–14%7–12.

A primary hurdle for mycobacterial disease diagnosis is the long incubation time required to culture and con-
firm the presence of mycobacteria in biological samples. Culture may take approximately eight weeks before final 
results can be confirmed. Several in vitro blood based tests (i.e., interferon-ɣ release assay) have been developed 
to confirm that an individual has been exposed to mycobacteria. However, these tests suffer from cross-reactivity 
with closely related non-tuberculous mycobacteria resulting in false positive test results. Development of tech-
nologies to reduce the time between the start of culture, detecting growth, and positively identifying the myco-
bacterial agent will improve both the diagnosis and appropriate treatment of infected humans, and eradication of 
bTB from wildlife and livestock.

In recent years increased attention has been given to the concept of using microbial volatile organic compound 
(VOC) emissions as “signature markers” (a.k.a. biomarkers) for faster, more economical, and noninvasive disease 
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diagnosis in humans and animals. These VOC emissions may be collected from breath, blood, skin, urine, feces 
and other bodily secretions. Studies have identified potential VOC biomarkers related to multiple diseases such 
as cholera, cancer, diabetes, uremia, schizophrenia, asthma, liver disease, chronic lung disease, Pseudomoniasis, 
tuberculosis, and others13–16. Several methods of collecting and analyzing VOCs for potential diagnosis of M. 
tuberculosis and M. bovis have been described. Closed loop stripping analysis (CLSA) - gas chromatography- 
mass spectrometry (GC-MS) was used to detect VOCs from multiple strains of M. tuberculosis from cultures17, 
and select ion flow tube (SIFT)-MS has been used to measure VOCs present in the headspace of M. bovis BCG 
cultures18 and to measure VOCs in the breath of children with cystic fibrosis14, NH3 levels in human breath for 
Helicobacter pylori screening, and detect acetonitrile levels in smokers’ breath19.

Electronic ‘e-nose’ technology has been used for detection of VOCs present in sputum samples collected 
from humans infected with M. tuberculosis14, and VOCs from the headspace of cultures of M. bovis BCG and M. 
smegmatis18. ‘E-nose’ has also been reported capable of differentiating between M. tuberculosis, three other bac-
teria, and a control19, monitoring smokers’ habits by measuring breath CO, detecting H. pylori presence in asso-
ciation with chronic gastritis, and detecting N2O produced by respiratory inflammation16. Thermal desorption 
(TD)-GC-MS has been used to determine VOCs present in the headspace of M. bovis BCG cultures18, and cattle 
breath20; and solid-phase microextration (SPME)-GC-MS was used to determine biomarkers M. tuberculosis 
and M. bovis in cultures and M. tuberculosis in human breath21,22. Other methods that have been used to collect 
VOCs associated with diseases that could be utilized in the future for TB detection include ion mobility spec-
trometry (IMS)14,23, proton transfer reaction (PTR)-MS14–16, and laser spectroscopy24. Select ion flow tube-MS, 

Figure 1.  Minimization of interfering background VOCs from the lab-scale testing platform. Note: n = 3 for 
“after pump Neoprene tubing 18 h bake-out at 110 °C”, all others n = 4.

Figure 2.  Cloud plot of 33 significantly different ions found in VOCs emitted from tested cultures. (Darker 
color = lower p-value; larger circle = greater fold change).
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‘e-noses’, IMS, PTR-MS have the advantage of being fast and potentially mobile. The downside of these methods 
includes decreased sensitivity, and the inability to chemically identify or profile VOCs. GC-MS-based methods 
may be slower, more expensive, and the instrumentation is not typically mobile; however, they have the advantage 
of being able to reproducibly identify and profile known and unknown microbial VOCs at low concentration 
ranges14,16.

Solid-phase microextration is an attractive technology for collecting microbial VOCs due to its simplicity, ease 
of use, and ability to sample and pre-concentrate a wide range of potential target compounds. Dynamic head-
space extraction of VOCs can increase mass transfer to the SPME fiber compared to static headspace extraction, 
thus, reducing sampling times while improving mass loading of the fiber25,26. In contrast, both CLSA and TD are 
capable of pre-concentrating VOCs but require extra equipment and are more labor intensive than SPME. Syhre 
et al.21 collected VOCs from seven mycobacterial and 16 other respiratory pathogen cultures using three differ-
ent SPME fiber types; 100 µm polydimethylsiloxane (PDMS), 2 cm 50/30 µm divinylbenzene (DVB)/Carboxen/
PDMS, and 70 µm Carbowax/DVB. The SPME fiber coated with 2 cm 50/30 µm DVB/Carboxen/PDMS was found 
to recover higher concentrations of all target VOCs. Other studies have utilized the 50/30 µm DVB/Carboxen/
PDMS-type and Carboxen/PDMS-type SPME fiber coatings for microbial VOC collection in human and cattle 
breath samples22,27,28, in bovine nasals excretions29, and in bovine fecal excretions from cattle vaccinated with 
M. bovis challenge30. SPME has been also used for the in-vivo and in-vitro collection of rumen gases31,32, VOCs 
emitted from wildlife marking fluids33,34, decaying carcasses35.

The objectives of this research were to (1) design, build, and test a lab-scale dynamic VOC sampling plat-
form specifically capable of simultaneous biosecure SPME collection of headspace VOCs emitted from con-
trolled bacterial cultures and a media control; (2) apply this screening method to M. avium paratuberculosis 
(MAP); the vaccine strain of M. bovis Bacillus Calmette-Guérin (BCG); and M. kansasii cultures to demonstrate 
a proof-of-concept detection method that is faster than standard culture methods.

Our first working hypothesis was that by sampling the recirculating culture headspace air, we would be able to 
detect trace-levels of microbial VOCs early in the incubation process with minimal background interference. Our 

Figure 3.  Weekly trends of three compounds found in M. bovis Bacillus Calmette-Guérin (BCG) cultures. 
Note: (A): Compound 1 identified at retention time 4.250 min, (B): Compound 2 identified at retention time 
9.286 min, (C): Compound 3 identified at retention time 17.080 min. Black solid line: Replicate 1, Dotted black 
line: Replicate 2, Gray solid line: Replicate 3.
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second hypothesis was that SPME sampling of microbial VOCs followed by GC-MS analysis would be suitable to 
detect differences in microbial VOCs emitted by different cultured strains of mycobacteria.

If successful, this proof-of-concept identification of VOC biomarkers would allow differentiation between 
the microbial agents prior to the eight weeks often required for cultured mycobacterial strain identification. The 
knowledge gained from this work could be directly applied for diagnosis of hTB and bTB, for detection and 
identification of VOC biomarkers produced by culture of other pathogenic bacteria, and as a reference library 
for pathogen-produced VOCs present in other samples such as breath, feces, urine, blood, and other biofluids.

Results and Discussion
Reducing interfering background VOCs in lab-scale testing platform.  To minimize the VOC back-
ground and improve the likelihood of finding unique microbial VOCs for Objective 2 the prototype sampling 
platform was exposed to an initial 21 h bake-out at 50 °C, which only decreased the background slightly. After 
bake-out of the Neoprene tubing, system background emissions were reduced by 75% (Fig. 1). Background emis-
sions present in the microbial growth media were also determined as reproducible and necessary background 
populated by numerous VOCs with relatively low peak areas.

Multi-group analysis of single ion data.  A total of 123 fragmentation ions were identified by XCMS 
Online, with 33 meeting the criteria for statistical significance (α = 0.05; fold change ≥1.5). Visualization of the 
statistically significant ion feature characteristics are depicted by XCMS Online as a cloud plot (Fig. 2)36. Briefly, 
all sample chromatograms were aligned and overlaid onto the x-axis. Significant ion features are identified as 
circles, with ions with greatest m/z ratios located furthest from the x-axis. Circle size is proportional to the degree 
of fold change (larger circle = greater fold change), while color intensity corresponds to the statistical significance 
(p-value) of the fold change as calculated by a Welch t-test with unequal variances (darker color = lower p-value).

Identification of culture specific peak area data.  Statistically significant ion intensities were matched 
by retention time to 77 total ion chromatographic (TIC) peaks. For each culture, trends in the changes of potential 
VOCs TIC intensities across the three time-points in each of the replicates were graphed. This allowed identifi-
cation of ten VOC compounds with consistent, repeatable changes across time in each of the three replicates (3 
studies) (Figs 3, 4 and 5).

Tentative identification of biomarkers.  Tentative identifications of peaks and associated information are 
summarized in Table 1. Tentatively identified compounds include two aldehydes (octanal, decanal); two alkanes 
(3,3-dimethyl hexane, tetradecane); three benzenes (benzene, ethylbenzene, styrene); one dicarboxylic acid 
(pentanedioic acid, 2,4-dimethyl dimethyl ester); one isothiocyanate (cyclohexane, isothiocyanate); two ketones 
(2-pentanone, acetophenone); and one oxotane (lilac aldehyde B). Two unique (benzene, acetophenone) and 
one shared (ethylbenzene; with MAP) are identified in BCG cultures. Two shared compounds (2-pentanone, 
M. kansasii; ethylbenzene, BCG) are associated with MAP cultures, while four unique (styrene; pentanedioic 

Figure 4.  Weekly trends of two compounds identified in Mycobacterium avium paratuberculosis cultures. 
Note: (A): Compound 1 identified at retention time 5.309 min, (B): Compound 2 identified at retention time 
9.286 min. Solid black line: Replicate 1, Dotted black line: Replicate 2, Solid gray line: Replicate 3.
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acid, 2, 4-dimethyl, dimethyl ester; 3,3-dimethyl hexane; cyclohexane, isothiocyanate) and one shared compound 
(2-pentanone, MAP) are associated with M. kansasii cultures. Four unique compounds (octanal, decanal, tetrade-
cane, lilac aldehyde D) appear in the control media.

Figure 5.  Weekly trends of five compounds identified in M. kansasii cultures. Note: (A): Compound 
1 identified at retention time 5.309 min, (B): Compound 2 identified at retention time 11.344 min, (C): 
Compound 3 identified at retention time 18.769 min, (D): Compound 4 identified at retention time 19.048 min, 
(E): Compound 5 identified at retention time 20.114 min. Black solid line: Replicate 1, Dotted black line: 
Replicate 2, Solid gray line: Replicate 3.
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The four compounds unique to the control media were removed from further evaluation, leaving ten 
mycobacterial-associated compounds to evaluate for potential bacterial metabolic or physiologic associations 
(Table 2).

There has been little research exploring the metabolic pathways of M. bovis BCG, MAP, and M. kansasii, 
therefore, published literature exploring the metabolome of M. tuberculosis complex and environmental strains 
of mycobacteria were considered sources for comparison (Table 3).

Mean Retention 
Time (min) BCG MAP Control M. kansasii Compound

Five Most Abundant Ions/Relative 
Abundance

4.250 X Benzene 78/999, 77/283, 51/221, 50/208, 52/118

5.309 X X 2-Pentanone 43/999, 89/197, 41/138, 58/98, 71/91

9.286 X X Ethylbenzene 91/999, 106/282, 51/114, 65/113, 77/99

11.344 X Styrene 104/999, 103/485, 78/464, 51/267, 77/219

13.134 X Octanal 48/999, 44/808, 41/670, 56/657, 84/550

17.788 X Acetophenone 105/999, 77/868, 51/378, 120/204, 43/179

18.333 X Decanal 43/999, 41/807, 57/621, 55/618, 44/539

18.769 X Pentanedioc acid, 2, 
4-dimethyl, dimethyl ester 69/999, 59/878, 128/814, 41/541, 73/480

19.048 X 3,3-dimethyl hexane 43/999, 57/636, 71/613, 85/501, 41/443

20.114 X Cyclohexane, isothiocyanate 55/999, 83/609, 41/531, 141/528, 82/284

21.495 X Tetradecane 57/999, 43/740, 71/643, 85/423, 41/261

21.743 X Lilac aldehyde D 55/999, 43/724, 41/532, 71/330, 93/317

Table 1.  Compounds allowing discrimination among three mycobacterial cultures and control media at 
three weekly time-points. Mycobacterium bovis Bacillus Calmett- Guérin (BCG) cultures contain two unique 
and one shared VOCs that allow good discrimination from the other cultures and control media. M. avium 
paratuberculosis (MAP) cultures are identified using two shared VOCs. M. kansasii is identifiable using four 
unique and one shared VOC. Culture media is discriminated from the cultures using four VOCs.

Mean Retention 
Time (min)

Mycobacterial 
culture Compound Potential Cellular and Metabolic Associations

3.681 M. kansasii Ethanol

Metabolized into acetyl CoA, used for energy in the citric 
acid cycle. Can be converted to acetaldehyde and then into 
acetic acid. Small amounts are endogenously produced via 
anaerobic fermentation43. Identified previously in MAP 
cultures48.

4.250 BCG Benzene Identified previously in M. tuberculosis cultures17, and 
MAP48,49.

5.309 M. kansasii
MAP 2-pentanone Identified in breath and feces of MAP infected goats50.

3-pentanone and methyl isopropyl ketone are isomer43.

9.286 BCG
MAP Ethylbenzene

Metabolite formed during degradation of styrene40. Some 
mycobacterial strains have been demonstrated capable 
of ethylbenzene degradation51,52. Identified previously in 
breath samples of M. tuberculosis infected humans53.

11.344 M. kansasii Styrene
M. tuberculosis is capable of degrading styrene under 
hypoxic conditions which may play a role in intracellular 
survival54. Identified previously in breath samples of M. 
tuberculosis infected humans53.

13.354 M. kansasii Octanal
A substrate for fatty aldehyde dehydrogenase and alcohol 
dehydrogenase43. Mycobacteria have been shown to utilize 
alcohol dehydrogenases in the biosynthesis of cell envelope 
lipids55,56.

17.788 BCG Acetophenone
By-product of ethylbenzene metabolism43

Has been identified different concentrations in feces of 
white-tailed deer (Odocoileus virginianus) vaccinated with 
BCG or infected with M. bovis57.

18.769 M. kansasii Pentanedioic acid, 2,4-dimethyl, 
dimethyl ester; (dimethyl glutarate)

19.048 M. kansasii 3,3-dimethyl hexane

20.114 M. kansasii Cyclohexane, isothiocyanate Isothyocyanates are formed by enzymatic conversion of 
glucosinolates which are synthesized from amino acids58

Table 2.  Potential cellular and metabolic sources of VOCs in three mycobacterial cultures. Potential cellular 
and metabolic sources of tentatively identified VOC compounds were identified for Mycobacterium bovis 
Bacillus Calmett- Guérin (BCG), M. avium paratuberculosis (MAP) and M. kansasii cultures.
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Conclusions
This study demonstrates a proof-of-concept for the detection and use of microbial VOCs as a means to discrim-
inate between mycobacterial cultures associated with one to three week post-culture inoculation, a time span 
preceding the time required to currently identify pathogenic M. tuberculosis and M. bovis in diagnostic cultures. 
To accomplish this task (Objective 1), a sampling system was designed, built, and tested for controlled collection 
of microbial volatiles using closed-loop headspace airflow over microbial cultures, sampling and sample prepara-
tion with SPME, analyte separation and identification via GC-MS, and tentative compound identification using 

Table 3.  Comparison of VOCs identified in this study with those reported in the literature as associated with 
various bacteria in cultures, human and cattle breath17,18,20–22,27,48,53,59–63. Note: aParatuberculosis (1331), M. 
bovis BCG (K10), M. kansasii (03-6931). bM. tuberculosis (H37Ra) and M. bovis (NCTC 10772); Also reported 
on BCG (Danish strain 1331), M. fortuitum (NCTC 10394), M. chelonae (NCTC 946), M. abcsessus (TMC 
1542), and at least five strains each of A. fumigatus, A. flavus, A. niger, A. terreus, Fusarium spp., P. Aeruginosa, 
Rhizopusarrhizus, S. apiospermum, C. albicans, Burkholderiacepacia, P. Fluorescens, Staphylococcusaureus, E. 
coli, S. pneumoniae, Moraxellacatarrhalis, and H. influenza. Only reported VOCs that were distinctive to M. 
tuberculosis &M. bovis. cAlso reported on non-TB mycobacteria: Nocardia spp, N. africana, M. smegmatis, 
M. aurum, M. neoaurum, M. aichiense, M. scrofulaceum, M. avium ssp. avium, M. vaccae not reported here. 
dCulture (Lowenstein Jensen/glycerol, sheep blood agar and BacT/Alert MP media).

https://doi.org/10.1038/s41598-019-47907-w
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novel metabolomics databases and the NIST W8N08 library. The capability of this system to produce results 
more efficiently than some currently utilized diagnostic modalities such as culture exemplifies its potential use 
as a diagnostic tool. The lab-scale testing platform concept can be useful for minimally invasive and biosecure 
collection of marker volatiles associated with human, wildlife and production animal diseases for development of 
diagnostic non-invasive point-of-care tools, field surveillance technologies and strategies.

Objective 2 provided a comprehensive assessment of VOCs collected from the headspace of three different 
mycobacterial cultures and one control media sample. Discrimination between mycobacterial cultures was suc-
cessful one, two, and three weeks post-culture inoculation, a time span preceding the time required to currently 
identify pathogenic M. tuberculosis and M. bovis in diagnostic cultures. Unique VOCs representing potential bio-
markers were identified in two mycobacterial cultures (e.g., BCG, M. kansasii). No unique plausible biomarkers 
were identified for the MAP cultures; however, discrimination from the two other mycobacterial cultures was 
possible when the VOC profiles of all the cultures were examined in context.

From a diagnostic perspective, detection of VOCs produced by pathogenic mycobacteria at early states of 
culture growth could improve disease diagnosis and treatment, especially in developing countries where access 
to sophisticated laboratory diagnostics is limited. The capability to differentiate between human and zoonotic 
mycobacteria under such circumstances could improve the capability of physicians to more accurately diagnose 
tuberculosis patients, to differentiate between hTB and zoonotic bTB, and to appropriately dispense medication 
targeted toward the etiological disease agent.

Materials and Methods
Experimental design.  The experimental part of this study was carried out at the USDA-ARS National 
Animal Disease Center (NADC) and the Atmospheric Air Quality Laboratory of Iowa State University (ISU) in 
accordance with the Guide for the Institutional Animal Care and Use Committee. The protocol was approved 
by Iowa State University’s Institutional Animal Care and Use Committee (IACUC Log # 4-14-7787-B) and 
Institutional Biosafety Committee (ID: 14-I-015-A/H).

The proof-of-concept study was designed to determine variations and identify specific VOCs produced by 
growing mycobacterial cultures. Mycobacterial strains included M. avium paratuberculosis (MAP; Strain K10); M. 
bovis Bacillus Calmette-Guérin (BCG) (Danish 1331); and M. kansasii (Strain 03-6931). Approximately one opti-
cal density of each mycobacterial strain was added to respective 225 mL (culture surface area, 75 cm2) culture bot-
tles (430725, Corning®, Corning, New York, USA) containing 30 mL of Middlebrook 7H9 media enriched with 
10% Middlebrook OADC, 0.05% Tween-80 and 2 mg mL−1 of Mycobactin J. Cultures were incubated at 37 °C on 
the testing platform in an incubator for three weeks. Dynamic headspace samples of each culture bottle were col-
lected weekly with SPME. A control consisting of only growth media was used to determine “background” VOCs.

Lab-scale testing platform.  The lab-scale testing platform was designed, built and tested using several 
general lab use components. The reusable testing platform consisted of four Omegaflex FPU100 peristaltic pumps 
(Omega Engineering Inc., Stamford, CT, USA) to circulate air (average flow rate of 162 mL min−1) through each 
modified culture bottle in closed loops with each separate loop containing an inline ~13 mL, glass sampling 
bulb (28526-U, Supelco, Bellefonte, PA, USA) for SPME extraction (Fig. 6). Each closed loop was constructed 
from PTFE Teflon tubing from the pumps to the culture bottles, to the sampling bulbs, back to the pumps; and 
Neoprene tubing sections in the peristaltic pumps. The inlet and outlet fittings on each culture bottle included 
0.22 micron filters to prevent introduction of mycobacteria into the closed loop system and rendering the system 
to be self-contained and biosecure. The platform’s compact size enabled the entire system to be placed in an incu-
bator for optimal temperature for growing mycobacteria. The materials used to constuct the platform allowed 
relatively easy decontamination after and between-the-trials use.

Microbial volatile organic compounds.  A 2 cm 50/30 µm DVB/Carboxen/PDMS fiber (57348-U, 
Supelco, Bellefonte, PA, USA) SPME fiber was used to extract and pre-concentrate VOCs from circulating gas. 
Samples were collected by dynamic headspace extraction with SPME for 1 h at 37 °C using the lab-scale testing 
platform. After the sampling period, the SPME fiber with extracted VOCs was inserted into the 250 °C GC injec-
tor for 2 min for thermal desorption, sample introduction, analyte separation and analysis.

Figure 6.  Lab-scale testing platform for biosecure collection of microbial VOCs with SPME.

https://doi.org/10.1038/s41598-019-47907-w
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The multidimensional GC–MS-Olfactometry (MDGC-MS-O) system (Microanalytics, Volatile Analysis 
Corporation, Round Rock, TX, USA) used for analysis was equipped with two columns connected in series. The 
non-polar pre-column was 30 m × 0.53 mm i.d.; film thickness, 0.50 µm with 5% phenyl polysilphenylene silox-
ane stationary phase (SGE BPX-5) and operated with constant pressure mode at 13.5 psi (0.92 atm). The polar 
analytical column was 30 m × 0.53 mm bonded polyethylene glycol (PEG) embedded in a synthetic glass (SGE 
SolGel-Wax) at a film thickness of 0.50 µm. System automation and data acquisition software were MultiTraxTM 
V. 10.1 (Microanalytics, Volatile Analysis Corporation, Round Rock, TX, USA) and ChemStation™ (Agilent 
Technologies, Santa Clara, CA, USA). The GC run parameters were as follows: injector, 250 °C; column, 40 °C 
initial, 3 min hold, 7 °C min−1 ramp to 240 °C final, 8.43 min hold; carrier gas, UHP-grade helium (99.999%). The 
GC was operated in a constant pressure mode where the mid-point pressure, i.e., pressure between pre-column 
and analytical column, was always at 5.7 psi (0.39 atm) and the heart-cut sweep pressure was 5.0 psi. This type 
of columns configuration (in series with different polarity) does not lend itself to a classic retention index (RI) 
approach for tentative compound identification with n-alkanes. The MS full scan range was 34 to 150 m z−1. 
Spectra were collected at 2 scans s−1 using full scan. The quadrupole MS was set to electron ionization (EI) mode 
with ionization energy of 70 eV. MS tuning was performed using the default autotune setting using perfluoro-
tributylamine (PFTBA) daily.

Reducing interfering background VOCs in lab-scale testing platform.  After construction, the plat-
form’s background VOCs were initially baked-out for 21 h at 50 °C (the maximum temperature that some plastic 
components in the platform could withstand) The Neoprene tubing in the peristaltic pumps was removed from 
the platform and baked-out separately at 110 °C for 18 h to remove any VOCs the might be released into the 
closed platform loop.

Data analysis.  Cultures were identified in raw data as culture 1–4 and sample collection time-point (Week 
1, Week 2, Week 3) until the data analysis was complete to prevent bias. Total ion chromatograms (TICs) from all 
cultures at all time-points were analyzed using the multi-group comparison feature in XCMS Online to identify 
peak ion abundances that differed between the cultures at each time-point37. Statistically significant ion inten-
sities were matched to GC column retention time chromatographic peaks using Agilent Mass Hunter software 
(Agilent Technologies, Santa Clara, CA, USA). Peak areas were determined using the TICs. Peak area data for 
each culture at each replicate and time-point were evaluated to determine the suite of VOCs best suited to pro-
vide optimal discrimination in multi-group and pair-wise comparisons. Peaks were tentatively identified using 
AMDIS deconvolution software38, the National Institute of Standards and Technology (NIST) W8N08 database39, 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database40–42, and the Human Metabolome Database 
(HMDB)43–46. Tentative compound identifications were made based on ≥65% match with compounds present in 
these libraries. Tentative metabolic sources for each compound were explored using KEGG, HMDB, and review 
of peer-reviewed literature47.
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