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Monitoring sleep and activity through wearable devices such as wrist‑worn actigraphs has the 
potential for long‑term measurement in the individual’s own environment. Long periods of data 
collection require a complex approach, including standardized pre‑processing and data trimming, 
and robust algorithms to address non‑wear and missing data. In this study, we used a data‑driven 
approach to quality control, pre‑processing and analysis of longitudinal actigraphy data collected over 
the course of 1 year in a sample of 95 participants. We implemented a data processing pipeline using 
open‑source packages for longitudinal data thereby providing a framework for treating missing data 
patterns, non‑wear scoring, sleep/wake scoring, and conducted a sensitivity analysis to demonstrate 
the impact of non‑wear and missing data on the relationship between sleep variables and depressive 
symptoms. Compliance with actigraph wear decreased over time, with missing data proportion 
increasing from a mean of 4.8% in the first week to 23.6% at the end of the 12 months of data 
collection. Sensitivity analyses demonstrated the importance of defining a pre‑processing threshold, 
as it substantially impacts the predictive value of variables on sleep‑related outcomes. We developed a 
novel non‑wear algorithm which outperformed several other algorithms and a capacitive wear sensor 
in quality control. These findings provide essential insight informing study design in digital health 
research.
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Activity and sleep monitoring through ambulatory devices has become ubiquitous through use of commercial 
devices such as smartphones and smartwatches. Actigraphy, defined as activity and sleep monitoring through 
a research or medical-grade device worn on the body, has been in use for decades. It has been implemented in 
monitoring various populations, including individuals with sleep or biological rhythm  disorders1,  dementia2, and 
 depression3, among others. Sleep and activity are the key monitoring targets for many disorders. For instance, 
sleep and activity are linked to quality of  life4, mental, and physical health  outcomes5. Activity and sleep dis-
turbances have also been linked with increased risk of hypertension, diabetes mellitus, cardiovascular disease, 
coronary heart disease, obesity and  mortality6–8.

Actigraphs are devices typically worn on the wrist, chest, or hip, which use motion sensing accelerometers 
to measure activity on one or three axes. One advantage of actigraphs is the potential for prolonged monitoring 
within the individual’s natural environment, which requires minimal effort on behalf of the device wearer and 
interaction with the device as compared to methods such as take-home questionnaires and ecological momentary 
 assessment1,9. To date, the majority of studies have focused on periods of continuous data collection of 2 weeks 
or  less10. Longer periods of data collection may be more informative, however, they have received less attention, 
likely because they require a more complex approach.

Detection of early signs of clinical changes is an important application of actigraphy. For instance, changes 
in sleep may be among the initial symptoms preceding the onset of a major depressive  episode11. Actigraphy is 
therefore a promising tool to monitor early warning signs of depressive relapse. Actigraphy can be used to evalu-
ate sleep parameters (e.g., total sleep time, sleep maintenance efficiency, wake after sleep onset), sleep timing 
(e.g., sleep onset time, time out of bed, mid sleep point), physical activity parameters (e.g., total activity counts, 
physical activity energy expenditure), circadian activity rhythms (e.g., cosinor analysis, which yields information 
about timing and intensity of activity), and other parameters. However, methods of actigraphy data collection 
and analysis, including collection parameters, devices used, data pre-processing, and variable extraction have 
not been  standardized1.

Accurately and efficiently differentiating periods of wear from non-wear in actigraph data is a major challenge 
in actigraphy research. Ideally, participants should record off-wrist time in a dedicated log maintained throughout 
the duration of the study. However, this may be challenging in clinical populations, especially if participants suffer 
from difficulties with memory or attention, life stress, or other challenges that impair their ability to accurately 
record off-wrist time. As a consequence, automatic methods of detecting wear and non-wear periods have been 
developed. For instance, the ActiGraph GT9X Link is equipped with a capacitive sensor, which indicates whether 
the participant is wearing the device, based on the proximity of the device to skin, however, this wear sensor 
has technical issues, with non-wear being noted during times of apparent wear of the actigraph, as recorded by 
 participants12. Consequently, the wear sensor substantially underestimates wear time compared to participant 
diaries, with a sensitivity of 93% but a specificity of 49%13. Additionally, there are several non-wear detection 
algorithms, though some of these were not developed to account for non-wear episodes during the night, or 
during sleep periods, and the majority of these algorithms were developed using data from actigraphs worn at 
the  hip14–16. Importantly, the choice of pre-processing approaches, such as non-wear detection, sleep detection, 
and rules such as thresholds for what constitutes a valid number of days for actigraphy analysis can significantly 
impact outcomes in actigraphy  studies12,17 Periods of non-wear may also be associated with outcomes of interest 
in mental health research, further supporting the importance of their accurate detection as part of studies of 
actigraphy in clinical populations.

The aim of this paper is to report on a standardized pipeline for quality control, pre-processing, and analysis 
of actigraphy data collected over an extended period of time, developed with the use of open-source packages.

Methods
Data collection. Study design. These actigraphy data were collected as part of the Wellness Monitoring 
for Major Depressive Disorder (Wellness Monitoring Study), a longitudinal observational study conducted by 
the Canadian Biomarker Integration Network in Depression (CAN-BIND), which aimed to identify predictive 
biomarkers of relapse of major depressive disorder (MDD) (ClinicalTrials.gov Identifier: NC02934334). The 
Wellness Monitoring Study used ambulatory monitoring to establish which variables can act as “warning sig-
nals” prior to a relapse of MDD. Several symptom domains were evaluated, including mood and anxiety symp-
toms, sleep, activity, biological rhythms, anhedonia, pain, quality of life, treatment compliance-related variables, 
speech characteristics and voice characteristics. The domains were assessed through different methods, includ-
ing self-report questionnaires, clinician-rated assessments, audio recording of voice, and objective monitoring 
of activity, sleep and biological rhythms with actigraphy.

Participants were enrolled into the study if they had a diagnosis of MDD, responded to treatment for their 
most recent major depressive episode, and had a current MADRS score < 14 at baseline and screening visits, 
resulting in a total of 101 participants who completed a baseline visit. Following written informed consent, 
participants received a study-specific smartphone (LogPad®, ERT, Clario [formerly, PHT]) and wrist-worn acti-
graph, which were used for the duration of the study. Further information about the study sample is provided 
in the Supplementary Materials, including supplementary Figure 1 which describes participants in the Wellness 
Monitoring study.

Participants completed a screening visit, a baseline visit within 2 weeks of screening, and a minimum one-year 
observational phase (early withdrawal allowed). Most participants completed screening and baseline visits on 
the same day. During the observational phase of the study, participants completed in-person assessments every 
8 weeks in addition to continuous ambulatory monitoring. Participants enrolled on a rolling basis and had vari-
able lengths of follow up periods with target durations of at least 1 year since last patient enrolled.
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At baseline, and subsequent 8-weekly follow-up visits, participants were assessed through an on-site electronic 
data collection device (the SitePad®) which recorded measures of depressive symptom severity, healthcare service 
use, and symptom severity. Additionally, participants completed self-report questionnaires through the Brain-
CODE REDCap interface and provided blood samples, as well as a series of weekly self-reports, and biweekly 
speech and voice characteristics through the LogPad® device. Further information about the study inclusion/
exclusion criteria, treatment and relapse is provided in the supplementary material. All procedures contributing 
to this work comply with the ethical standards of the relevant national and institutional committees on human 
experimentation and with the Helsinki Declaration of 1975, as revised in 2008. Study procedures were approved 
by local research ethics boards and all participants provided informed consent before study entry.

Data acquisition: raw actigraphy data. The Actigraph GT9X-BT Link® (ActiGraph, Penascola, Florida, USA) 
device was used to collect sleep, activity and biological rhythms parameters through the observational phase 
of the study. Study coordinators uploaded the data to the CentrePoint Study Admin System (http:// www. actig 
raphc orp. com/ produ ct- categ ory/ study- admin/) and monitored adherence during in-person visits. CentrePoint 
is a cloud-based technology platform developed by Actigraph, which preserved data integrity, as well as network 
security, availability, and standards compliance. The GT9X Link contains a capacitive touch wear  sensor18.

Participants were instructed to wear the GT9X Link® device 24 h per day for the entire duration of the study, 
and received a charging dock and USB cable to charge the device from home. Data were collected at 30 Hz on the 
non-dominant wrist. At each in-person visit, data were extracted to the CentrePoint system by study coordina-
tors. Data from the CentrePoint system were transferred to OBI’s Brain-CODE platform at the completion of 
the study. Data were first extracted as raw .gt3x files, at intervals corresponding to occasions on which data were 
uploaded. Data were additionally aggregated into minute-by-minute epochs, as one .csv file for each participant, 
and were initially sleep scored using the Cole-Kripke  algorithm19 (Fig. 1: Raw Actigraphy Data).

Raw actigraphy data provided information about the direction and orientation of the actigraph, while count 
data only provided information about the amount of movement. Count data aggregated by epoch are traditionally 
used as the basis of calculating  sleep[20]and energy expenditure  parameters20, as well as non-wear, while more 
recent actigraphy processing methods use raw  data16,21.

Data processing and analysis. Summary. Figure 1 shows a summary of the automated data pre-pro-
cessing pipeline, as executed in R Statistical Software (v 4.0). As part of this pre-processing pipeline, we as-
sessed data missingness and scored sleep and wake for minute-by-minute epochs using the Cole-Kripke19 and 
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(30Hz; 1-minute epochs)
- Includes Wear Sensor Data

SLEEP SCORING: 
Cole-Kripke and 

Tudor-Locke 
Algorithms

ADDRESSING 
DATA 

MISSINGNESS

NON-WEAR 
SCORING: 

Van Hees, Choi and 
Troiano Algorithms 

NON-WEAR 
SCORING: 

Development of the 
Majority Algorithm

SENSITIVITY ANALYSES
PRE-PROCESSED  

ACTIGRAPHY DATA: 
Sleep and Non-wear Scored

(Epochs, Intervals)

AGGREGATED 
ACTIGRAPHY DATABASE 

(Epochs, intervals)

DATA TRIMMING
(1 year for the 

Wellness Monitoring 
Study)

Figure 1.  Pre-processing Pipeline Summary. Raw actigraphy data were acquired at 30 Hz and pre-processed 
to minute epochs, where activity data, a timestamp and corresponding wear sensor data were extracted. These 
data were trimmed, and data missingness patterns were addressed. Non-wear scoring (using the van Hees, Choi 
and Troiano algorithms) and sleep–wake scoring (using the Cole-Kripke and Tudor-Locke algorithms) were 
completed. A novel non-wear scoring method was developed, combining data from the van Hees, Choi and 
Troiano algorithms, with the wear sensor data (the Majority algorithm). Next, sleep and non-wear data were 
combined at the interval and epoch levels. A sensitivity analysis was performed to assess optimal threshold 
for overlap of sleep with non-wear intervals, yielding a final aggregated actigraphy database at the epoch and 
interval levels.

http://www.actigraphcorp.com/product-category/study-admin/
http://www.actigraphcorp.com/product-category/study-admin/
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Tudor-Locke22 algorithms. Next, we tested the accuracy of four methods of non-wear detection: (1) the built-in 
wear sensor available in this actigraph model; scored the minute-by-minute epoch data using the (2)  Choi14 and 
(3)  Troiano15 algorithms; and (4) used the raw 30 Hz actigraphy data for scoring using the van Hees  algorithm23. 
From these four methods, we created a new non-wear scoring algorithm (the majority algorithm), and conduct-
ed visual quality control of this majority algorithm (See “Non-wear detection” section below). Next, we combined 
the sleep intervals with non-wear intervals, and conducted sensitivity analyses to assess the influence of valid day 
selection and percentage of overlap between non-wear and sleep on the relationship between sleep variables and 
the main outcome measure of this study – the Montgomery-Åsberg Depression Rating Scale (MADRS)24, which 
was collected at each in-person visit.

Data trimming. An important step in data pre-processing is to trim the data including only data that will be 
used for analysis. For instance, in case of withdrawal from the study, participants may have worn the actigraph 
(or the actigraph may have collected data) until it is returned to the lab, at a later date than the official with-
drawal date from the study. Additionally, researchers may only be interested in analyzing a specific portion of 
the collected data, in which case data trimming is also necessary. In the Wellness Monitoring Study, data were 
trimmed to 1 year of collection, and data that extended following the participant’s enrollment or collected due 
to configuration error prior to enrollment in the study were trimmed based on study enrolment dates. Duplicate 
rows were removed (Fig. 1: Data Trimming).

It is important to ensure that data for all dates were accounted for, including periods of missing data, if such 
paradata were to be recorded or reported. Paradata refers to administrative data that were obtained during the 
process of collection, management and treatment of actigraphy  data25. If a participant was asked to wear multiple 
actigraph devices throughout the duration of the study, the periods of overlap must be correctly accounted for, 
and the correct data interval should be used. We maintained accurate paradata of the rows that were removed, 
and the number of missing minutes per day, per participant, which will be stored and made available with the 
pre-processed data.

Sleep scoring. Minute-by-minute epoch data were scored for sleep and wake using the Cole-Kripke and Tudor-
Locke algorithms deployed in the actigraph.sleepr package (https:// github. com/ dipet kov/ actig raph. sleepr), 
which is an open-source implementation of the ActiLife software’s sleep and non-wear detection algorithms 
(Fig. 1: Sleep/Wake Scoring: Cole-Kripke and Tudor Locke Algorithms). From this analysis, epoch-based scor-
ing of minute epochs and sleep intervals were obtained. Sleep intervals were characterized by the following vari-
ables: sleep maintenance efficiency (SE, %), sleep duration (mins), activity counts, non-zero epochs, total sleep 
time (TST, mins), wake after sleep onset (WASO, mins), number of awakenings, movement index, fragmenta-
tion index, sleep fragmentation index, sleep onset time (HH:MM:SS), time out of bed (HH:MM:SS), number 
of one minute sleep intervals, mean mid sleep time ([time out of bed – sleep onset time]/2), average awakening 
(mins). Fragmentation index is calculated as a percentage of sleep periods that last 1 min compared to number of 
periods of sleep during the sleep period. Movement index consists of the percentage of epochs during the sleep 
period where y-axis counts were larger than zero. Sleep fragmentation index is the sum of the movement index 
and fragmentation  index26.

Non-wear scoring. In the Wellness Monitoring Study, we used the wear sensor embedded in the Actigraph 
GT9X Link, in addition to the Troiano, Choi and van Hees algorithms to detect non-wear. The Troiano and Choi 
algorithms were chosen due to their wide use, ease of implementation, and availability through the ActiLife 
software. The van Hees algorithm was chosen due to its superior performance in Syed and colleagues’  study27, 
and ease of implementation. The Troiano and Choi algorithms use epoch-aggregated count  data14,15. The Troiano 
algorithm defines non-wear intervals as 60 or more consecutive minute epochs with no activity, allowing for 1 
or 2 min of counts of 0 to  10015. Since this algorithm is prone to classifying sedentary activity as non-wear time, 
Choi and colleagues proposed a modified algorithm where non-wear was classified as intervals of at least 90 min 
with consecutive minute epochs of no activity. Intervals of 1 or 2 min with non-zero counts would not change 
this classification, if there was no activity 30 min before or after that  interval14. Newer approaches such as the van 
Hees algorithm use raw  data16. Van Hees’ algorithm is based on raw data, where a period is deemed to be non-
wear when the standard deviation of movement is lower than 3.0mG (1mG = 0.00981 m/s2) or the value range 
is lower than 50 mg for at least 2 of 3 axes for a given 30-min  period16,23. These approaches are useful to detect 
longer periods of non-wear, however, shorter periods of non-wear (e.g., taking the actigraph off for showers), 
will not be detected.

The capacitive sensor on the Actigraph GT9X Link provided epoch-aggregated non-wear detection at the 
minute level. The capacitive sensor consists of a metallic plate. Based on the concept of capacitive coupling, the 
sensor charges more quickly when it is in closer proximity to our bodies. The sensor therefore measures the 
amount of time that the capacitor uses to charge, and therefore allows estimation of non-wear28.  Troiano15 and 
 Choi14 algorithms were used to score the activity (motion) data from csv files containing minute-by-minute data 
using the actigraph.sleepr package (Fig. 1: Non-wear Scoring: Choi and Troiano Algorithms). Additionally, non-
wear scoring was performed on the raw data gt3x files using the van Hees algorithm through the GGIR  package23. 
While using this package, we specified a 5 s window for calculating acceleration and angle, 900 s for the epoch 
length to calculate non-wear and signal clipping, and 3600 s for the window of wear detection (Fig. 1: Non-
wear Scoring: Van Hees Algorithm). Agreement between algorithms during each epoch was evaluated through 
minute-by-minute overlap of non-wear detected by the different algorithms and the wear sensor. Additional 
information about data processing is provided in the Supplement.

https://github.com/dipetkov/actigraph.sleepr
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Development of a novel non-wear algorithm: the majority algorithm. A novel non-wear algorithm, the major-
ity algorithm, was developed by calculating the percentage of overlap between the wear sensor, Troiano, Choi 
and Van Hees algorithms in each minute epoch (Fig. 1: Non-wear Scoring: Development of the Majority Algo-
rithm). If 3 or 4 of the 4 methods of detection indicated that a minute epoch should be classified as non-wear, this 
minute epoch was classified as non-wear. As the Choi algorithm is an updated version of the Troiano algorithm, 
we compared the performance of a 4-method version of the majority algorithm (which combined the wear sen-
sor, Troiano, Choi and van Hees algorithms) to a 3-method version of the majority algorithm (which only used 
the wear sensor, Choi and van Hees algorithms). For the 3-method version, if 2 or 3 of the 3 methods of detection 
indicated that a minute epoch should be classified as non-wear, this minute epoch was classified as non-wear. To 
validate the use of this algorithm, we performed visual quality control to evaluate performance of the majority 
algorithm in a subset of participants. We selected a majority of these participants based on their relapse status, 
as this was the major outcome in the Wellness Monitoring Study (see Supplementary Material). Each participant 
file was reviewed day-by-day, where false non-wear detection was identified by one or two trained independ-
ent scorers (see Supplementary Material for further details). Accuracy, positive predictive value, sensitivity and 
specificity statistics were calculated for epoch-level data for each of the 5 algorithms (Choi, Troiano, van Hees, 
majority (4), and majority (3)) and the wear sensor, as compared to visual quality control at the day level. As 6 
of the participant data files were scored by 2 scorers, we averaged the results of the accuracy, positive predictive 
value, sensitivity and specificity statistics for these participants for the outputs of the algorithms compared to 
visual quality control. To test the difference in performance of the algorithms, we fitted mixed linear models, 
with day-level performance statistics as dependent variables and algorithm*day as the independent variables 
using the lme4 package. We compared the performance of the different algorithms using estimated marginal 
means of the models, with a Tukey correction for multiple comparisons using the emmeans package. Inter-rater 
reliability (Cohen’s kappa) was calculated.

Addressing data missingness. Some analytic procedures require complete data. Data missingness can be clas-
sified as missing completely at random (MCAR), meaning that missing data are missing independently of 
observed or missing data. This type of missingness does not cause bias, despite increasing standard error. Miss-
ing at random (MAR) data occur when the mechanism of missingness is a partial result of the observed data, 
and if the mechanism of the missing data is a result of the missing data, this indicates the data are not missing 
at random (NMAR)29.

It is plausible that participants’ non-wear may correspond with periods of relapse of depression, which is the 
key outcome measured in the Wellness Monitoring Study, indicating that these data are likely not MAR or MCAR. 
Additionally, summary statistics regarding non-wear can be used in modeling outcomes during the analysis stage. 
Therefore, we intend to use missing data as part of our modelling approach, where variables describing non-wear 
and missingness will be included in predictive models for mental health outcomes.

At the epoch level, we used the average day imputation method, where missing data are imputed by an average 
of the values collected during the same time period that has missing data (for instance, if data are missing from 
7:00 to 7:15, this algorithm will create an average for that missing interval based on the data that were collected)30. 
To perform this average day imputation, we used a window of 7 days (i.e., 3 days prior to and 3 days following the 
day with missing data). We did not impute full days of data – only days with partial missing data were imputed. 
In this study, data could have been missing as a result of non-wear (based on the majority (3) algorithm) or as a 
result of data not being collected for the period (Fig. 1: Addressing Data Missingness).

Spearman correlations were applied to assess the relationship between depressive symptoms according to the 
MADRS and data missingness or non-wear patterns. As the data for sleep and depressive symptoms were assessed 
at different frequencies, we aggregated these data by creating an average of each sleep variable.

Sensitivity analyses. Many studies in actigraphy literature use filtering approaches, where days are only con-
sidered valid if the actigraph is worn over a certain number of hours for each  day31. This threshold has not been 
standardized, though the most commonly used threshold is 10 h or more of available data in a  day31, for the day 
to be considered valid. A sensitivity analysis was conducted to test influence of non-wear on the relationship 
between sleep and MADRS scores, the main symptom outcome measure in this study. This sensitivity analysis 
consisted of two components: (1) number of valid hours of data per day for the day to be considered valid and 
(2) overlap of the sleep interval with non-wear, and how these components influenced the relationship between 
sleep variables and depressive symptoms (Fig. 1: Sensitivity Analyses).

First, this sensitivity analysis used hourly thresholds starting from > 6 to 24 valid hours per day of analysis for 
the relevant sleep interval to be included in the analysis, as well as all collected data. The second component of the 
analysis selected several thresholds for excluding intervals of sleep based on overlap with non-wear. Overlap of 
sleep with non-wear intervals was calculated for each sleep interval, first by generating the number of non-wear 
minutes in each sleep interval, and subsequently calculating percentage of non-wear minutes per duration of 
the sleep interval. Thresholds were tested in 10% intervals, ranging from < 10% overlap to up to 100% overlap. 
Sleep intervals exceeding a given threshold (e.g. > 80% overlap) were excluded from analysis for each iteration 
of this analysis. Since MADRS scores were obtained every 8 weeks for the duration of the study, and at each 
relapse verification visit, we averaged sleep values across each 8-week epoch. For each combination of thresholds, 
we conducted mixed linear modeling with the following variables, following standardization, as fixed-effects 
variables used to model of MADRS score: sleep variables (SE, duration, activity counts, non-zero epochs, TST, 
number of awakenings, movement index, fragmentation index, sleep onset time, out of bed time, number of one 
minute sleep intervals, average awakenings), time since study enrolment and number of missing or non-wear 
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minutes, and participant ID as a random intercept . We evaluated 190 combinations of overlap threshold and 
valid day selection, and chose the threshold combination with the lowest marginal  R2 32.

Statistical software. All analyses were implemented in R statistical software (v. 4.0).

Results
Collected and missing data. Summary statistics outlining collected data and missingness in the Wellness 
Monitoring Study are outlined in Table 1, describing missingness due to a lack of data collection at the minute 
epoch level. Overall, participants were observed for a total of 31,175 days, amounting to 44,891,400 rows (min-
ute epochs) of data. Overall, 36,600,320 rows of data were collected (25,416.89 days), with 18.47% or 8,291,080 
rows of data missing across the period of data collection (5,757.69 days). If aggregated at the participant level, 
each participant had between 0.11 to 100% of data missing. A total of 95 participants had available actigraphy 
data, and completed 8 weeks of data collection. By 26 weeks of data collection, 84 participants (88.4%) continued 
data collection, and 73 participants (76.8%) remained by the  52nd week of data collection.

Non‑wear detection. Summary of non-wear according to different algorithms. Table 2 displays non-wear 
statistics obtained from the non-wear detection methods throughout the study. At the day level, according to 
the 3 non-wear algorithms, there was a mean of 12.55 to 16.74% of data missing overall throughout the study, 
whereas the wear sensor detected 16.29% of non-wear throughout the study. At the participant level, where 
mean statistics were aggregated per participant, each participant had 12.43 to 16.62% of non-wear. Figure 2 
shows the distribution of non-wear per day as detected by the different methods.

Overlap of non-wear detection methods. Next, we assessed overlap of non-wear detected by the differ-
ent algorithms and the wear sensor, finding a high proportion of overlap between all non-wear algorithms 
(91.55 ± 14.96%) at the day level across all participants. However, overlap with the wear sensor was lower, with a 
total of 79.32 ± 27.71% overlap of all methods of wear detection (Table 3). Additionally, this overlap of non-wear 
detection methods did not substantially change over time, as indicated by Figure S3c.

Development of a novel non-wear algorithm: the majority algorithm. Table 4 shows performance of the 3-method 
and 4-method non-wear majority algorithms compared to the other methods of non-wear detection.

Table 1.  Data missingness in the wellness monitoring study.

Total Mean ± SD per participant Range per participant

N days of data collected 31,175 328.16 ± 84.51 57–366

N rows of data collected 44,891,400 472,541.05 ± 121,704.76 82,080–527,100

Total Mean ± SD per participant Mean ± SD per participant per day Range per participant Range per participant per day

N missing rows of data 8,291,080 87,274.53 ± 107,447.15 287.15 ± 349.02 581–502,354 1.59 ± 1440

% of total % ± SD per participant Range per participant

% missing rows of data 18.47% 19.94 ± 24.24 0.11–100%

Table 2.  Summary of non-wear in wellness study according to different methods of detection.

Median Mean ± SD Range
Median Excluding 
Missing Data)

Mean/SD (Excluding 
Missing Data)

Range (Excluding 
Missing Data)

Participant-level statistics (Aggregated per Participant) (n = 95 participants)

% Non-wear: GT9X-Link Wear Sensor 13.04 16.32 ± 11.40 0–55.44 17.90 22.39 ± 16.16 3.83–86.19

% Non-wear: Choi 9.66 13.78 ± 12.71 0–56.60 12.78 20.28 ± 19.21 0.94–85.54

% Non-wear: Troiano 12.34 16.62 ± 12.79 0–58.64 18.63 23.67 ± 18.94 1.58–86.39

% Non-wear: van Hees 7.11 12.43 ± 12.62 0–55.35 9.04 18.56 ± 19.29 0.52–85.53

% Non-wear: Majority algorithm 7.79 12.50 ± 12.46 0–55.75 9.71 18.63 ± 19.06 0.80–85.66

% Non-wear: Majority algorithm (3) 8.41 12.73 ± 12.54 0 – 55.97 9.82 18.95 ± 19.20 0.80–85.74

Day-level statistics (Aggregated Across Entire Study) (n = 31,175)

% Non-wear: : GT9X-Link Wear Sensor 0.90 16.29 ± 28.85 0–100 3.19 20.08 ± 31.00 0–100

% Non-wear: Choi 0.00 13.86 ± 26.65 0–100 0.00 17.03 ± 28.78 0–100

% Non-wear: Troiano 4.86 16.74 ± 26.65 0–100 8.13 20.53 ± 28.34 0–100

% Non-wear: van Hees 0.00 12.55 ± 26.98 0–100 0.00 15.42 ± 29.32 0–100

% Non-wear: Majority algorithm 0.00 12.58 ± 26.24 0–100 0.00 15.48 ± 28.47 0–100

% Non-wear: Majority algorithm (3) 0.00 12.82 ± 26.60 0–100 0.00 15.77 ± 28.85 0–100
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Detailed visual quality control was conducted to test the performance of the 4-method majority algorithm 
on data from 19 participants (20% of the total sample), for a total of 4,600 days, or 6,624,026 rows. Figure S2a 
shows an example of the visualization used to conduct quality control for the majority algorithm. Most selected 
participants (n = 15) were chosen from based on their status as relapsers at some point during the study, and 
additional participants were selected from the non-relapser group to strengthen the validity of this evaluation 
(n = 4). Inter-rater reliability measured through Cohen’s kappa was κ = 0.94, indicating near perfect inter-rater 
 reliability33, calculated from 1,991 days of data obtained from 6 participants assessed by 2 raters.

a) Histogram of daily distribution of non-
wear according to the wear sensor. 

b) Histogram of daily distribution of 
non-wear according to the Choi 
algorithm. 

c) Histogram of daily distribution of non-
wear according to the van Hees 
algorithm 

d) Histogram of daily distribution of 
non-wear according to the Troiano 
algorithm. 

e) Histogram of daily distribution of non-
wear according to the majority 
algorithm (3-method). 

f) Histogram of daily distribution of 
non-wear according to the majority 
algorithm (4-method). 

Figure 2.  Distribution of non-wear per day according to different methods of non-wear detection.
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A visualization of the comparative performance of the wear sensor, Choi, Troiano, van Hees and majority 
(3- and 4- method) algorithms can be found in Supplementary Figure S2b, and results from models comparing 
algorithm performance statistics can be found in Supplementary Tables S1 and S2. Between the wear sensor, 
Choi algorithm, Troiano algorithm, van Hees algorithm and majority algorithms (3-method and 4-method ver-
sions), the majority algorithms had the best overall performance. The majority algorithms had significantly better 
accuracy than the wear sensor, Choi and Troiano algorithms (3-method: 0.9887; 4-method: 0.9884; wear sensor: 
0.8839; Choi algorithm: 0.9816; Troiano algorithm: 0.9609). The van Hees (0.9866) and majority algorithms had 
similar accuracy, though the van Hees algorithm’s accuracy did not significantly differ from the Choi algorithm. 
The majority and van Hees algorithms had performed significantly better than all other methods in specificity 
(4-method: 0.9982; 3-method:0.9972; van Hees algorithm: 0.9967; Choi algorithm: 0.9885; Troiano algorithm: 
0.9632; wear sensor: 0.9154) and PPV (4-method: 0.9665; 3-method: 0.9641; van Hees algorithm: 0.9515; Choi 
algorithm: 0.9101; Troiano algorithm: 0.6723; wear sensor: 0.6197). Finally, the Troiano algorithm significantly 
outperformed all other algorithms in terms of sensitivity, followed by the Choi and majority algorithms (Troiano 
algorithm: 0.9823; Choi algorithm: 0.9617; 4-method: 0.9608; 3-method: 0.9592; wear sensor: 0.9444; van Hees 
algorithm: 0.9289). The wear sensor had the poorest performance in non-wear detection. Notably, these statistics 
only capture visually noted intervals of non-wear, which were typically over the length of an hour. Since the 
3- and 4-method majority algorithms had comparable performance, which exceeded the single algorithms in 
accuracy, we used the 3-method majority algorithm in the remainder of our analyses.

In line with previous  investigations34, non-wear increased with time since baseline, and variability in non-
wear increased with time since baseline, as data from fewer participants were available (see Fig. 3, mean of 4.8% 
in the first week to 23.6% at the end of 12 months of data collection).

Table 3.  Mean and standard deviation daily percent overlap of non-wear in wellness study according to 
different methods of detection – (Day level) (n = 31,175).

Missing 5,536

% Agreement Between All Methods of Detection (excluding Troiano) 82.35 ± 28.19

% Agreement Between All Methods of Detection (Including Troiano) 79.32 ± 27.71

% Agreement Between All Algorithms (Troiano, Choi, van Hees) 91.55 ± 14.96

Wear sensor Choi algorithm Troiano algorithm Van Hees algorithm

Wear Sensor 1

Choi Algorithm 85.25 ± 25.61 1

Troiano Algorithm 82.94 ± 24.90 95.82 ± 5.67 1

Van Hees Algorithm 83.96 ± 27.80 95.12 ± 14.30 92.10 ± 14.68 1

Median daily percent overlap of non-wear in wellness study according to different methods of detection

% Agreement Between All Methods of Detection (excluding Troiano) 94.72

% Agreement Between All Methods of Detection (Including Troiano) 90.42

% Agreement Between All Algorithms (Troiano, Choi, van Hees) 95.42

Wear sensor Choi algorithm Troiano algorithm Van Hees algorithm

Wear Sensor 1

Choi Algorithm 96.88 1

Troiano Algorithm 93.04 98.61 1

Van Hees Algorithm 96.53 100 95.63 1

Table 4.  Performance of non-wear detection methods in visual quality control. Mean and SD of the algorithm 
performance statistics were calculated at the day level. SD = standard deviation.

Wear Sensor 
Mean (SD)

Choi Algorithm 
Mean (SD)

Troiano Algorithm 
Mean (SD)

Van Hees Algorithm 
Mean (SD)

4-method Majority 
Algorithm: Wear 
Sensor, Choi, Troiano, 
Van Hees Mean (SD)

3-method Majority 
Algorithm: Wear 
Sensor, Choi, van 
Hees Mean (SD)

Total Rows 6,702,388 6,702,388 6,702,388 6,624,026 6,624,026 6,624,026

Total Days 4,654.44 4,654.44 4,654.44 4,600.02 4,600.02 4,600.02

Missing 1,823,252 1,823,252 1,823,252 1,901,614 1,901,614 1,901,614

Accuracy 0.8839 (0.2722) 0.9816 (0.0564) 0.9609 (0.0683) 0.9866 (0.0474) 0.9884 (0.0526) 0.9887 (0.0517)

Positive Predictive Value 0.6197 (0.4703) 0.9101 (0.2762) 0.6723 (0.4528) 0.9515 (0.2063) 0.9665 (0.1711) 0.9641 (0.1767)

Sensitivity 0.9444 (0.2225) 0.9617 (0.1707) 0.9823 (0.1067) 0.9289 (0.2013) 0.9608 (0.1609) 0.9592 (0.1620)

Specificity 0.9154 (0.2326) 0.9885 (0.0491) 0.9632 (0.0717) 0.9967 (0.0370) 0.9982 (0.0125) 0.9972 (0.0280)
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Managing data missingness. Addressing data missingness in the Wellness Monitoring Study. When we 
combined non-wear scoring with sleep interval scoring, there were, expectedly, periods of overlap between these 
intervals. We used Spearman correlations to see whether there was a relationship between the main clinical out-
come (depressive symptoms according to the MADRS) and data missingness or non-wear patterns. Depressive 
symptoms according to the MADRS did not correlate with data missingness (rho = − 0.04), nor with non-wear 
patterns according to any of the methods of non-wear detection (rho = − 0.03 to 0.02) (Figure S3).

Sensitivity analyses. Next, we conducted a sensitivity analysis of the influence of the overlap of sleep inter-
vals with non-wear intervals, and influence of valid day criteria. We tested 200 thresholds for excluding sleep 
intervals which overlapped with non-wear, and their combination with thresholds of number of hours of data 
per day for the day to be considered valid, and assessed whether these thresholds impacted the relationship of 
individual sleep metrics with depressive symptoms. Overlap thresholds were tested in 10% increments, ranging 
between < 10% overlap and 100% overlap. Valid day thresholds were tested in hourly increments ranging from all 
collected data, > 6 valid hours to 24 valid hours. See Supplementary Figure S5 for an illustration of this threshold-
ing approach (Table 5).

Altogether, there were 30,093 sleep intervals available for evaluation, and a maximum of 12,438 sleep intervals 
were excluded through the non-wear percentage threshold approach. There were 515 instances of MADRS obser-
vations across the study for 94 participants with valid actigraphy data. The threshold combination of > 20 valid 
hours and up to 30% overlap between sleep and non-wear intervals, was chosen based on the highest marginal 
 R2 value for mixed linear models (See Table 5). This yielded 22,853 total sleep intervals.

Discussion
In this study, we present a data-driven pre-processing pipeline for a long-term actigraphy study using the exam-
ple of the Wellness Monitoring Study which lasted over the course of 12 months of continuous data collection. 
This study provides a guideline for future digital health research using large, longitudinal actigraphy datasets. 
Importantly, a novel algorithm for non-wear detection, the majority algorithm was developed, which involved an 
extensive visual quality control procedure. The majority algorithm significantly outperformed the use of single 
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Figure 3.  Percentage of non-wear detected using majority algorithm across study duration.
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common non-wear detection methods in terms of accuracy, specificity and positive predictive value, including 
the GT9X Link wear sensor, the Choi, and Troiano algorithms, and outperformed the van Hees algorithm in 
sensitivity. A key advantage of the majority non-wear algorithm is that it is relatively easy to implement and 
will be useful for other models of ActiGraph devices, which also use the capacitive sensor for detecting skin 
conductance and non-wear. Moreover, this algorithm was developed using open-source packages that are widely 
available to the public. We found that the wear sensor had the worst performance compared to the algorithms 
that were calculated, though it was likely able to detect short periods of non-wear that the visual quality control 
procedure was likely unable to detect, as the visual quality control procedure was not able to verify short non-
wear periods. Additionally, the non-wear algorithms were only able to capture intervals of non-wear that were 
typically over the length of an hour. Our findings of inconsistency in wear sensor performance are similar to 
both Pulakka and colleagues’ and Arguello and colleagues’, who also witnessed off-wrist time shown by the wear 
sensor during apparent wear time, and poor sensitivity of the wear  sensor12,13.

As expected, compliance with actigraph wear decreased progressively over the course of the year, from a 
mean of 4.8% at the beginning of the study, to a mean of 23.6% by the end of the year-long study. To date, the 
majority of studies using actigraphy have used significantly shorter periods of data  collection10, with some stud-
ies reporting wear compliance through periods of 16 weeks to 1  year34–36. In a 16-week longitudinal actigraphy 
study, Thurman and colleagues found 95.1% compliance with actigraphy measurements, with no changes over 
 time34. In contrast, in a 6-month longitudinal study of pain in patients with sickle cell disease, of the possible 
6 months of data collection, participants completed a median of only 85 days of actigraphy data, with a range of 
7 to 179 days of data collected, as a result of compliance and technical  issues35. A feasibility actigraphy study of 8 
participants followed for a total of 150 weeks with the aim of predicting relapses in bipolar disorder had a total of 
30% of data  missing36. This suggests that there is a range of compliance in studies with actigraphy devices, where 
longer study duration is associated with lower compliance. We interpret the approximately 70% completeness in 
actigraphy data obtained in 95 participants with major depression over a 12-month study as positive.

An important strength of our methods study is the amount of data available to us through the longitudinal, 
naturalistic design of the Wellness Monitoring Study. This unique, longitudinal dataset showed that non-wear 
increases over the course of a year, though a substantial proportion (n = 59) of participants continued to wear 
their actigraph until the end of the year mark. Moreover, we were able to address challenges of data pre-processing 
consistency, by providing a pre-processing pipeline for data extraction, trimming, sleep and non-wear scoring, 
combining sleep and non-wear intervals, and non-wear threshold selection. In a real-world application, where 
actigraphs are used to detect, for instance, early signs of relapse, or subtle changes in physical activity, longitudinal 
data spanning a substantial period of participants’ lives may be used as an early signal.

We found that a threshold of 20 or more valid hours per day combined with 30% or less overlap of sleep 
intervals with non-wear yielded the best performance of sleep variables as an explanatory variable for depressive 
symptoms. The findings of our sensitivity analyses support the importance of selecting an appropriate valid day 
and/or percentage overlap of sleep interval with non-wear criteria in order to obtain stable estimates of the influ-
ence of sleep variables on depressive symptoms. This finding is in line with previous  studies12,17, which indicated 
that pre-processing choices, such as selecting valid day filtering rules impact the influence of physical activity 
on outcomes. We suggest that future studies control for non-wear based on similar considerations, accounting 
for the influence of these non-wear thresholds on outcomes.

Limitations. One limitation of this study is the lack of ability of the ActiGraph GT9X Link to adequately 
detect sleep onset latency without use of a sleep diary. This type of actigraph provides an output of “0” for each of 
the instances of this value if a sleep diary is not used. This likely means that our estimates of sleep maintenance 
efficiency were possibly overestimated. Notably, the participants in our study were diagnosed with MDD, and 
may not reflect the patterns of activity in the general population, and may have a different propensity to remove 
the actigraph (for instance, during relapse) compared to the general population.

Table 5.  Sensitivity analysis results: combinations of non-wear thresholds based on 24-h non-wear and % 
overlap between sleep intervals with non-wear. Marginal  R2 Values Modeling Montgomery-Åsberg Depression 
Rating Scale Scores as a Function of Sleep Variables in Mixed Linear Models.

Number of 
Hours All 6h 7h 8h 9h 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 20h 21h 22h 23h 24h 

% Overlap 

100% 0.071 0.073 0.071 0.072 0.069 0.075 0.073 0.066 0.073 0.072 0.068 0.063 0.056 0.081 0.078 0.095 0.100 0.093 0.087 0.061 

90% 0.061 0.071 0.070 0.073 0.071 0.065 0.060 0.053 0.053 0.055 0.050 0.046 0.050 0.078 0.078 0.101 0.101 0.096 0.093 0.061 

80% 0.059 0.067 0.067 0.068 0.075 0.067 0.062 0.056 0.061 0.058 0.059 0.051 0.058 0.075 0.073 0.102 0.103 0.095 0.087 0.057 

70% 0.057 0.063 0.063 0.064 0.069 0.064 0.061 0.054 0.061 0.059 0.063 0.056 0.059 0.074 0.073 0.105 0.102 0.092 0.083 0.057 

60% 0.047 0.046 0.046 0.048 0.052 0.051 0.049 0.045 0.052 0.051 0.054 0.048 0.052 0.072 0.070 0.103 0.096 0.088 0.081 0.054 

50% 0.051 0.050 0.049 0.051 0.055 0.053 0.053 0.048 0.056 0.056 0.061 0.052 0.056 0.078 0.076 0.106 0.100 0.091 0.084 0.056 

40% 0.057 0.062 0.063 0.063 0.067 0.063 0.063 0.058 0.069 0.064 0.072 0.059 0.063 0.078 0.077 0.106 0.101 0.087 0.070 0.055 

30% 0.060 0.065 0.065 0.066 0.070 0.066 0.066 0.061 0.073 0.069 0.076 0.062 0.065 0.078 0.077 0.109 0.102 0.090 0.072 0.055 

20% 0.060 0.059 0.059 0.059 0.063 0.058 0.058 0.053 0.065 0.066 0.072 0.058 0.062 0.076 0.076 0.106 0.101 0.087 0.070 0.054 

10% 0.061 0.059 0.060 0.060 0.064 0.060 0.060 0.056 0.069 0.070 0.076 0.061 0.063 0.076 0.075 0.103 0.098 0.084 0.072 0.053 
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The majority algorithm should be further validated in an independent dataset which is able to provide the 
actual accurate periods of non-wear, as opposed to visual quality control through a sleep diary or some other 
measure. Having a sleep diary would allow us to verify the periods of sleep accurately as well, however, in a dataset 
of this size, with over 31,000 days of data collected, comparing actigraphy data with data from several thousand 
of sleep diaries would be a significant challenge.

Future directions. Recently, Syed and colleagues trained a deep convolutional neural network algorithm to 
detect non-wear from raw data by attempting to identify the instance of the hip-worn actigraph being removed 
and replaced, providing a more precise non-wear algorithm, which performed with high positive predictive 
value, sensitivity and F1 scores (all above 0.99). One drawback to this algorithm is the need to resample to a fre-
quency of 100 Hz, indicating that data points that do not exist must be interpolated and the effects of resampling 
on the integrity of the data have not been  explored37. Additionally, future studies should investigate the influence 
of actigraph non-wear time with clinical characteristics of MDD, including relapse, mood symptom worsening, 
behavioural inhibition, and psychosocial functioning.

Conclusions
This study provides a standardized pre-processing pipeline for a longitudinal actigraphy study, in which data 
were collected continuously in 95 participants for one year. A novel non-wear algorithm was proposed which 
outperformed several single algorithms and a capacitive wear sensor in an intensive quality control procedure. 
Compliance with actigraph wear decreased over time, and sensitivity analyses demonstrated the importance of 
selecting pre-processing thresholds, as they substantially impacted the predictive value of variables on our main 
clinical outcome.

Data availability
CAN-BIND and the CAN-BIND Wellness Monitoring study are open science. Data will be released through 
Ontario Brain Institute’s Brain—CODE platform, which provides the ability to capture and manage data, and 
enables researchers to share their data, maximizing data discovery (https:// www. brain code. ca).
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