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Invasion front dynamics 
of interactive populations 
in environments with barriers
Youness Azimzade

Invading populations normally comprise different subpopulations that interact while trying to 
overcome existing barriers against their way to occupy new areas. However, the majority of studies 
so far only consider single or multiple population invasion into areas where there is no resistance 
against the invasion. Here, we developed a model to study how cooperative/competitive populations 
invade in the presence of a physical barrier that should be degraded during the invasion. For one 
dimensional (1D) environment, we found that a Langevin equation as dX/dt = Vf t +

√

Df η(t) 
describing invasion front position. We then obtained how Vf  and Df  depend on population interactions 
and environmental barrier intensity. In two dimensional (2D) environment, for the average interface 
position movements we found a Langevin equation as dH/dt = VHt +

√
DHη(t) . Similar to the 1D 

case, we calculate how VH and DH respond to population interaction and environmental barrier 
intensity. Finally, the study of invasion front morphology through dynamic scaling analysis showed 
that growth exponent, β , depends on both population interaction and environmental barrier intensity. 
Saturated interface width, Wsat , versus width of the 2D environment (L) also exhibits scaling behavior. 
Our findings show revealed that competition among subpopulations leads to more rough invasion 
fronts. Considering the wide range of shreds of evidence for clonal diversity in cancer cell populations, 
our findings suggest that interactions between such diverse populations can potentially participate in 
the irregularities of tumor border.

Invasion is a generic process that emerges across different scales and  populations1,2. During the invasion, new, 
possibly fitter species occupy further areas mostly at the expense of extinction of existing populations, putting 
the existing populations in danger. As such, understanding how invasion happens and what related parameters 
regulate it is of great interest across different  fields3–5. The invasion has been under investigation for about a cen-
tury by mathematicians and  physicists6. Yet, many questions remained to be tackled, particularly where invasion 
and evolutionary processes are  interrelated7.

When tumor cells invade into surrounding tissues, invasion becomes a concerning health threat. Thus, under-
standing the tumor invasion is not only of theoretical interest, but it also can reveal driving mechanisms behind 
aggressive  behavior8. In invasive tumors, cancer cells take over the host tissue by pushing existing healthy  cells9 
and degrading the physical structure of extracellular matrix (ECM)10–12 alongside various chemical and mechani-
cal  interactions13,14. Facing such a barrier can affect the evolutionary dynamics of tumors in different  aspects15,16. 
More importantly, tumor cells that push the healthy tissue belong to different  clones17. These subpopulations 
may  cooperate18–21 or  compete22–24 with each other during their way to invade the surrounding healthy  tissue25. 
Despite huge literature on clonal diversity in tumors, it is not clear that how such interactions regulate invasion 
and how the intensity of environmental barriers restricts invasion.

For the invasion that emerges as a result of consecutive duplication and migration of species, one can  write6,26 
Ċ = R(C)C +∇(D∇C) where C, R and D represent population density, duplication rate and diffusion constant, 
respectively. Such a model predicts that invasion happens through traveling Fisher’s waves with velocity of 
Vf = 2

√
RD . Adding number fluctuations to this model leads to fluctuations in propagating waves. For most 

cases, a Langevin equation provides appropriate representation for these invasion fronts. Thus, for invasion front, 
X, one can write dX/dt = Vf t +

√

Df η(t) where η is noise and �η(t)η(t′)� = δ(t − t ′)27–29. Such analysis suggests 
that by finding Vf  and Df  one can describe invasion at least in 1D environments. In two or higher dimensions, 
invasion fronts can exhibit additional features such as roughness that can provide additional information  too30,31.

The geometry of tumor cells’ invasion front has been studied from different perspectives. Part of this interest 
originated from the observation that the geometry of the invasion front is associated with adverse outcomes 
such as shorter survival  time32,33. However, it is not clear how the geometry of the invasion front participates in 
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poor clinical outcomes. On the other hand, the notion that invasion front geometry might reveal the driving 
mechanism behind the  invasion34,35 has sparked various studies on scaling properties of cancer cells invasion 
front in vivo36–38 and using different mathematical  models39–43. Despite the development of a diverse range of 
models on tumor invasion, clonal interaction remained overlooked.

Motivated by interactions for cancer cells and inspired by a model on cooperative populations in the presence 
of environmental  barriers44, we developed a model to study how environmental stress regulates invasion front 
of interactive species. For the 1D case, we tried to see whether any Langevin equation, as predicted by stochastic 
reaction-diffusion studies, does describe invasion front movements and then obtained corresponding depend-
encies on environmental stress for cooperative/competitive populations. For the 2D environment, after finding 
the Langevin equation of invasion front motion, we considered it a growing interface and studied how scaling 
exponents depend on environmental stress and inter-specific interactions.

Model
Here, we develop an individual-based model in which species live on lattice units. The single-species model 
in a 1D environment follows these rules: As the initial condition, one cell is located at the first unit. For time 
evolution, a unit will be selected randomly. Throughout this work, one time step is counted when the number 
of random selections reaches the number of units defined in the model. If the selected unit does contain a spe-
cies and there is an empty nearest neighbor (NN) (if the same species occupy both NNs, unit selection will be 
repeated), then (i) it decides to duplicate into an empty NN and would do so if that unit is occupiable. If the 
selected NN is not occupiable, the trial number for that NN, n, increases by one (barrier intensity decreases by 
one). (ii) Independent of the duplication process, the species decides to migrate to an empty NN and do so if 
the selected NN is occupiable. If the selected NN is not occupiable, the trial number for that unit, n, increases 
by one (barrier intensity decreases by one). (iii) Any unit would be occupiable after n ≥ N times being selected 
for migration or duplication where N is environmental barrier intensity (see Fig. 1a). Based on these rules, if a 
species lives in a unit with two empty and occupiable NNs, each one of them can be occupied by newly created 
species or through migration. First, the species decides to duplicate and choose one of the NNs to duplicate into 
it. Since both NNs are empty and occupiable, one of them randomly will be occupied by the species. Then, the 
initial species decides to migrate. One of the NNs will be selected and if the empty one gets elected, migration 
happens. If the filled unit is set for migration, the trial fails.

In the two-species model, for simplicity, we consider species to be able to occupy a unit simultaneously. Due 
to this assumption, they do not compete for space and interaction between species is limited to their mutual effort 
to degrade the environmental barrier at invasion  front44. As the initial condition, the first unit is occupied by two 
species. For time evolution, a unit is selected randomly. If the unit contains one species, it will evolve based on 
the rules mentioned above (i–iii). If the unit contains both species, one will be selected randomly for duplication 
and then the other one will be selected for duplication. For migration, again, one of the species will be selected 
to migrate first. In their interactions with the environment, we count their trials separately as n1 and n2 . For an 

Figure 1.  (a) Schematic illustration of the single-species model in one dimension. A unit randomly will be 
selected and duplication and migration trial happen independently. If the selected unit contains a species and 
two nearest neighbors are empty, the species duplicates into one and can migrate to the other one. The blue 
arrow shows the direction of upcoming migration to an empty nearest neighbor and the cyan arrow shows 
upcoming duplication into an empty nearest neighbor. The red arrow shows a failed trial to occupy an empty 
nearest neighbor. While this attempt has failed, the strength of the barrier has decreased by 1. In a simple single-
species model, after n = N trials, the unit becomes occupiable. (b) Schematic illustration of the two-species 
model in one dimension. In a randomly selected unit, each species tries to occupy an empty nearest neighbor. 
We should have ζn1 + n2 > N or n1 + ζn2 > N for a unit to become occupiable. Migration and duplication 
happen similar to the single-species model. If the selected unit contains both species, one will be selected 
randomly for duplication (migration) first and then the other will be selected. However, since we do not include 
spatial exclusion, selection does not have a relevant role in the majority of cases.
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entirely cooperative scenario, if the number of trials on a unit together exceeds the barrier intensity, n1 + n2 > N , 
the unit becomes occupiable. In a more complex scenario, a unit would be occupiable if we have ζn1 + n2 > N 
or n1 + ζn2 > N in which ζ is the interaction parameter. When two populations are cooperative (competitive) 
we have ζ > 0 ( ζ < 0 ). We anticipate a Langevin equation for invasion front, X (see Fig. 1b), and we would try 
to find out how the diffusion constant and velocity of this interface is related to environmental barrier intensity 
and interspecific interactions. The 2D version of the model, which is an extension of 1D, will be explained later.

Results
1D case. First, we study the one-dimensional case. We locate a cell at the first unit of a half limited array and 
let the system evolve based on the above-mentioned rules. We call the occupied unit with the largest distance 
from the origin as the invasion front (border) location and call its index as X. To find the behavior of invasion 
front and quantify it, we analyze X, X̄ and X − X̄ where X̄ is the ensemble average of X over different realizations. 
Analysis of X − X̄ versus time (Fig. 2a, b) shows that while N affects the magnitude of fluctuations for X − X̄ , 
the mean squared displacement behaves like a simple random walk and we have: �(X − X̄)2� ∼ t . As a result, we 
can define a diffusion constant for these fluctuations as �(X − X̄)2� = Df t . Then we studied the dependency of 
Df  on N. It appeared that for large values of N, we have Df ∝ N−γD with γD = 2.00± 0.05 (Fig. 2c). The averaged 
velocity of the front position gives us the invasion velocity, Vf  . Invasion velocity also depends on N as Vf ∝ N−γV 
with γV = 1.00± 0.05 (Fig. 2c). Such an effect on invasion velocity is expected from an analytical perspective. In 
a simple 1D invasion model, invasion front velocity, assuming no migration, should be proportional to duplica-
tion rate (which is different from that of a fisher’s equation, Vf ∝

√
RD ). Since duplication happens after N trials, 

considering the environmental barriers slows down the duplication rate by the factor of N. Respectively, invasion 

Figure 2.  (a) Realization of X − X̄ versus time for different values of N for the single-species model. (b) 
�(X − X̄)2� versus time for different values of N. The linear behavior in log/log diagram and the slope of one 
ensures the random walk like behavior of fluctuations and thus we can write: �(X − X̄)2� = Df t . (c) Invasion 
front velocity and diffusion constant versus environmental barrier intensity, N. For the large values of N, we have 
Vf ∝ N−γV with γV = 1± 0.05 and Df ∝ N−γD with γD = 2± 0.05.
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velocity should be slower by the same factor ( N−1 ). Regarding the dependency of the diffusion constant on N, it 
is enough to look at the definition of Df  . As mentioned, invasion velocity decreases by the factor of N. Thus, we 
have Df ∝ �(X/N − X̄/N)2� which leads to Df ∝ N−2.

We now add a second population which does not interfere with the first population except for degrading the 
barrier in the invasion front. As such, the two populations see each other only on the invasion front. We start 
the model with two species, located at the first unit and use the same definition for the border, but it does not 
matter which population has occupied that unit. As mentioned, a unit would be occupiable only if ζn1 + n2 > N 
or n1 + ζn2 > N . The positive values of ζ show the cooperation between entities and negative values represent 
the competitive populations. We first try to see how the normalized diffusion constant, N2Df  , depends on ζ . As 
Fig. 3a shows, the interaction changes the diffusion constant. Both competitive ( ζ < 0 ) and cooperative ( ζ < 0 ) 
populations have higher diffusion constant in respect to non-interactive populations ( ζ = 0 ). To see how inter-
action affects the system response to N, we study the behavior of Df  versus N for different interactions (Fig. 3b). 
Interestingly, the magnitude of diffusion constant depends on interactions, but its behavior versus N, exhibited 
in value of γD , depends on interactions. As such, interaction leads to higher diffusion constant with smaller γD.

We also studied the effect of interactions on invasion velocity, Vf  . As Fig. 3c shows, cooperation (competi-
tion) increases (decrease) the invasion velocity but the effect also is intensified by N. Analysis of behavior of Vf  
versus N shows that γV also depends on ζ (Fig. 3d). Finally, as Fig. 3e shows, γV and γD differently depend on 
interaction term, ζ . 1D environment may not seem realistic, yet it has played a central role in advancing our 
understanding of  invasion6,29. 1D version of our model reveals that competition changes invasion velocity but, 
for a wide range of interactions ( −0.6 < ζ < 1 ), invasion properties remain primarily unchanged, suggesting 
that even competition may not affect the invasion velocity significantly. However, to better understand invasion, 
we need to study the problem in higher dimensions.

2D case. We studied the two-dimension version of our model as well. The 2D version is essentially a semi-
infinite array of sites in one direction (just like the 1D case) and a periodic array of sites in the perpendicular 
direction, with L sites. The same rules will be applied to the 2D case (see Fig. 4a). As the initial condition, all 
units in the first row will be occupied by species. Migration and duplication can happen into four NNs around 
each randomly selected unit in single-species and two-species cases. We analyze two different aspects of invasion 
in 2D environments: invasion velocity and the geometry of the invasion front. The average location of interface, 
H, is considered as the location of invasion front by setting H = X̄ in which X̄ stands for the average value of X 
along the border. Similar to 1D, we anticipate a Langevin equation as dH/dt = VHt +

√
DHη(t) to govern the 

temporal evolution of H. We analyzed H̄ and H − H̄ in which H̄ is the ensemble average. H − H̄ fluctuates over 
time like a random walker and we have: �(H − H̄)2� = DHt . Since H is averaged over L points (more accurately, 
LD

′ in which D′ is the fractal dimension of interface), we anticipate fluctuations of H − H̄ to be scaled as 1/
√
L . 

As Fig. 4b shows, DH ∼ L−γL with γL ≃ 1 for all values of ζ . Effect of N on DH was studied and as Fig. 4c shows, 
γD slightly decreases as we increase ζ and we have γD = 1.86± 0.03 , γD = 1.86± 0.03 , γD = 1.76± 0.03 and 
γD = 1.62± 0.05 for ζ = −1 , ζ = 0 and ζ = 1 respectively.

Then we studied how H̄ evolve during time to find the interface velocity, VH . As Fig. 4d shows, VH depends 
on N as Vf  did.

Due to importance of the geometry of invasion front, we study of the morphology of invasion front through 
dynamic scaling analysis. For such analysis, we need to calculate surface’s width as W2 = 1

L

∑L
i (Xi −H)2 where 

Xi is the invasion front at point i. For variety of surfaces that follow scaling, one has W ≈ Lα f (t/Lz) where f(u) is 
a scaling function such that, f (u) ∝ uβ if u ≪ 1 , and f (u) ≈ constant for u ≫ 1 , so that for a fixed L, W ∝ tβ . α 
and β are, respectively, the surface roughness and growth exponents, and z = α/β is the dynamic  exponent45,46.

We first obtain β for different populations and as Fig. 5a shows, it decreases with N for non-competitive popu-
lations. However, for competitive populations, β increases by N. To study the morphology of interface at steady 
state, we choose the saturated value of interface width, Wsat , which is the value W approaches in long times., and 
analyze its behavior versus L, N and ζ . We tried to determine whether the interface follows any scaling behavior 
and then see how ζ affects the corresponding exponents. As Fig. 5b shows, Wsat for ζ = −1 is larger than other 
cases, which indicates that invasion front of competitive populations is rougher. Later we studied the behavior 
of Wsat versus L and found the corresponding exponent, αL (or simply α which is the roughness exponent). As 
Fig. 5c shows, for noncompetitive populations ( ζ ≥ 0 ) αL = 0.70± 0.02 but for competitive ones ( ζ = −1 ) we 
have αL = 0.98 . Finally, we studied the effect of N on Wsat . Interestingly, as Fig. 5d shows, competition ( ζ = −1 ) 
not only leads to higher interface roughness, the associated roughness also is less sensitive to N. While for ζ = −1 
we have αN = 0.41 , for ζ ≥ 0 we have αN = 0.61± 0.02.

These results reveal that invasion front morphology and its velocity and fluctuations depend on both inter-
specific interactions and environmental barriers intensity. These results reveal that the geometry of invasion 
front in competitive populations has significantly different behavior in response to stress. Thus, theoretically, 
one might be able to estimate clonal interactions by looking at the geometry of the invasion front. In competitive 
populations, each population cancels the effort of the counterpart population to occupy a new unit. When the 
intensity of barriers is low, it is more likely for one of the populations to degrade the barrier and occupy a new 
unit. However, as the intensity increases, such random events become less and less likely, leading to a signifi-
cant decrease in invasion velocity. It should be noted that adding spatial heterogeneity to barrier resistance can 
increase the roughness of invasion  front30.
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Figure 3.  (a) The effect of interaction term, ζ on normalized diffusion constant, N2Df  for different values of 
N. As it shows, interaction term affects diffusion constant differently. (b) Df  versus N for different interactions. 
Interestingly, γD depends on ζ . Inset shows NγDDf  versus ζ for different values of N. (c) Normalized invasion 
velocity versus ζ for different values of N. (d) V versus N for different interactions. γV also depends on ζ . Based 
on this figure, competitive populations are more sensitive to environmental stresses. (e) γD and γV versus ζ . 
While γV monotonically decreases by ζ , γD has the maximum at ζ ∼ 0.
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Discussion
Understanding tumor invasion through mathematical modeling and in vivo or in vitro studies has significantly 
increased our understanding of underlying mechanisms. In a now-classic example, it was suggested that dupli-
cation rate and diffusion rate of tumor cells determine tumor invasion  velocity47. Since then, more parameters 
have been identified and taken to account to understand tumor  invasion48. Yet, a lot has been remained to be 
understood about how the interplay between clonal interactions and environmental stress regulate tumor inva-
sion. The fact that geometry of tumor plays a role in patient outcome, puts additional stress on the understanding 
of the behavior of invasion front.

The physical structure of the tumor environment provides a physical barrier against migration and cancer cells 
need to degrade the ECM to  invade9,11. As such, we translate the stress to the physical barrier with the intensity 
of N. Here we considered the physical barrier as a limiting factor that prohibits further growth and cells need to 
degrade it. We found how interaction significantly regulates invasion velocity. Our results suggest that coopera-
tion plays a crucial role in cells’ ability to overcome such a barrier. This conclusion is conceptually in line with 
other results on the relation between clonal interactions and environmental stress, such as nutrient shortage. We 
recently showed that once tumor cells individually acquire the ability to induce angiogenesis (angiogenic switch), 
they may not be able to grow larger until they cooperatively induce further  angiogenesis49.

The geometry of the invasion front has been used to understand and predict tumor  outcome33. As a growing 
interface, scaling analysis has been used to characterize the geometry of invasion front in different  studies30,34,36. 
Most of these analyses have concentrated on how environmental features and cellular phenotype and activities 
such as duplication or dispersal affect the geometry of invasion  front31,34,36, omitting the direct role of clonal 
interactions. In this model, two species can simultaneously occupy the same unit. Thus, they do not compete 
over limited space and their interactions are limited to invasion front. This assumption allows us to highlight 
the role of interactions on invasion front behavior (adding spatial exclusion makes the problem significantly 
challenging as we have studied in upcoming work). Here we showed that clonal interactions can single-handedly 
regulate invasion velocity and the geometry of the invasion front.

Figure 4.  (a) Schematic illustration of the two-species model in 2D. All arrows represent the same process as 
their 1D counterparts. (b) DH versus L for different values of ζ compared to the single population model. As one 
may expect, DH behaves as ∼ L−1 for all interactions similarly. (c) DH versus N for L = 20 and different values of 
ζ and single population model. (d) Average velocity of interface, VH , versus N.
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Irregularity of invasion front is associated with of tumor invasive  behavior32,33, however, the reason behind this 
association has not been understood yet. Our results here show that local competition between individual cells 
can lead to irregular invasion front. On the other hand, the relation between poor clinical outcome and clonal 
diversity is well-established18–24. Thus, irregular geometry is not the cause of adverse clinical outcomes. Instead, 
both the irregular geometry and adverse outcome are results of clonal diversity and competition.

Summary
Motivated by clonal interactions and environmental barriers that tumor cells experience, we developed a model 
to study how interspecific interactions and environmental stresses together regulate invasion. In 1D, we found 
the Langevin equation for invasion front and quantified the dependency of velocity and diffusion constant on 
the intensity of environmental barriers and the nature of interactions. It turned out that for single-species case, 
the invasion velocity depends on N as Vf ∝ N−γV with γV = 1.0 and for the diffusion constant for invasion front, 
we have Df ∝ NγD with γD = 2.0 . Also, competitive populations are more vulnerable to environmental stress 
and their invasion velocity falls faster in response to N with γV = 1.80± 0.04 . Diffusion constant for interactive 
populations ( ζ  = 0 ) was generally larger and less sensitive to N compared to non-interactive populations ( ζ = 0 
or single population model). For the 2D case, the averaged invasion front (H) follows a Langevin equation which 
depends on N similar to 1D. The geometry of the invasion front exhibits scaling behavior. For ζ = −1 , we found 
that N increases β . The behavior of Wsat versus N, L and ζ was obtained and it turned out that competition not 
only leads to more rough interfaces, but it also makes those interfaces resistant to environmental stresses. These 
findings deepen our understanding of the invasion of interactive species and may have applications to under-
standing tumor clonal interactions during the invasion.

Figure 5.  (a) Growth exponent,β versus N for the single population model and two interactive populations 
with different values for ζ . As this figure shows, N decreases beta only for non-competitive populations ( ζ ≥ 0 ). 
(b) Wsat versus ζ for N = 10 . This figure shows that for ζ = −1 Wsat is much larger that other values of ζ which 
means that for competitive populations, invasion front might be much rough. (c) Wsat versus L. The slop of 
log/log diagram gives us the roughness exponent. (d) Wsat versus N. For ζ = −1 we have αN = 0.40 and for 
ζ ≥ 0 , we have αN = 0.61± 0.02.
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It should be mentioned that real-world invasions, even those in highly controlled environments, are inher-
ently complex processes. When it comes to cancer, invasion is highly regulated at different levels. Phenotypic 
plasticity, paracrine interactions with immune cells and fluctuating stresses are only a few relevant examples of 
huge number of processes that participate in the complex process of invasion. The goal of this work, has not been 
to deny other biologically relevant factors. Instead, we have tried to concentrate on the role of population level 
interactions and how they can change invasion front properties by simplifying different aspects.
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