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Interplay of different 
synchronization modes 
and synaptic plasticity in a system 
of class I neurons
Irmantas Ratas* & Kestutis Pyragas

We analyze the effect of spike-timing-dependent plasticity (STDP) on a system of pulse-coupled class 
I neurons. Our research begins with a system of two mutually connected quadratic integrate-and-fire 
(QIF) neurons, which are canonical representatives of class I neurons. Along with various asymptotic 
modes previously observed in other neuronal models with plastic synapses, we found a stable 
synchronous mode characterized by unidirectional link from a slower neuron to a faster neuron. In this 
frequency-locked mode, the faster neuron emits multiple spikes per cycle of the slower neuron. We 
analytically obtain the Arnold tongues for this mode without STDP and with STDP. We also consider 
larger plastic networks of QIF neurons and show that the detected mode can manifest itself in such 
a way that slow neurons become pacemakers. As a result, slow and fast neurons can form large 
synchronous clusters that generate low-frequency oscillations. We demonstrate the generality of the 
results obtained with two connected QIF neurons using Wang–Buzsáki and Morris–Lecar biophysically 
plausible class I neuron models.

The study of brain rhythms and synchronization of oscillatory activity is currently one of the hottest topics in 
neuroscience. Under normal conditions, synchronization of oscillations is a mechanism for neural communi-
cation, which endows individual brain areas with the ability to perform specific  tasks1. Conversely, extremely 
strong synchronization may impair brain function and cause various neurological disorders like Parkinson’s 
 disease2,  epilepsy3,4, and  others5. Synchronization depends on the individual properties of neurons, as well as on 
the structure of the network and the strength of the coupling between neurons. In the case of weak coupling, the 
ability of individual neurons to synchronize is determined by their natural frequencies and phase response curves 
(PRC)6,7. Due to synaptic  plasticity8–10, the structure of the neural network is not static. The weights of synaptic 
connections change depending on the activity of individual neurons. The activity of the neurons, in turn, depends 
on the connectivity. As a result, a feedback loop is established between neural dynamics and network structure.

In this paper, we investigate the dynamics of pulse-coupled class I neurons with synaptic weights governed by 
spike-timing-dependent  plasticity11,12. Neuronal models with class I excitability generate action potentials with 
arbitrarily low frequency, depending on the strength of the applied  current13. Since the frequency of neurons 
can vary greatly with current, such models are natural candidates for analyzing the effects of plasticity in neural 
systems with widely varying frequencies. In class I neurons, the transition from quiescence to spiking occurs via 
a saddle-node bifurcation on an invariant circle. The normal form equation near this bifurcation is known as the 
quadratic integrate-and-fire neuron  model14,15. The QIF neuron is considered as the main model in our study, as it 
allows obtaining analytical results. In addition, we demonstrate the generality of our results using Wang–Buzsáki 
(WB)16,17 and Morris–Lecar (ML)18,19 biophysically plausible class I neuron models. Class I neurons generally 
have a purely positive PRC (also called type I PRC), indicating that perturbations always produce an advance 
(and not a delay) of their  phase20. It has been shown that neurons with type I PRCs do not tend to synchronize in 
networks with fixed mutual excitatory synaptic connections, but can synchronize in directed acyclic  networks21.

STDP is a phenomenon in which the precise timing of spikes affects the sign and magnitude of changes in 
synaptic strength. It is believed that STDP plays a crucial role in memory formation and  maintenance22. Various 
forms of STDP have been observed in  experiments23–26. We consider STDP with Hebbian learning rule, when 
presynaptic firing followed by a postsynaptic spike causes potentiation, and postsynaptic firing occurring before 
presynaptic firing leads to  depression8–10. Effective modification of synaptic weight occurs only when the spike-
timing difference is within a certain time interval, called the learning window. Typically, the learning windows 
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for potentiation and depression are  asymmetric27–29. In our study, we implement the classic additive pair-based 
STDP rule with asymmetric learning windows. STDP rules that depend on the neurons’ firing  rates30 or other 
additional  factors31 are beyond the scope of our consideration.

Over the past two decades, significant progress has been made in understanding the mechanism of STDP in 
the formation of connections in neural  networks32–38 and the emergence of multistability in asymptotic network 
 configurations33,38–40. From a theoretical point of view, the mechanism of connection formation is best under-
stood by considering simplified models of two mutually coupled neurons with plastic  synapses33,38,40–42. Models 
with pairwise interactions of neurons are more analytically tractable and provide important insights about the 
structures that STDP can produce in large  networks41. Analysis of such models with STDP rules similar to those 
used in our article shows that in the case of asynchronous neuronal dynamics, plasticity tends to break neural 
 connections32,33,35,37,38. In the case of synchronous dynamics, synapses in which high-frequency neurons are 
presynaptic tend to be potentiated, and connections from low-frequency neurons are weakened, so plasticity 
makes connections unidirectional from faster to slower  neurons32,33,35,37,38. In this paper, we show that, unlike to 
results presented in previous works, STDP can produce opposite unidirectional connections from slower neurons 
to faster neurons. This can happen in frequency-locked mode, where the faster neuron emits multiple spikes per 
cycle of the slower neuron. Due to this effect, slow neurons in large plastic networks can become pacemakers. 
To our knowledge, no such effects of STDP have been reported in the literature.

Model
We consider a system of N synaptically coupled class I neurons that generally can be presented by Hodgkin–Hux-
ley-type equations of the form: 

 Here Cm is the membrane capacitance and vi is the membrane potential of the ith neuron. The function 
F(vi ,wi , ηi) describes the sum of currents flowing through the ion channels. Equation (1b) describes the dynam-
ics of a recovery variable w that generally is a vector variable, and the function G(vi ,wi , γi) represents the ionic 
channel dynamics. The parameters ηi and γi are constants that determine the heterogeneity of neurons. The 
functions F and G are defined by a specific neuron model. The last term in the Eq. (1a) describes the interaction 
between neurons, where g ≥ 0 is the homogeneous excitatory coupling. We assume that each neuron emits a 
spike when its membrane potential reaches the maximum. We approximate spikes by the Dirac delta function, 
so the spiking activity of the jth neuron can be written as

where t(k)j  is the time of the kth spike of jth neuron. The synaptic weight Wij determines the strength of the con-
nection between the presynaptic j-th neuron and the postsynaptic i-th neuron. We assume that the weights Wij 
(apart from the autaptic terms: Wii = 0 ) evolve in time according to a nearest-neighbor STDP rule. They change 
discretely in time and are updated at each spiking event. Assume that a specific j-th neuron fires at the time 
t = tj . The change of the weights depends on time differences δji = tj − t

(last)
i > 0 , where t(last)i  is the last 

firing time of the ith neuron. The weights Wji associated with directional links from the ith neurons to the jth 
neuron are potentiated, and the weights Wij associated with directional links from jth neuron to the ith neurons 
are depressed. Specifically, the STDP update rule is as follows:

 Here τp ( τd ) is the learning window over which post- (pre-) synaptic spikes induce synaptic potentiation (depres-
sion). Following experimental  evidences27–29, we assume τp < τd . The parameters p and d represent the maximum 
update amplitudes for the potentiation and depression, respectively. We use an additive update rule with the 
requirement that the weights Wij do not go beyond the interval 0 ≤ Wij ≤ 1 . The maximum value of Wij , equal 
to one, is chosen without loss of generality due to the factor g in Eq. (1a), which determines the global coupling 
strength. We assume that the parameters p, d ≪ 1 are small, so that the synaptic weights change slowly compared 
to the characteristic time between firing events. Our main results concern the case p = d . For p = d and τp < τd , 
there is a bias for synaptic depression, which facilitates competition between synapses.

We demonstrate our results with three different specific models of class I neurons, namely QIF neurons, 
WB neurons, and ML neurons. The simplest model of class I neurons is the QIF neuron. It does not contain the 
recovery variables and is obtained from Eq. (1a) by setting Cm = 1 and F(vi ,wi , ηi) = v2i + ηi

14:

Recovery is implemented by an instantaneous reset of the membrane potential. Every moment when the mem-
brane potential vi reaches the peak value vp , the neuron emits a spike and its voltage is reset to the value vr . 
Because of the quadratic nonlinearity, vi reaches infinity in a finite time, and this allows us to choose the threshold 

(1a)Cmv̇i = F(vi ,wi , ηi)+ g

N
∑

j=1

Wij(t)Sj(t),

(1b)ẇi =G(vi ,wi , γi), i = 1, . . . ,N .

(2)
Sj(t) =

∑

k|t(k)j ≤t

δ(t − t
(k)
j ),

(3)Wji(tj) ← Wji(tj)+ pe−δji/τp ; Wij(tj) ← Wij(tj)− de−δji/τd .

(4)v̇i = v2i + ηi + g

N
∑

j=1

Wij(t)Sj(t).
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parameters as vp = −vr = ∞ . With this assumption, the free ( g = 0 ) neuron with a positive parameter ηi fires 
periodically with a period Ti = π/

√
ηi  . The QIF neuron is the canonical model for the class I neurons near the 

spiking  threshold15. By the change of variables

the equation (4) can be transformed to the Winfree  model43,44

where ϕi ∈ (0, 2π] is the phase, ωi = 2π/Ti is the natural frequency and

is the PRC of the ith QIF neuron. In this representation, the ith neuron fires when its phase reaches ϕi = 2π . We 
emphasize that for spiking neurons ( ηi > 0 ) Eqs. (6) and (7) are equivalent to the original Eq. (4). Note that in 
the original Eq. (4), the coupling strength g can be arbitrarily large, hence the same is true for Eq. (6). The change 
in the phase of a given neuron at the moments of firing of other neurons can be calculated from the change in 
potential in the original model (4). In particular, the membrane potential of the ith neuron immediately after 
the kth spike of the jth neuron at time t(k)j  is updated as vi(t

(k)
j ) ← vi(t

(k)
j )+ gWij(t

(k)
j ) , and the phase update is 

simply computed from the inverse transformation ϕi = 2arccot(−vi/
√
ηi) of Eq. (5).

The hallmark of the Winfree model is its versatility. Any type of periodically spiking neurons described by the 
Eqs. (1a) and (1b) can be reduced to the Winfree model (6) provided that the coupling strength g is small. In this 
case, the PRC Zi(ϕi) depends on the specific form of Eq. (1a) and (1b) and can be obtained numerically from these 
equations. Thus, we also analyze the case of weakly coupled neurons WB and ML within the framework of the 
Winfree Eq. (6). The corresponding PRCs for WB and ML neurons are presented in “Biophysical neuron models”. 
Interaction between neurons is effective with weak coupling, if their natural frequencies satisfy the resonance 
conditions. Therefore, near resonances, the Winfree model makes it possible to obtain general analytical results.

Results
In this section, we will first present the results of an analytical and numerical analysis of the asymptotic dynam-
ics of two ( N = 2 ) mutually coupled class I neurons whose synaptic weights obey the STDP rule. Without loss 
of generality, we will assume that the first neuron is faster than the second, i.e. the natural frequencies (periods) 
of neurons satisfy the inequality ω1 > ω2 ( T1 < T2 ). We then use these results to explain connectivity patterns 
emerging in larger ( N > 2 ) plastic networks.

Numerical simulation of two mutually coupled neurons QIF, WB or ML with synaptic weights regulated 
by the STDP rule shows that, depending on the parameters and initial conditions, their dynamics converge to 
three different asymptotic modes characterized by different sets of synaptic weights with different modes of 
synchronization. 

Mode (i):  (W12,W21) ≈ (1, 0) . Here at t → ∞ the neurons become unidirectionally coupled so that the 
second (slower) neuron enslaves the first (faster) neuron with maximum synaptic weight W12 , and 
both oscillate at a slow frequency ω2 in synchronous mode characterized by the winding number 
w = n/1 , where n ≥ 2 is the number of spikes emitted at nonidentical intervals by the first neuron 
in one period of the second neuron.

Mode (ii):  (W12,W21) ≈ (0, 1) . Here at t → ∞ the opposite uniderectional coupling is established, i.e. the 
first (faster) neuron enslaves the second (slower) neuron with maximum synaptic weight W21 , and 
both oscillate at a fast frequency ω1 in synchronous mode with the winding number w = 1/1 (the 
second neuron emits one spike in one period of the first neuron).

Mode (iii):  (W12,W21) ≈ (0, 0) . Here at t → ∞ both neurons becomes disconnected. Neurons are not syn-
chronized and each of them oscillates at its own frequency.

A detailed analysis of these modes is especially convenient within the framework of the QIF neuron model. 
For this model, it was possible to analytically obtain frequency locking regions [Arnold tongues (AT)] at fixed 
synaptic weights and in the presence of STDP for any values of the coupling strength and frequency mismatch. 
We also managed to obtain general analytical expressions for the boundaries of AT for arbitrary class I neurons 
near resonances. The generality of the AT’s structure, as well as the reliability of analytical results near resonances, 
are confirmed by numerical simulation of biophysical models of WB and ML neurons. We then demonstrate how 
the asymptotic modes observed in two mutually coupled neurons manifest themselves in larger plastic networks. 
We consider networks consisting of two groups of slow and fast neurons with close natural frequencies within 
the groups, but significantly different frequencies between the groups. Depending on the initial conditions, 
such networks can evolve into various stable configurations. The peculiarity of these configurations is that slow 
neurons can enslave fast neurons and form clusters that oscillate synchronously at a low frequency. Below we 
describe these results in more detail.

Typical examples of the dynamics of two coupled QIF neurons demonstrating convergence to the asymptotic 
modes (i), (ii), and (iii) are shown in the left, middle, and right columns in Fig. 1, respectively. The top, middle 
and bottom rows show the dynamics of synaptic weights W12 , W21 and interspike intervals �t

(k)
j = t

(k)
j − t

(k−1)
j  , 

respectively. The values of these variables were generated using the event-driven algorithm described in 

(5)vi = −√
ηi cot (ϕi/2),

(6)ϕ̇i = ωi + gZi(ϕi)

N
∑

j=1

Wij(t)Sj(t),

(7)Zi(ϕ) = 2[1− cos(ϕ)]/ωi
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“Quadratic integrate-and-fire neurons” and displayed in the figure at discrete times t = t
(k)
j  . In the left column, 

the ratio of the natural neuron periods is close to two, T2/T1 = 1.85 . The system approaches the final asymptotic 
state in two stages. At the first stage, the synaptic weight W21 approaches zero, and the unidirectional coupling 
from the slower neuron to the faster one leads to a frequency-locked mode with the winding number w = 2/1 . 
This can be seen from the dynamics of interspike intervals: the second neuron fires with its natural period T2 
(interspike intervals �t

(k)
2  of the second neuron are shown by red dots), and the first neuron fires twice in the 

same period T2 (interspike intervals �t
(k)
1  of the first neuron are shown by blue dots). For a sufficiently large 

k, the blue dots are located on two separated horizontal lines, so the adjacent interspike intervals of the first 
neuron are not identical �t

(k−1)
1 �= �t

(k)
1  , but the sum �t

(k−1)
1 +�t

(k)
1  is close to the interspike interval �t

(k)
2  

of the second neuron. This means that the second neuron enslaves the first neuron and makes it oscillate with 
the natural period T2 of the slow neuron, emitting two spikes during this period at irregular intervals. At the 
second stage, the synaptic weight W12 reaches its maximum value equal to one. In the middle column, the ratio 
of the natural neuron periods is close to one, T2/T1 = 1.05 . Again, the system approaches the final asymptotic 
state in two stages. At the first stage, the synaptic weight W12 approaches zero, and the unidirectional coupling 
from the slower neuron to the faster one leads to a frequency-locked mode with the winding number w = 1/1 . 
Now both neurons fire with the period T1 of the faster neuron, and the slower neuron emits one spike during 
this period. At the second stage, the synaptic weight W21 reaches its maximum value equal to one. In the right 
column, the parameter values are the same as in the middle column, but the initial values of the synaptic weights 
W12 and W21 are different. Here, both synaptic weights approach zero almost simultaneously, and each of them 
fires independently with its own natural period.

The existence of synchronous asymptotic modes (i) and (ii) depends on both the neuron parameters and 
the STDP parameters. In “STDP stability conditions for unidirectionally coupled neurons”, we derived general 
STDP stability conditions for these modes. Analytic expressions for modes (i) and (ii) are given by Eqs. (9) and 
(11), respectively. These conditions facilitate the search for frequency locking regions in the parameter plane 
(T2/T1, g) , called Arnold tongues. For QIF neurons, this problem admits a purely analytical solution, which is 
described in detail in “Quadratic integrate-and-fire neurons”. First, we found the coupling strength g1 , which 
defines the boundaries of the ATs with fixed synaptic weights (W12,W21) = (1, 0) and the coupling strength g2 , 
which defines ATs with fixed synaptic weights (W12,W21) = (0, 1) . They are defined by the Eqs. (14) and (18), 

Figure 1.  Convergence to asymptotic modes in two mutually coupled QIF neurons. Dynamics of (a–f) synaptic 
weights and (g–i) interspike intervals. The left column shows convergence to the synchronous asymptotic mode 
(i) with synaptic weights (W12,W21) ≈ (1, 0) and winding number w = 2/1 (the first neuron fires two times in 
one period of the second neuron). The middle column shows convergence to the synchronous asymptotic mode 
(ii) with synaptic weights (W12,W21) ≈ (0, 1) and winding number w = 1/1 (the first neuron fires one time in 
one period of the second neuron). In the right column, the system converges to the asynchronous asymptotic 
mode (iii), where neurons becomes disconnected (W12,W21) ≈ (0, 0) . In panels (g–i), the interspike intervals of 
the first �t

(k)
1  and second �t

(k)
2  neurons are shown by blue and orange dots, respectively. The natural periods of 

the first and second neuron are presented by thick horizontal gray and green lines, respectively. The insets show 
the post-transient (asymptotic) dynamics of interspike intervals on an extended time scale. Parameters T1 = 2π , 
p = d = 0.001 , τp = π/3 , τd = π are the same for all columns. For the left column T2 = 1.85T1 , g = 0.7 , and 
for the middle and right columns T2 = 1.05T1 , g = 0.15.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19631  | https://doi.org/10.1038/s41598-022-24001-2

www.nature.com/scientificreports/

respectively, and are shown in Fig. 2 as blue dotted curves. Then we found out how these boundaries change 
when the STDP stability conditions are taken into account. The boundaries of ATs ḡ1 for mode (i) and ḡ2 for 
mode (ii) in the presence of the STDP are defined by Eqs. (21) and (23), respectively, and are shown by the yel-
low dashed curves. These curves coincide with the boundaries of the colored areas in Fig. 2, which represent 
synchronization domains (ATs) obtained by direct numerical simulation of the dynamics of two QIF neurons 
coupled by plastic synapses. The resonant structure of ATs is preserved in the presence of weak noise, see details 
in the Supplementary Information.

In general, ATs in the presence of STDP are inside ATs with fixed synaptic weights, ḡ1,2 ≥ g1,2 . Figure 2c,f 
show the differences ḡ1 − g1 and ḡ2 − g2 depending on the ratio of the STDP learning windows τd/τp for different 
values of T2/T1 . These differences increase as τd/τp increases and the ratio of natural periods of neurons T2/T1 
moves away from resonance. Interestingly, for τd close to τp the ATs with and without STDP may coincide. This 
can be seen in the inset to Fig. 2c: the difference ḡ1 − g1 vanishes on a finite interval of τd/τp axis near unity.

The above analytical results give an accurate description of ATs for QIF neurons in the entire parameter plane 
(T2/T1, g) . We have generalized these results to arbitrary class I neurons for T2/T1 values close to resonances, 
when T2/T1 ≈ n , n = 1, 2, 3, . . . (see “General results near resonances” for details). Near resonances, synchro-
nization occurs at a low coupling strength g (see Fig. 2), and this allows us to reduce any neuron model to the 
Winfree Eq. (6). Then the synchronization properties of a particular neuron model are determined by its PRC. 
We have shown that the ATs of two pulse-coupled class I neurons depend only on the local characteristics of 
the PRC near its absolute maximum. To obtain explicit analytical results, we approximated this maximum with 
a parabola. Equations (35) and (38) determine the approximate boundaries of ATs near resonances for modes 
(i) and (ii), respectively. They apply to any class I pulse-coupled neurons with plastic synapses. Figure 2b,e con-
firm the validity of these equations for the exactly solvable QIF neuron model near resonances T2/T1 = 2 and 
T2/T1 = 1 , respectively. The red lines approximating the boundaries of ATs by the formulas  (35) and (38) are 
in good agreement with the exact results shown by the yellow dashed curves.

To verify the generality of the results obtained with the QIF neurons, we performed a similar analysis for 
more complex WB and ML biophysical neuron models. The results are presented in Fig. 3. Here, as in Fig. 2, 
the blue dotted curves are the boundaries of ATs with fixed synaptic weights, colored areas show numerically 
estimated synchronization domains (ATs) of two neurons coupled by plastic synapses and red lines are analyti-
cal approximations of the boundaries of ATs in the presence of STDP. The red lines are in good agreement with 

Figure 2.  Effect of STDP on the synchronization of two QIF neurons. The top and bottom rows correspond to 
modes (i) and (ii), respectively. Arnold tongues of (a) synchronous asymptotic mode (i) with indicating winding 
numbers w = n/1 ( n = 2, 3, 4 are the number of spikes generated by the first neuron in one period of the second 
neuron) and (d) synchronous asymptotic mode (ii) with the winding number w = 1/1 . Blue dotted and yellow 
dashed curves show the boundaries of ATs for fixed synaptic weights and in the presence of STDP, respectively. 
Analytic expressions for these boundaries are presented in “Quadratic integrate-and-fire neurons”. The colored 
areas mark different frequency locking zones obtained by direct numerical simulation of two coupled QIF 
neurons in the presence of STDP. (b,e) Enlarged areas of (a,d). Here, additional red lines show approximations 
of AT boundaries near resonances, defined by the general analytical expressions (35) and (38), which are valid 
for any class I neurons. (c,f) Difference of AT boundaries with STDP ( ḡi ) and without STDP ( gi ) depending on 
the ratio of STDP learning windows τd/τp . Curves of different colors correspond to different values of T2/T1 . 
In panel (c), T2/T1 : 1.9—purple, 1.8—yellow, 1.7—red, and 1.6—blue. In panel (f), T2/T1 : 1.2—purple, 1.15—
yellow, 1.1—red, 1.05—blue. Values of other parameters: T1 = 2π , p = d = 0.001 , τp = π/3 , τd = π . The inset 
in (c) shows the enlarged area around τd/τp ≈ 1.
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the boundaries of colored areas in the vicinity of resonances. This confirms the validity of general approximate 
analytical formulas (35) and (38) for WB and ML neurons. Comparing the results presented in Figs. 2a,d and 
3 we see that the structure of ATs is the same for all three types of neurons: QIF, WB, and ML. Thus, the simple 
QIF neuron model qualitatively correctly describes the interaction of different synchronization modes and STDP 
for class I neurons and may serve as a basic model for analyzing the formation of connectivity patterns in large 
plastic networks consisting of class I neurons.

Examples of connectivity patterns emerging in the plastic networks of QIF neurons are shown in Fig. 4. We 
consider heterogeneous networks consisting of two groups of neurons, fast and slow. The natural periods of neu-
rons in each group differ slightly, while the natural periods between groups differ by about a factor of two. The 
neurons are numbered in such a way that their natural periods form an ascending sequence T1 < T2 < · · · < TN . 
Depending on the initial values of the synaptic weights Wij , the network can develop into many different asymp-
totic configurations. All these configurations can be explained in terms of three possible asymptotic modes 
observed in a system of two coupled neurons. First consider a simple example of a network consisting of three 
fast neurons ( i = 1, 2, 3 ) with natural periods close to 2π and three slow neurons ( i = 4, 5, 6 ) with natural periods 
close to 4π . One of the asymptotic configurations that can occur in this network is shown in the top row of Fig. 4. 
Panel (a) explicitly shows the connections between neurons and panel (b) represents the asymptotic values of 
the matrix Wij elements corresponding to this configuration, depicted in colors. Panel (c) explains the structure 
of connections in the matrix Wij . On the panel (a), we see that one of the neurons ( i = 4 ) is disconnected from 
other neurons of the network. This fact can be explained as a manifestation of mode (iii) observed in the system 
of two coupled neurons. The coupling between remaining neurons ( i  = 4 ) is unidirectional. This fact can be 
interpreted as a manifestation of modes (i) and (ii). The directions of connection within the groups of slow and 
fast neurons are indicated by black arrows, and between the groups of slow and fast neurons are indicated by 
gray arrows. In the group of slow neurons, the faster 5th neuron enslaves the slower 6th neuron [manifestation of 
mode (ii)]. Similarly, in the group of fast neurons, the fastest 1st neuron enslaves the slower 2nd and 3rd neurons, 
and the faster 2nd neuron enslaves the slower 3rd neuron. The most interesting property of this configuration 
is associated with mode (i): the slow 6th neuron enslaves the entire group of fast neurons, so all neurons in the 
network, except for the 4th, oscillate with a common period equal to the natural period of the slow 5th neuron.

Connectivity patterns emerging in larger plastic networks can be explained in a similar way. The middle and 
bottom rows in Fig. 4 show two examples of the initial and asymptotic states of the network consisting of N = 25 

Figure 3.  Effect of STDP on the synchronization of WB and ML neurons. The left column corresponds to 
two coupled Wang–Buzsáki neurons, and the right column represents two coupled Morris–Lecar neurons. 
The top and bottom rows correspond to modes (i) and (ii), respectively. (a,b) Arnold tongues of synchronous 
asymptotic mode (i) with different winding numbers w = n/1 , n = 2, 3 , and 4. (c,d) Arnold tongues of 
synchronous asymptotic mode (ii) with the winding number w = 1/1 . As in Fig. 2, the blue dotted curves 
show the boundaries of ATs for fixed synaptic weights. The colored areas mark different frequency locking 
zones obtained by direct numerical simulation of two coupled neurons in the presence of STDP. The red lines 
show approximations of AT boundaries near resonances, defined by the general analytical expressions (35) and 
(38). The equations of the WB and ML neuron models and their parameters are given in “Biophysical neuron 
models”. Values of other parameters: (a,c) T1 = 500 , p = d = 0.002 , τd = T1/2 , τp = τd/3 ; (b,d) T1 = 86.27 , 
p = d = 0.002 , τd = T1/2 , τp = τd/4.
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Figure 4.  Examples of connectivity patterns emerging in plastic networks of QIF neurons. (a–c) An example 
of a network of six neurons, the first three of which are fast and the next three are slow. (a) One of the possible 
network configurations obtained in the post-transient regime with specific initial conditions. The arrows 
indicate the direction of the connections. All connections are realized with the maximum synaptic weight. (b) 
Asymptotic values of the elements of the matrix Wij shown in color. This matrix corresponds to the network 
configuration depicted in panel (a). Panel (c) explains the structure of connections in the matrix Wij . Red 
vertical and horizontal lines separate the regions of slow and fast neurons. (d–i) Two examples of the initial 
and asymptotic states of a network consisting of 20 fast and 5 slow neurons. (d) Initial matrix Wij with partially 
random and partially deterministic choice of elements (see main text for details). (e) The asymptotic values of 
the matrix Wij obtained from the initial matrix shown in panel (d). Panel (f) shows the distribution of natural 
(gray bars) and actual (vertical red lines ending in crosses) periods of neurons in the post-transient regime. (g) 
The initial matrix Wij , all elements of which are chosen randomly from the interval [0, 1]. (h,i) Same as (e,f) but 
for the initial matrix shown in (g). The coupling strength is assumed to be g = 0.25 . The STDP parameters are 
the same as in the case of two neurons.
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QIF neurons. In both examples, the network parameters are the same, only the initial values of the matrix Wij 
differ. The first 20 neurons of the network are fast with natural periods equidistantly distributed in the interval 
[6.28, 6.61], and the last 5 neurons are slow with natural periods in the interval [12.31, 12.56]. The distribution of 
natural periods of neurons is shown by gray bars on panels (f) and (i). For the first example, the initial and final 
states of the matrix Wij are shown on panels (d) and (e), respectively. The initial synaptic weights Wij within the 
group of fast neurons and within the group of slow neurons are chosen randomly from the interval [0, 1], and the 
initial synaptic weights from fast to slow and from slow to fast neurons are taken to be 0.05 and 0.9 respectively. 
These initial conditions lead to the network configuration represented by the matrix Wij shown on panel (e). In 
the group of fast neurons, each neuron is unidirectionally connected to all faster neurons. The same thing happens 
in the group of slow neurons. Again, the manifestation of mode (i) gives the most interesting results. Each slow 
neuron is unidirectionally connected to all fast neurons, and all neurons of the network oscillate with a common 
period equal to the natural period of the 21st neuron, the fastest in the group of slow neurons. Actual periods of 
neurons in post-transient regime are shown in panel (e) by vertical red lines ending in crosses. Thus, the fastest 
neuron in the group of slow neurons becomes the pacemaker and enslaves the entire network.

More complex connectivity patterns can emerge when all initial elements of the matrix Wij are chosen ran-
domly. Such an example is presented in the bottom row of Fig. 4. Now the network splits up into several isolated 
clusters. The 3rd, 5th, 7th and 8th neurons form a cluster of fast neurons oscillating with the natural period of 
the 3rd neuron, the fastest in this cluster. On the panel (i), the neurons of this cluster are marked with fat yellow 
dots. The 16th and 17th neurons, marked with blue asterisks, form another cluster of fast neurons, oscillating with 
the natural period of the 16th neuron. The above clusters arise from mode (i). The 20th neuron in a group of fast 
neurons is disconnected from all other neurons. This is a manifestation of mode (iii). All the remaining neurons 
marked with red crosses form a cluster of slowly oscillating neurons. This cluster is the result of the manifestation 
of modes (i) and (ii). The fastest 21st neuron in the group of slow neurons becomes the pacemaker and enslaves 
all the neurons of this cluster. Although in the above examples the ratio of natural periods in the groups of slow 
and fast neurons was chosen close to 2, we note that a slow neuron can become a pacemaker even in a “non-
resonant” network when the ratio of natural periods in the groups differs significantly from 2. However, in this 
case, larger values of the coupling strength g are required. The effect of turning a slow neuron into a pacemaker 
is also resistant to external noise. See the Supplementary Information for more details.

Discussion
We analyzed the dynamics of a system of class I pulse-coupled neurons in the presence of STDP. Class I neurons 
are characterized by a positive PRC, so any external perturbations affecting such neurons can only shift their 
phases forward. This property plays an important role in the formation of various synchronization modes in the 
system of interacting neurons. The synaptic weights controlled by STDP affect the synchronization mode. The 
synchronization mode, in turn, affects the performance of STDP. The interplay of the synchronization mode 
and STDP determines the asymptotic dynamics of the system. In our study, we mainly focused on the analysis 
of the effects of STDP in the model of two connected QIF neurons, which are the canonical representatives of 
class I neurons. Such a relatively simple model made it possible to obtain the main results in an analytical form. 
Three different asymptotic modes have been found in this system, denoted as (i), (ii), and (iii). The first two 
modes are synchronous and are characterized by unidirectional connections between neurons, while mode 
(iii) is asynchronous with broken connections. The effect of breaking connections in the presence of STDP has 
been previously observed in many different  models33,38,40,41. The synchronous mode (ii) characterized by a uni-
directional connection from a faster to a slower neuron has also been reported in many  publications32,33,35,37,38. 
However, the synchronous mode (i) with a unidirectional connection from a slower neuron to a faster one, as 
far as we know, has not been observed.

The synchronous mode (i) is characterized by a winding number greater than one, which means that the faster 
neuron emits several spikes in one cycle of the slower neuron. This mode has a resonant structure of ATs on the 
parameter plain (T2/T1, g) , where T2/T1 is the ratio of the natural period of the slower neuron to the natural 
period of the faster neuron, and g is the coupling strength. For QIF neurons, the boundaries of ATs were obtained 
analytically both at fixed synaptic weights and in the presence of STDP. Near resonances T2/T1 ≈ n , where n is 
a natural number, we generalized these analytical results for an arbitrary class I neuron model and confirmed 
their correctness on  WB16,17 and ML 18,19 biophysically plausible class I neuron models.

The asymptotic modes observed in a system of two connected neurons allowed us to explain the connectivity 
patterns emerging in larger networks of class I neurons connected by plastic synapses. We considered a network 
consisting of two groups of neurons with significantly different natural frequencies between groups and similar 
frequencies within groups. Our analysis showed that, depending on the initial conditions, the network can evolve 
into many different stable configurations. The most interesting feature of these configurations is that slow neu-
rons can become pacemakers in the network. This is explained as a manifestation of the synchronous mode (i) 
observed in the system of two connected neurons. In the network, STDP forms unidirectional links from slow 
to fast neurons, forcing the fast neurons to oscillate at a low frequency. As a result, slow and fast neurons can 
form large synchronous clusters generating low-frequency oscillations.

Understanding the mechanisms of connectivity formation in plastic neural networks is important when 
developing various stimulation techniques for long-lasting network  desynchronization39,45–48. These techniques 
exploit plasticity-mediated multistability and aim to move the neural network from stable states characterized 
by abnormally strong synchrony and correspondingly increased synaptic weights to stable states with reduced 
synchrony and reduced synaptic weights. The reconfigured network structure induced by stimulation provides a 
long-lasting desynchronization that persists after the termination of stimulation. Long-lasting desynchronization 
techniques are desirable therapeutic tools for the treatment of Parkinson’s  disease49–51. We hope that the model of 
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the plastic network of QIF neurons, extended by various stimulation protocols, will become a suitable object for 
testing and developing various long-lasting desynchronization techniques. The event-driven algorithm provides 
efficient numerical simulation of such a model.

It should be noted that aberrant hypersynchronized states of certain areas of the brain do not occur in all 
brain disorders. Particularly, in Alzheimer’s disease, cumulative evidence indicates that desynchronization of 
neuronal firing might underlie the disease progression, and providing re-synchronization of neuronal networks 
is on the focus of the current therapeutical  approaches52–56.

Methods
STDP stability conditions for unidirectionally coupled neurons. By numerical simulation of two 
mutually coupled class I neurons with plastic synapses, we found three asymptotic modes, denoted as (i), (ii), 
and (iii). Examples of convergence to these modes for QIF neurons are shown in Fig. 1. Based on these results, 
we derive general stability conditions for unidirectionally coupled neurons in synchronous modes (i) and (ii).

Mode (i). The schematic diagram of this mode is shown in the left column of Fig. 5. Here, the coupling is unidi-
rectional from the second (slow) to the first (fast) neuron with (W12,W21) ≈ (1, 0) . The second neuron is prac-
tically independent of the first one and fires with its natural period T2 . In the frequency-locked mode with the 
winding number w = n/1 the first neuron fires n times in one period of the second neuron. We denote the steady-
state delay time between the first firing of the first neuron and first firing of the second neuron in the synchro-
nization cycle as �T . For a particular neuron model, the value of �T is easy to obtain numerically. Later we will 
express �T in terms of the phase of the neuron. Let us estimate the changes in synaptic weights for (n+ 1) events 
occurring in one synchronization cycle. The first event is related to the firing of the first neuron at t = �T . Due to 
the STDP rule, the weight of W12 will increase by �W12 = p exp(−�T/τp) , and the weight of W21 will decrease 
by �W21 = −d exp(−�T/τd) . Similarly, for each firing of the first neuron (events with numbers j < n+ 1 ), the 
weight of W12 will increase by �W12 = p exp

{

−[(j − 1)T1 +�T]/τp
}

 and the weight of W21 will decrease by 
�W21 = −d exp

{

−[(j − 1)T1 +�T]/τd
}

 . The synchronization cycle ends with the (n+ 1) st event, at which 
the second neuron fires. Here, the weight of W12 will decrease by �W12 = −d exp {−[T2 − (n− 1)T1 −�T]/τd} 
and the weight of W21 will increase by �W21 = p exp

{

−[T2 − (n− 1)T1 −�T]/τp
}

 . Summing up all the 
changes of the synaptic weights during the synchronization cycle, we get 

 Because of the small parameters p and d, changes in synaptic weights are small, so that during the synchroniza-
tion cycle W12 remains close to zero and W21 remains close to one. Recall that we use additive (hard) boundary 
conditions, i.e. when the synaptic weights Wij go outside the interval [0, 1], they are numerically “forced” to 
return to this interval. Then STDP provides stable unidirectional coupling if W12 increases and W21 decreases 
during one synchronization cycle without taking into account the boundary conditions, i.e. the STDP stability 
conditions are as follows: �W̄12 > 0 and �W̄21 < 0 . When the rates of potentiation and depression are the 
same, p = d , and the synaptic time windows satisfy the inequality τp � τd , these conditions can be simplified to

(8a)�W̄12 = p

n−1
∑

j=0

exp

(

−
jT1 +�T

τp

)

− d exp

(

−
T2 − (n− 1)T1 −�T

τd

)

,

(8b)�W̄21 = p exp

(

−
T2 − (n− 1)T1 −�T

τp

)

− d

n−1
∑

j=0

exp

(

−
jT1 +�T

τd

)

.

Figure 5.  Connection diagrams and sequences of events for asymptotic modes (i) and (ii). The left and right 
columns correspond to modes (i) and (ii), respectively. The top row shows connection diagrams. Solid (dotted) 
arrows denote connections with maximum (vanishing) synaptic weight. The bottom row shows the sequences 
of events for the frequency-locked mode with the winding number w = n/1 (left) and w = 1/1 (right). The 
short blue and long red vertical lines show the firing times of the first and second neurons, respectively. Event 
numbers are indicated above the lines.
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Mode (ii). The schematic diagram of this mode is shown in the right column of Fig. 5. Here, the coupling is 
unidirectional from the first (fast) to the second (slow) neuron with (W12,W21) ≈ (0, 1) . In this mode, the wind-
ing number is w = 1/1 , which means that the second neuron fires once during one period of the first neuron. 
The changes of synaptic weights during this period are: 

STDP provides stable unidirectional coupling if, without taking into account the boundary conditions, �W̄12 < 0 
and �W̄21 > 0 . For p = d , and τp � τd , these conditions can be simplified to

Quadratic integrate-and-fire neurons. Event‑driven algorithm. A plastic QIF neural network, de-
scribed by Eqs. (4) or (6), can be simulated by an event-driven algorithm. Here we describe this algorithm in 
terms of the Winfree model using Eqs. (6) with the PRC (7). The dynamic variables of the network are phases 
ϕi(t) and synaptic weights Wij(t) for i, j = 1, . . . ,N . Between firing events, neurons do not interact, and their 
phases increase linearly. The firing of any neuron leads to a discrete change in phases and synaptic weights. 
Assume that at time t the values of the dynamic variables of the network are known. Then the event-driven 
algorithm looks like this: 

1. For each neuron, calculate the expected time interval �ti = [2π − ϕi(t)]/ωi until its next firing.
2. Find the minimal time �tj = mini(�ti) ≡ �t and the index j of the neuron that should fire first.
3. Compute the phases ϕi(t +�tj) = 2arccot

[

cot
(

ϕi(t)+ωi�tj
2

)

− 2g
ω
Wij(t)

]

 of all i  = j neurons immediately 
after firing of the jth neuron.

4. Update synaptic weights Wij according to the STDP rule Eq. (3).
5. Update time t ← t +�tj and repeat steps 1–5.

Arnold tongues with fixed synaptic weights. First, consider a system of two ( N = 2 ) unidirectionally coupled 
QIF neurons with fixed synaptic weights (W12,W21) = (1, 0) , disregarding synaptic plasticity. In this case, the 
second neuron is free and fires with a natural period T2 that is larger than the natural period T1 of the first neu-
ron. At the instants of firing of the second neuron, the phase ϕ1 of the first neuron satisfies the mapping

Here ϕ(k)
1  and ϕ(k+1)

1  are the phases of the first neuron immediately after the kth and (k + 1) st spikes of the second 
neuron, respectively. The fixed points of the map are determined by the equation ϕ(k+1) = ϕ(k) ≡ ϕ̄1 . A stable 
solution to this equation gives the stationary phase of the first neuron when it is synchronized with the second 
neuron,

where G = g/ω1 . Synchronization occurs if the root in this equation is real. Equating the expression under the 
root to zero, G2 − 1− 2G cot (πT2/T1) = 0 , we find the critical (minimal) value g1 = Gω1 of the coupling 
strength,

at which synchronization occurs. The dependence of g1 on T2/T1 defines the boundaries of Arnold tongues. The 
stationary phase on these boundaries is

(9)
�T
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1+ τd/τp







T2

T1
− n+ 1+
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(10a)�W̄12 = p exp
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,
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T1

T2
.

(12)ϕ
(k+1)
1 = 2arccot

[

cot

(

ϕ
(k)
1 + ω1T2

2

)

−
2g

ω1

]

.

(13)ϕ̄1 = π + 2 arctan
(
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√

G2 − 1− 2G cot (πT2/T1)

)

,

(14)g1 = ω1 cot
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Here and in Eq. (14) n = 2, 3, . . . ,∞ are natural numbers that define the Arnold tongues with the winding 
numbers w = n/1 . In terms of phase, the winding number determines the number of revolutions made by the 
phase of the response neuron when the phase of the driving neuron makes one revolution, i.e. varies from 0 to 
2π . The boundaries of ATs determined by the Eq. (14) are shown by blue dotted curves in Fig. 2a,b.

We now consider unidirectional coupling with synaptic weights (W12,W21) = (0, 1) , when a free fast neuron 
excites a slower neuron. At the instants of firing of the first neuron, the phase ϕ2 of the second neuron satisfies 
the mapping

A stable fixed point ϕ(k+1)
2 = ϕ

(k)
2 ≡ ϕ̄2 of this map gives the stationary phase of the second neuron when it is 

synchronized with the first neuron,

were G = g/ω2 . Equating the expression under the root to zero, G2 − 1− 2G cot (πT1/T2) = 0 , we find the 
boundary g2 = Gω2 of AT with the winding number w = 1/1:

 The stationary phase on this boundary is

The boundary of AT, defined by Eq. (18), is shown by blue dotted curves in Fig. 2c,d.

Arnold tongues in the presence of STDP. We can now estimate how Arnold tongues change when STDP is 
taken into account. Unidirectional coupling (W12,W21) = (1, 0) is stable in the presence of STDP if the ine-
quality (9) is satisfied. In this inequality, the time �T can be expressed in terms of the stationary phase ϕ̄1 as 
�T = (2π − ϕ̄1)/ω1 . Here we have used the fact that the QIF neuron fires when its phase reaches 2π . As a result, 
the STDP stability condition (9) can be written as

First let us check whether the stability condition (20) is met on the boundaries of ATs Eq. (14) obtained 
with fixed synaptic weights. Substituting ϕ̄1 = ϕ̄A

1  into inequality (20), we have ϕ̄A
1 > 2π(1− Q1) or 

Q1 > (T2/T1 − n+ 1)/2 . If this inequality is met, then the boundaries ḡ1 of ATs in the presence of STDP will 
coincide with the boundaries g1 of ATs obtained with fixed synaptic weights. If the above inequality is not met 
then boundaries ḡ1 are estimated by replacing the inequality (20) with equality and substituting into it the sta-
tionary phase ϕ̄1 from the Eq. (13). As a result, we get the following expression for the boundaries of ATs with 
the winding numbers w = n/1 in the presence of STDP:

 They are shown by yellow dashed curves in Fig. 2a,b. In Fig. 2c, we show the difference ḡ1 − g1 between the 
boundaries of ATs in the presence of STDP and without STDP as functions of a ratio τd/τp for different values of 
T2/T1 . On the inset, the area where τd ≈ τp is enlarged. Here the difference ḡ1 − g1 vanishes on a finite interval 
of τd/τp , which means that ATs with and without STDP coincide.

We now estimate the stability of unidirectional coupling (W12,W21) = (0, 1) in the presence of STDP. Sub-
stituting �T = (2π − ϕ̄2)/ω2 in the stability condition (11), we have:

The unidirectional coupling is stable on the boundary of AT g2 obtained with fixed synaptic weights if 
ϕ̄A
2 > 2π(1− Q2) or Q2 > T1/(2T2) . This inequality cannot be met due to the assumption τd/τp > 1 . Then the 

boundary of AT ḡ2 with the winding number w = 1/1 in the presence of STDP is obtained from the equality 
ϕ̄2 = 2π(1− Q2):

 This boundary is shown by yellow dashed curve in Fig. 2d,e. The difference ḡ2 − g2 between the boundaries 
of ATs in the presence of STDP and without STDP as a function of a ratio τd/τp for different values of T2/T1 is 
shown in Fig. 2f.

General results near resonances. The QIF neural model made it possible to obtain analytical expres-
sions for boundaries of ATs for arbitrary values of the natural periods T1 and T2 of neurons. Near resonances, 

(16)ϕ
(k+1)
2 = 2arccot

[

cot

(

ϕ
(k)
2 + ω2T1

2

)

−
2g

ω2

]

.

(17)ϕ̄2 = π + 2 arctan
(

G +
√

G2 − 1− 2G cot (πT1/T2)

)

,

(18)g2 = ω2 cot

(

π

2

T1

T2

)

(19)ϕ̄A
2 = 2π

(

1−
1

2

T1

T2

)

.

(20)ϕ̄1 > 2π(1− Q1).

(21)ḡ1 =
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similar analytical expressions can be obtained for any class I neural model. Suppose that the ratio of periods can 
be represented as

where n is a natural number and ε is a small parameter. For winding numbers n = 2, 3, . . . the parameter ε is 
negative, and for n = 1 it is positive. We now consider the Winfree model (6) with an arbitrary positive PRC 
Zi(ϕ) ≥ 0 . The last requirement limits our consideration to class I neurons.

Arnold tongues with fixed synaptic weights. Let us consider the case of fixed synaptic weights (W12,W21) = (1, 0) , 
assuming that the coupling strength g is small. At the instants of firing of the second neuron, the phase ϕ1 of the 
first neuron satisfies the mapping

The fixed points of this map are determined by the equation ϕ(k+1)
1 = ϕ

(k)
1 ≡ ϕ̄1 . This gives 

ω1T2 + gZ1(ϕ̄1 + ω1T2) = 0 . Substituting ω1T2 = 2π(n+ ε) and taking into account that the phase is defined 
modulo 2π , we obtain

 The critical value of the coupling strength g = g1, at which synchronization occurs, is determined by the local 
properties of the PRC near its absolute maximum. We assume that close to the maximum the PRC Z1(ϕ) can be 
approximated by a parabola

where Zmax
1  is the absolute maximum of the PRC, ϕmax

1  is the phase value corresponding to this maximum, and 
the positive parameter α1 = −(1/2)[d2Z1(ϕ)/dϕ2]ϕ=ϕmax

1
 . Using this approximation, we find that the stable 

stationary solution of the map (25) is

Equating the expression under the root to zero, we find the boundaries of ATs with the winding numbers 
w = n/1 ≥ 2:

 The stationary phase on these boundaries is ϕ̄A
1 ≈ ϕmax

1  . The validity of the approximation (29) is easy to verify 
for the already analyzed QIF neurons. The PRC of QIF neurons is determined by the Eq. (7), so Zmax

1 = 4/ω1 , 
and the approximation (29) gives g1 = −(ω1/2)πε . The same result is obtained from the exact Eq. (14) by sub-
stituting T2/T1 = n+ ε into Eq. (14) and expanding it in the small parameter ε.

We now consider synchronization for the unidirectional coupling with fixed synaptic weights 
(W12,W21) = (0, 1) . Here we use Eq. (24) with n = 1 and ε > 0 . At the instants of firing of the first neuron, the 
phase ϕ2 of the second neuron satisfies the mapping

The fixed points of this map are determined by the equation ϕ(k+1)
2 = ϕ

(k)
2 ≡ ϕ̄2 . This gives 

ω2T1 + gZ2(ϕ̄2 + ω2T1) = 0 . Substituting ω2T1 = 2π/(1+ ε) ≈ 2π(1− ε) and taking into account that the 
phase is defined modulo 2π , we obtain

Approximating the PRC Z2(ϕ) close to the maximum by a parabola

we find that the stable stationary solution of the map (30) is

and the boundary of AT is

 The stationary phase on this boundary is ϕ̄A
2 ≈ ϕmax

2  . For QIF neurons, Zmax
2 = 4/ω2 , and the approximation (34) 

gives g2 = ω2πε/2 . The exact Eq. (18) leads to the same result when T1/T2 = 1+ ε and ε is a small parameter.
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Arnold tongues in the presence of STDP. For the unidirectional coupling with fixed synaptic weights 
(W12,W21) = (1, 0) , the boundaries of ATs near resonances are determined by Eq. (29). In the presence of STDP, 
we are looking for the boundaries of ATs in the form

where β1 is a small nonnegative parameter ( 0 ≤ β1 ≪ 1 ) that needs to be determined. Note that STDP stability 
condition (20) is valid for the Winfree model with an arbitrary PRC, provided that the phase of the neuron is 
calibrated so that it is equal to 2π at the maximum of the membrane potential, i.e. the neuron fires when its phase 
reaches 2π . In what follows, we will assume that this requirement is met. The boundaries of ATs in the presence 
of STDP remain unchanged ( β1 = 0 ) if the inequality ϕ̄A

1 ≥ 2π(1− Q1) is met. Substituting ϕ̄A
1 ≈ ϕmax

1  , and 
computing Q1 at T2/T1 ≈ n this inequality can be written as B1 ≤ 0 , where

For B1 > 0 , the parameter β1 is obtained from Eqs. (28) and (35) using ϕ̄1 = 2π(1− Q1) and g = ḡ1 . General-
izing the above two cases, we get:

We verified the validity of the approximate Eqs. (35), (36) and (37) for QIF neurons using the exact Eq. (21). To 
this end, we substituted the parameters Zmax

1 = 4/ω1 , α1 = 1/ω1 and ϕmax
1 = π into the approximate equations. 

On the other hand, we substituted T2/T1 = n+ ε into the exact Eq. (21) and, expanding it in terms of the small 
parameter ε with the assumption β1 << 1 , we obtained the same result as from the approximate equations.

Near the resonance T2/T1 ≈ 1 , we are looking for the boundary of AT in the presence of STDP in the form

The value of the parameter β2 is obtained in a similar way as described above:

where

 Again, we made sure that for QIF neurons these approximate equations give the same result as the exact Eq. (23) 
when T2/T1 is close to one.

Biophysical neuron models. Wang–Buzsáki neurons. The dynamics of neuron’s membrane potentials vi 
and ions activation/inactivation variables are governed by the  equations16,17 

 with the following functions 

(35)ḡ1 = −
2π

Zmax
1

(1+ β1)ε,

(36)B1 = 2π − ϕmax
1 −

2π

1+ τd/τp







1+
τd

T1
ln





n−1
�

j=0

exp

�

−
jT1

τp

�











.

(37)β1 =
{

0 if B1 ≤ 0,

B21α1/Z
max
1 if B1 > 0.

(38)ḡ2 =
2π

Zmax
2

(1+ β2)ε.

(39)β2 =
{

0 if B2 ≤ 0,

B22α2/Z
max
2 if B2 > 0,

(40)B2 = 2π/(1+ τp/τd)− ϕmax
2 .

(41a)Cmv̇i =− gKn
4
i (vi − vK)− gNam

3
∞(vi)hi(vi − vNa)− gL(vi − vL)+ Ii + g

2
∑

j=1

WijSj(t),

(41b)ḣi =φ[αh(vi)(1− hi)− βh(vi)hi],

(41c)ṅi =φ[αn(vi)(1− ni)− βn(vi)ni], i = 1, 2

(42a)m∞(v) =αm(v)/[αm(v)+ βm(v)],

(42b)αm(v) =0.1(v + 35)/
{

1− 0.1 exp[−(v + 35)]
}

,

(42c)βm(v) =4 exp [−(v + 60)/18],

(42d)αh(v) =0.07 exp [−(v + 58)/20],

(42e)βh(v) =1/
{

1+ exp[−0.1(v + 28)]
}

,
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We used the parameters: (gK, gNa, gL) = (9, 35, 0.1) mS/cm2 , (vK, vNa, vL) = (−90, 55,−65) mV and φ = 5 . At 
direct current Ii = ISNIC ≈ 0.1601 µA/cm2 SNIC bifurcation occurs in an isolated ( g = 0 ) neuron. By increasing 
the current just above ISNIC , one can effectively change the period of neural bursts in a wide range of values. For 
the first neuron, we chose I1 = 0.162677 µA/cm2 , which corresponds to a period of T1 = 500 ms. The mem-
brane potential and PRC for one oscillation period are shown in Fig. 6a,c, respectively. The neuron phase ϕ is 
taken equal to zero at the maximum of the membrane potential. For almost the entire period of oscillation, the 
potential of the neuron is about −60 mV, and a sharp pulse is generated only in a narrow time interval. Since 
the neuron is close to the SNIC bifurcation its PRC resembles the PRC of the QIF neuron given by Eq. (7). The 
red dashed curve in Fig. 6c shows the parabolic fit of the PRC near the maximum. The fitting parameters in 
the parabolic approximation Eq. (27) are as follows: the maximum value of the PRC is Zmax

1 ≈ 4.85 at phase 
ϕmax
1 ≈ 3.33 and α1 ≈ 1.15.

Morris–Lecar neurons. Morris–Lecar neurons are described by the following  equations18,19 

Here vi is the membrane potential, and ni is the activation variable of the ith neuron. The functions included in 
the equations are as follows: 

We used the standard values of the parameters: (gCa, gK, gL) = (4, 8, 2) mS/cm2 , (vCa, vK, vL) = (120,−80,−60) 
mV, (ṽ1, ṽ2, ṽ3, ṽ4) = (−1.2, 18, 12, 17.4) mV, I0 = 40µA/cm2 , Cm = 5µF/cm2 and φ = 1/15ms−1 . Unlike the 
WB model, this model does not allow changing the firing rate of neurons in a wide range of values by changing 
the direct current I0 . To do this we introduced the time scaling parameter ηi . For the first neuron, we take η1 = 1 , 

(42f)αn(v) =0.01(v + 34)/
{

1− exp[−0.1(v + 34)]
}

,

(42g)βn(v) =0.125 exp[−(v + 44)/80].

(43a)Cmv̇i =ηi
[

−gCam∞(vi)(vi − vCa)− gKni(vi − vK)− gL(vi − vL)+ I0
]

+ g

2
∑

j=1

WijSj(t),

(43b)ṅi =ηi
φ[n∞(vi)− ni]

τn
, i = 1, 2.

(44a)m∞(v) =0.5(1+ tanh [(v − ṽ1)/ṽ2]),

(44b)n∞(v) =0.5(1+ tanh [(v − ṽ3)/ṽ4]),

(44c)τn(v) =1/ cosh [(v − ṽ3)/(2ṽ4)].

Figure 6.  Membrane potentials and phase response curves for WB and ML neurons. The left column shows the 
dependence of (a) the membrane potential and (c) PRC on the phase for a periodically spiking Wang–Buzsáki 
neuron. Similarly, the right column shows (b) the membrane potential and (d) PRC for Morris–Lecar neuron. 
The red dashed curves in (c,d) show parabolic approximations of the PRCs near their maxima.
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which gives the oscillation period T1 ≈ 86.27 ms. For the second neuron, η2 = T1/T2 , where T2 is the desired 
period of the second neuron. The membrane potential and the PRC of the ML neuron are shown in Fig. 6b,d, 
respectively. Again, the neuron phase ϕ is taken equal to zero at the maximum of the membrane potential. The 
red dashed curve in Fig. 6d shows the parabolic fit of the PRC near the maximum. The fitting parameters in 
Eq. (27) are as follows: Zmax

1 ≈ 0.88 , ϕmax
1 ≈ 4.22 , and α1 ≈ 0.6.

Data availability
All data are available on reasonable request, directed to the corresponding author, Irmantas Ratas (irmantas.
ratas@ftmc.lt).
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