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Classification and automatic 
scoring of arousal intensity 
during sleep stages using machine 
learning
Hyewon Han 1,7, Min Jae Seong 2,7, Janghun Hyeon 3, Eunyeon Joo 4,5* & Junhyoung Oh 6*

Arousal during sleep can result in sleep fragmentation and various physiological effects, impairing 
cognitive function and raising blood pressure and heart rate. However, the current definition of 
arousal has limitations in assessing both amplitude and duration, making it challenging to measure 
sleep fragmentation accurately. Moreover, there is inconsistency among inter-raters in arousal 
scoring, which renders it susceptible to subjective variability. Therefore, this study aims to identify a 
highly accurate classifier for each sleep stage by employing optimized feature selection and machine 
learning models. According to electroencephalography (EEG) signals during the arousal phase, the 
intensity level was categorized into four levels. For control, the non-arousal cases were used as level 0 
and referred as sham arousal, resulting in five arousal intensity levels. Wavelet transform was applied 
to analyze sleep arousal to extract features from EEG. Based on these features, we classified arousal 
intensity levels through machine learning algorithms. Due to the different characteristics of EEG in 
each sleep stage, the classification model was optimized for the four sleep stages. Excluding sham 
arousals, a total of 13,532 arousal events were used. The lowest intensity in the entire data, level 
1, was computed to be 3107, level 2 was 3384, level 3 was 3472, and the highest intensity of level 4 
was 3,569. The optimized classification model for each sleep stage achieved an average sensitivity 
of 82.68%, specificity of 95.68%, and AUROC of 96.30%. The sensitivity of the control, arousal 
intensity level 0, was 83.07%, a 1.25% increase over the unoptimized model and a 14.22% increase 
over previous research. This study used machine learning techniques to develop classifiers for each 
sleep stage, improving the accuracy of arousal intensity classification. The classifiers showed high 
sensitivity and specificity and revealed the unique characteristics of arousal intensity during different 
sleep stages. These findings represent a novel approach to arousal research and have implications for 
developing more accurate predictive models in sleep research.

Various sleep disorders are closely associated with disruptions in standard sleep patterns, characterized by 
increased wakefulness or arousal. Arousal can result in sleep fragmentation, leading to a decline in cognitive 
function and autonomic reflex activation, increasing blood pressure and heart  rate1–4. The standard definition of 
arousal is an abrupt shift in electroencephalogram (EEG) to a higher frequency, including alpha, theta, or beta, 
for at least 3 seconds, with at least 10 s of stable sleep preceding the  change5.

Respiratory arousals during sleep are a significant predictor of the severity of obstructive sleep apnea (OSA) 
on polysomnography (PSG). While the severity of OSA is determined by the apnea-hypopnea index (AHI), there 
is evidence that the microstructure and intensity of arousal are closely correlated with the severity and could be 
the trait of the  disease6. Despite the widespread use of the arousal index, which is defined as the frequency of 
arousals in PSG, to measure sleep fragmentation persists limited, as the standard definition from the American 
Academy of Sleep Medicine fails to consider variability in the duration and amplitude of EEG changes that meet 
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this  definition7–9. Additionally, discrepancies in arousal between scorers during the visual scoring process of 
PSG are still prevalent. In order to address these issues, researchers have begun to focus on the microstructure of 
arousal and have introduced the concept of arousal  intensity7. Since research in this area is still in the emergent 
stage, there is currently no established definition of arousal intensity among researchers, leading to differences 
in the methodology used in each study.

In previous studies by Azarbarzin et al., a scorer visually scaled arousal intensity for each of the two EEG 
channels on a scale of 0 to 9, based entirely on EEG appearance within the most intense region of the arousal 
 duration8,9. The study used a wavelet transform to extract specific features from the EEG signal related to arousal 
intensity to overcome the subjectivity and variability of visual scaling. The researchers trained seven different 
classifiers using different algorithms and values of k for k-nearest neighbor classifiers, with the training set made 
up of wavelet features and corresponding visually assigned arousal intensity scales. The study also found signifi-
cant variability in arousal intensity among subjects, with increased heart rate response to arousal most strongly 
related to arousal intensity. This study introduced a method for automating the measurement of arousal intensity, 
which provides a tool to investigate the clinical consequences of arousal. A study by Amatoury et al. found that 
arousal intensity is a distinct pathophysiologic characteristic in OSA using this intensity scoring  method10. In a 
recent study by Bahr et al., arousal intensity was defined as the amplitude of the electroencephalogram during 
respiratory  arousals11. The distance between the highest and lowest point on the vertical axis of the EEG was 
defined as the amplitude of each respiratory arousal. The results showed strong positive correlations between the 
average arousal intensity and the respiratory disturbance and arousal indexes. All of the above studies are the 
results of efforts to overcome the limitations of the arousal index, such as inter-rater variability and the somewhat 
ambiguous and imprecise arousal definition.

Compared to the rapidly developing field of machine learning and various EEG analysis techniques, arousal 
analysis using these techniques is lagging. To the best of our knowledge, no studies have applied different updated 
machine learning techniques to analyze arousals and improve accuracy. Machine learning has shown remark-
able applicability and potential in healthcare due to its ability and robustness to process high-dimensional data, 
resulting in recent inflation in research applying machine learning to various medical fields. EEG analysis is no 
exception to this trend, with diverse research exploring the application of machine  learning12. Therfore, this 
study aims to utilize the concept of arousal intensity and apply it through machine learning techniques in order 
to address the limitations of traditional methods of measuring arousal.

In addition to medication and the presence of OSA, the sleep stage is also a significant factor affecting 
 arousal13. Several studies have reported that arousal exhibits different characteristics depending on the sleep 
 stage11,14,15. However, the relationship between sleep stage and arousal, in terms of arousal intensity and auto-
mated scoring, remains unknown. Recognizing the significant impact different sleep stages have on arousal, 
our study explores the void in the investigations conducted so far in understanding the relationship between 
sleep stage and arousal in terms of arousal intensity and automated scoring. Precisely identifying the unique 
characteristics of arousal intensity during different sleep stages could establish a more reliable measure of sleep 
fragmentation, which can help diagnose and treat sleep disorders by providing insight into the differences in 
arousal characteristics associated with various sleep disorders.

Our research aims to advance sleep research by introducing a new way to measure sleep arousal intensity. 
Automatically measuring sleep arousal intensity through applying machine learning and introducing increased 
precision through analyzing arousal intensity by each sleep stage will provide insights for diagnosing and treat-
ing sleep disorders.

Methods
Data acquisition and ethical statement
Ethical approval was secured from the Institutional Review Board (IRB) at a local hospital (IRB no. 2023-02-078), 
ensuring the study’s conduct in a secure and ethical manner, with all data being anonymized. The IRB meticu-
lously reviewed the study protocol and informed consent procedures. The study initially involved 101 patients 
diagnosed with OSA who underwent PSG between January and May 2022. The collected data encompassed 
PSG, EEG, and electromyography (EMG) features, along with participants’ demographics and sleep quality, as 
assessed through a structured questionnaire.

The analysis was confined to data interpreted by a single chosen scorer from multiple readers to curtail vari-
ability arising from potential scoring differences between scorers. Five of the 101 PSG results were deemed unus-
able due to the unavailability of EEG signal data, arousal event, and sleep stage data, culminating in a total of 96 
valid results. A cumulative of 13,532 arousals were extracted from these 96 PSG results. A visualized workflow 
of the scoring and classification processes is delineated in Fig. 1.

The study utilized anonymized data and was conducted in compliance with the guidelines of the Declara-
tion of Helsinki. Ethical approval was received from the Ethics Committee of Samsung Medical Center, Sungk-
yunkwan University (Ethical approval number: 2023-02-078), which carefully reviewed the study protocol and 
informed consent procedures to ensure the study was conducted in a safe and ethical manner. Informed consent 
was obtained from all study participants and their legal guardians.

Automatic arousal intensity scoring
The previous study, which introduced the term “arousal intensity,” scored the intensity based on visual assess-
ments of signal graphs of EEG channel C3/4 by an  expert8. However, in the later research, arousal intensity was 
defined as the mean distance between the highest and lowest points of the amplitude from the C3 and C4 channels 
of the EEG  signal11. Our study adapted the scoring method from the later study because it allows us to evalu-
ate signals in a manner that most approximates the visual evaluation process while providing a more objective 
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metric. Computed average distances were then binned into four levels of 1 to 4 using quantile. The intervals 
of the EEG signal and average distance for each level used for binning are shown in Table 1. To score intensity 
by contrasting stable sleep and arousal, 10 to 14 stable sleep periods of 9 seconds were selected from each PSG 
result. A total of 980 periods were selected, and we termed those “sham arousal,” as the previous  research8. The 
intensity level was set as 0 since sham arousal is a period of stable sleep and not arousal. Therefore, five arousal 
intensity levels from 0 to 4 were constructed.

Classification
Feature extraction
All data were processed to learn and classify the arousal intensity levels generated. The data used were EEG (C3/4, 
O1/2, F3/4), EMG (Chin), sleep stages, and arousal durations. The overall methods and procedures for signal 
processing and feature extraction were referred to in the previous  work8. Discrete wavelet transform (DWT) is a 
signal processing method that decomposes a given signal into sets, where each set is coefficients and a pre-defined 
function called wavelet. Unlike the Fourier transform, which represents a signal in the frequency domain, the 
DWT represents a signal in both the time and frequency domains simultaneously; therefore, it is known as more 
suitable for processing EEG  signals16. There are several types of these functions, and in this study, the Daubechies 
order 4 wavelet was used, which is considered the most suitable for analyzing EEG  signals17.

A 5-level DWT was performed on all signals from EEG and EMG for the arousal period and the same period 
before the arousal onset. Every preprocessing and analysis of the data was conducted with Python(version 3.9.9, 
Python Software Foundation), including the transformation. Before applying DWT, high-pass filtering with a 
cutoff frequency of 0.3 Hz was also applied to reduce the influence of the artifacts. 200 Hz EEG signals were 
resampled to 128 Hz for efficiency in signal processing. Figure 2 shows an example of the result of a 5-level DWT 

Figure 1.  A workflow of the automated arousal intensity scoring and classification process. First, the collected 
arousal events are divided into training and test sets. The arousal intensity of the training data set is scored. Both 
datasets undergo a feature engineering process. Finally, the arousal intensity is classified using machine learning 
algorithms with sleep stage optimization. All icons from Freepik (freepik.com).

Table 1.  Summarization of quartile range and intervals of the EEG signal used for scoring arousal intensity 
level. An arousal intensity level of 0 indicates that the event is not arousal, therefore, it is not used for quartile.

Arousal intensity level 1 2 3 4

Quartile range Q0–Q1 (0–25%) Q1–Q2 (25–50%) Q2–Q3 (50–75%) Q3–Q4 (75–100%)

Interval of the EEG signal (V) (-0.001, 0.000093] (0.000093, 0.000164] (0.000164, 0.000404] (0.000404, 0.00603]
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with a Daubechies order 4 wavelet on an EEG signal (C3). The calculated coefficients (D1-D5 and A 5 ) were used 
to calculate the mean power, the mean of absolute values (MABS), the ratio of MABS for all combinations of each 
signal (e.g. C3/4 MABS(D1)

C3/4 MABS(D2)
,
C3/4 MABS(D1)
C3/4 MABS(D3)

,
C3/4 MABS(D1)
C3/4 MABS(D4)

,
C3/4 MABS(D1)
C3/4 MABS(D5)

,
C3/4 MABS(D1)
C3/4 MABS(A5)

 , ...), and the total variance. 
Thus, a total of 132 features were generated, and all those features were normalized by dividing the arousal value 
by the pre-arousal value.

In addition to the features computed using coefficients resulting from the DWT, four more feature extraction 
methods widely used in EEG signal analysis to obtain additional features were applied: average power spectral 
intensity (PSI)18, average power, average root mean square value (RMS)19, and average detrended fluctuation 
analysis (DFA)20. First, PSI provides information about the distribution of power across different frequencies. 
Second is average power, which provides the overall power of the EEG signal, irrespective of the frequency. Third, 
RMS shows information about the overall amplitude of the EEG signal. Lastly, DFA provides information about 
the complexity or irregularity of the EEG signal. Outcomes from the four techniques using the EEG C3/4 signals 
were used as additional features. As a result, a total of 136 features were generated.

Since there was not enough level 0 compared to other arousal intensity levels, a synthetic minority over-
sampling technique (SMOTE) was applied to solve this data imbalance  problem21. SMOTE is a technique that 
adopts the k-nearest neighbor algorithm to generate new data for underrepresented classes. It is one of the most 
common oversampling methods used to address the data imbalance problem in machine learning.

Classification and feature selection methods
Data were randomly selected and divided into a train set (80%) and a test set (20%). Two machine learning clas-
sifiers, random  forest22 and  LightGBM23, were used. Random forest is a classifier consisting of a combination of 

Figure 2.  An example of EEG signal channel C3 before and after the arousal event. The dashed vertical line 
on the graphs indicates the onset of the arousal event. The first graph shows the raw signal, and the following 
visualizes coefficients of D 1 to D 5 and A 5 , respectively.
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decision trees built on random sub-samples of the dataset. LightGBM is a gradient-boosting framework designed 
to be fast and highly efficient. Both are machine learning algorithms commonly used in various fields when 
applying machine learning techniques due to their outstanding performance.

To reduce the dimensionality of the data, we included the feature selection process, and recursive feature 
elimination (RFE)24 was used as the feature selection technique in this study. RFE is a prevailing feature selection 
method applied in machine learning. The method allows identifying and selecting the most important features 
in a dataset by recursively removing the least important ones. Cross-validation was employed in conjunction 
with RFE to enhance precision in this study. The feature selection procedure was performed for each classifier: 
random forest and LightGBM. The number of cross-validation was set to 5.

Optimization by sleep stages
Due to the different characteristics of each sleep stage, we optimized the classification model by sleep stages. 
Sleep can be divided into two broad categories: rapid eye movement (REM) sleep and non-REM (NREM) sleep. 
In REM sleep, diminished EMG tone is observed, and the EEG appears remarkably similar to the waking state 
with low-voltage, high-frequency25. NREM sleep can be further categorized into three stages: N1, N2, and N3.

In N1, EEG shows moderate amplitude and irregularly spaced bursts of slow waves. N2 is characterized by 
a further increase in EEG amplitude and the frequent appearance of sleep spindles with K-complexes. Sleep 
spindles are clusters of occasional high-frequency spikes that occur periodically and last for several seconds. 
K-complexes are defined as the occurrence of sharp, clear, high-voltage bipolar waves lasting more than half 
a second. N3 is also known as slow-wave sleep. A larger EEG amplitude also characterizes it compared to the 
previous stage. As the stage escalates, sleep becomes more profound, and muscle activity decreases. 

During the classification process, we optimized performance for each of the four sleep stages: REM, N1, N2, 
and N3. The optimization was conducted through two phases: feature selection and hyperparameter tuning. For 
the hyperparameter tuning, a tree-structured parzen estimator (TPE)  approach26, which is a method based on 
Bayesian optimization, was utilized to sample the hyperparameter space, and it was pruned with the hyperband 
 algorithm27 for the efficiency of the process.

Results
Demographic and polysomnographic characteristics of participants
Participants in the study had a mean age of 56.0 ± 14.6 years, and 72 (75%) were male. The polysomnographic 
data revealed a substantial arousal index at 32.3 ± 15.9, with the majority being respiratory at 24.4 ± 18.3. Notably, 
arousals were more prominent during non-REM (NREM) sleep, with an index of 33.0 ± 16.7 compared to 29.5 
± 18.0 during REM sleep.

The average AHI was marked at 38.5 ± 23.4, indicative of severe OSA. Correspondingly, the lowest satura-
tion was noted at 82.3 ± 8.4%, and the oxygen desaturation index (ODI) was 32.1 ± 21.9, reflecting a significant 
desaturation burden attributable to OSA. The arousal index was 32.3 ± 15.9 with subcategories: respiratory 24.4 
± 18.3, spontaneous 4.0 ± 6.2, movement 0.7 ± 1.6, REM 29.5 ± 18.0, and NREM 33.0 ± 16.7. Sleep efficiency 
was 78.3 ± 11.5% (Table 2).

Arousal intensity level scoring
A total of 13,532 arousal events, excluding sham arousals, were divided into four levels according to the proposed 
scoring approach. In the total data, the lowest intensity of level 1 was calculated as 3,107, level 2 as 3384, level 3 
as 3472, and finally, the highest intensity of level 4 was computed as 3569. Table 3 summarizes the numbers of 
data for each arousal intensity level, including sham arousals, by the dataset.

Optimization
RFE with cross-validation was used to select features and determine the number of features. The feature selection 
process was conducted for each classifier and each sleep stage. Based on the average accuracy of 5 cross-valida-
tions, the combination of features with the highest mean accuracy was chosen. For the REM stage, the highest 
accuracy was achieved when 31 features were used with the LightGBM classifier. For the N1 and N2 stages, 31 
and 36 features were selected, respectively, using the random forest. Lastly, for the N3 stage, 11 features were 
used using the random forest classifier. Table 4 summarizes the selected classifiers and features. Random forest 
classifiers were used in all the other stages except for the REM stage.

Classification
Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the arousal inten-
sity level classification results before optimization by sleep stage are shown in Fig. 3. Figure 4 visualizes the 
metrics of the results for each sleep stage. In the case of the N3 stage, the number of data belonging to this stage 
was relatively limited. Therefore, only level 3 and level 4 from the total five levels were present in the test set. 
The highest tier of arousal intensity, level 4, measured the highest scores for all evaluation metrics, regardless of 
the optimization. Without the optimization, all the outcome metrics for each intensity level in the classification 
results were comparable, but with the optimization, they differed marginally. This was especially noticeable in 
the results for REM sleep.

The optimization was driven by increasing the sensitivity of the control, sham arousal (i.e., arousal intensity 
level 0). Without the optimization process, the highest sensitivity of intensity level 0 using a single classifier was 
81.82%, which was the case when using a random forest classifier and SMOTE simultaneously. When it opti-
mized for each sleep stage, the average sensitivity of level 0 was 83.07%, an increase of 1.25% compared to the 
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previous result. For the N2 stage, the sensitivity of arousal intensity level 0 was the highest among all the sleep 
stages, with a value of 86.42%.

Confusion matrices of the results are shown in Fig. 5. While the classification is overall well achieved, there 
was an average of 14.70% of cases where level 1 was classified as level 2 and an average of 13.84% of cases where 
level 2 was classified as level 1. For an average of 10.39% of the arousals, level 2 was categorized as level 3, and 

Table 2.  Descriptive Statistics of participants’ demographics and polysomnography. BMI body mass index, 
PSQI Pittsburgh sleep quality index, ISI insomnia severity index, ESS Epworth sleepiness scale, BDI beck 
depression inventory, WASO wake after sleep onset, REM rapid eye movement, AHI apnea-hypopnea index, 
RDI respiratory disturbance index, SaO2 oxygen saturation, ODI oxygen desaturation index, PLMS periodic 
limb movement in sleep, MAI movement arousal index.

Variables (n=96) Mean ± SD

Age (years) 56.0 ± 14.6

Sex (male, %) 72 (75%)

Height (cm) 166.5 ± 9.1

Weight (kg) 73.5 ± 15.0

BMI 26.3 ± 4.0

PSQI 8.4 ± 4.0

ISI 12.3 ± 5.7

ESS 9.4 ± 4.7

BDI 12.6 ± 7.9

Polysomnography

 Total sleep time 317.6 ± 59.7

 Sleep latency 13.7 ± 17.8

 N2 latency 8.9 ± 17.0

 REM latency 108.9 ± 63.8

 WASO (%) 19.1 ± 10.8

 NREM1/TST (%) 23.3 ± 14.7

 NREM2/TST (%) 55.1 ± 12.8

 NREM3/TST (%) 5.3 ± 5.9

 REM/TST (%) 16.4 ± 6.8

 Arousal index 32.3 ± 15.9

  Respiratory 24.4 ± 18.3

  Spontaneous 4.0 ± 6.2

  Movement 0.7 ± 1.6

  REM 29.5 ± 18.0

  NREM 33.0 ± 16.7

 Sleep efficiency (%) 78.3 ± 11.5

 AHI 38.5 ± 23.4

 RDI 40.9 ± 23.2

 Lowest SaO2 (%) 82.3 ± 8.4

 ODI (%) 32.1 ± 21.9

 PLMS index 18.6 ± 24.1

 MAI 0.7 ± 1.6

Table 3.  Results of arousal intensity scoring using vertical distances of EEG signals (channel C3/4). The 
higher the arousal intensity level, the more intense the arousal. Since sham arousals indicate events that are 
not arousals, they are all assigned a level of 0. Therefore, an arousal intensity level of 0 means they are not an 
arousal.

Arousal intensity level Train set (n = 11,609) Test set (n = 2903) Total (n = 14,512)

0 (sham arousal) 782 198 980

1 2464 643 3107

2 2710 674 3384

3 2790 682 3472

4 2863 706 3569
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an average of 11.72% of arousal intensity level 3 was allocated as intensity level 2. In the remaining levels, there 
were minor misclassifications for the continuous levels, but it was less than 10% in all cases.

The average AUC value for the receiver operating characteristic (ROC) curve for sham arousal was 97.07%. 
As for the sensitivity, the AUC for intensity level 0 was highest at stage N2, with a value of 97.95%. The ROC 
curves by arousal intensity level for all four sleep stages are illustrated in Fig. 6. All the performance metrics of 
the optimized classification model by sleep stages for the test set are summarized in Table 5.

Relationship to prior works
While previous studies have primarily focused on using arousal intensity to investigate the relationship between 
sleep arousal and cardiovascular  disease8 or to examine the association between sleep arousal severity and  OSA10, 
this study took a different approach by focusing on developing an automated pipeline for the measurement and 

Table 4.  Determined number of features and classifiers for each sleep stage. Based on the trial result, 
LightGBM was used for REM stage and the random forest algorithm was used for all the other sleep stages. 
Each number of selected features was also determined based on the trial results.

Sleep stage REM N1 N2 N3

Classifier LightGBM Random forest Random forest Random forest

Number of selected features 31 31 36 11

Figure 3.  Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of arousal 
intensity level classification results without the optimization process for each sleep stage. Each machine learning 
algorithm was used with the default hyperparameter setting. (a) The metrics values of arousal intensity level 
classification results using a LightGBM classifier and SMOTE without the optimization process for each sleep 
stage. (b) The metrics values of arousal intensity level classification results using a LightGBM classifier and 
SMOTE without the optimization process for each sleep stage. (c) The metrics values of arousal intensity level 
classification results using a random forest classifier without the optimization process for each sleep stage. (d) 
The metrics values of arousal intensity level classification results using a random forest classifier and SMOTE 
without the optimization process for each sleep stage.
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classification of arousal intensity. Unlike previous studies that relied heavily on manual assessment by experts 
to score arousal intensity, we introduced a fully automated pipeline, which not only simplified the process of 
scoring arousal intensity but also increased its potential for use in various studies.

While this research shares similarities with previous studies, particularly in its data processing techniques, 
we focused on designing and implementing an automated arousal intensity scoring algorithm. In particular, 
our study demonstrated that the classification algorithm outperformed previous studies. Since previous studies 
lacked a quantitative baseline, the only direct comparison in terms of performance is the classification result of 
sham arousal. In the previous study, 168 received the arousal intensity scale of 0, which was classified as sham 

Figure 4.  Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of arousal 
intensity level classification results for each sleep stage. Since all metric values are equal to the maximum value 
of 1.00 in the N3 stage, the graph of the stage was skipped for better representation. (a) The metrics values of the 
classification results for each arousal intensity level in the REM stage. (b) The metrics values of the classification 
results for each arousal intensity level in the N1 stage. (c) The metrics values of the classification results for each 
arousal intensity level in the N2 stage.

Figure 5.  Confusion matrices of arousal intensity level classification results from each sleep stage. Since all 
metric values are equal to the maximum value of 1.00 in the N3 stage, the graph of the stage was skipped for 
better representation. (a) Confusion matrix of arousal intensity level classification results from the REM stage. 
(b) Confusion matrix of arousal intensity level classification results from the N1 stage. (c) Confusion matrix of 
arousal intensity level classification results from the N2 stage.

Figure 6.  Receiver operating characteristic (ROC) curves of arousal intensity level classification results by sleep 
stages. Since all metric values are equal to the maximum value of 1.00 in the N3 stage, the graph of the stage 
was skipped for better representation. (a) ROC curves of arousal intensity level classification results from the 
REM stage. (b) ROC curves of arousal intensity level classification results from the N1 stage. (c) ROC curves of 
arousal intensity level classification results from the N2 stage.
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arousal out of 244 sham  arousal8. Therefore, the calculated hit rate of the previous study is 68.85%, and our pro-
posed classifier achieved a hit rate of 83.07%, recording an improvement of 14.22% over previous results. This 
advancement represents an essential contribution to the field of sleep research and arousal intensity assessment.

Discussion
Sleep disorders, such as OSA, can severely impact an individual’s health, making accurate identification and clas-
sification of arousal intensity during sleep essential. However, the existing method of scoring arousal intensity 
involves the visual reading of all EEG recordings, which not only requires a dedicated human expert to perform 
the scoring but also makes all scores solely dependent on the subjective assessment of the expert. Therefore, our 
study aimed to overcome these shortcomings by proposing an automated sleep intensity scoring methodology. 
In addition, previous studies have utilized traditional machine learning methods to identify arousal precisely; 
however, this approach needs more accuracy. Therefore, this study aimed to develop a more accurate arousal 
intensity classification model according to sleep stage.

The classifier was optimized using feature selection and cross-validation techniques for each sleep stage, 
and the classification performance was evaluated using various metrics such as sensitivity, specificity, nega-
tive predictive value (NPV), positive predictive value (PPV), and area under receiver operating characteristic 
(AUROC). The results indicated that the proposed model achieved high sensitivity and specificity, particularly 
for the highest intensity level 4. The optimization process improved the sensitivity of control and sham arousal 
(level 0), which was essential for minimizing false positives and improving the overall accuracy of the model. 
The potential benefits of combining feature selection with other advanced techniques, such as machine learning, 
highlight the importance of ongoing research to identify new and innovative ways to optimize the performance of 
machine learning models. Previous studies utilizing machine learning models such as naive Bayes, decision tree, 
support vector machine, generalized linear model, and k-nearest neighbor have reported an accuracy range of 
approximately 81% to 93% for predictive power and a sensitivity range of 75% to 83% for arousal  detection28–31. 
The models utilized in this study included LightGBM and random forest, which have demonstrated effectiveness 
in various classification tasks. Therefore, the strength of the machine learning model used in our study lies in its 
ability to provide more precise classification and access to the arousal microstructure.

In addition, our study aimed to develop an accurate arousal intensity classifier based on sleep stage. The 
authors focus on the macroscopic aspects of arousal that are characteristic of arousal in OSA for each sleep stage, 
which provides an important foundation for our study. One researcher reported that the arousal threshold was 
found to be highest during N3 and lowest during N1 and N2, with REM having a lower threshold than N1 and 
 N213. These findings suggest that N3 sleep requires stronger stimuli to induce wakefulness and is less prone to 

Table 5.  Summary table of sensitivity, specificity, negative predictive value (NPV), positive predictive value 
(PPV), and area under the receiver operating characteristic (AUROC) curves for arousal intensity classification 
results by the sleep stage-optimized model.

Sleep stage Arousal intensity level Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUROC (%) N

REM

0 82.22 98.57 88.10 97.73 96.44 45

1 83.85 94.34 87.90 92.25 96.42 130

2 72.88 91.37 59.72 95.05 91.08 59

3 70.67 96.88 84.13 93.37 95.32 75

4 96.51 96.44 88.30 99.00 99.32 86

N1

0 80.56 97.34 62.37 98.92 96.64 72

1 85.49 94.64 85.71 94.54 97.03 379

2 71.59 91.93 74.62 90.71 91.64 345

3 75.08 93.76 78.91 92.36 94.72 329

4 90.42 96.89 87.08 97.76 98.84 261

N2

0 86.42 97.25 71.43 98.90 97.95 81

1 76.87 96.79 76.87 96.79 97.16 134

2 73.70 92.78 76.83 91.57 94.19 270

3 77.37 92.99 78.52 92.54 94.10 274

4 92.11 96.71 92.65 96.45 98.87 342

N3
3 100.00 100.00 100.00 100.00 100.00 4

4 100.00 100.00 100.00 100.00 100.00 17

Average

0 83.07 97.72 73.96 98.52 97.01 198

1 82.07 95.26 83.49 94.53 96.87 643

2 72.73 92.03 70.39 92.44 92.30 674

3 80.78 95.90 85.39 94.57 96.03 682

4 94.76 97.51 92.01 98.30 99.26 706

Total 82.68 95.68 81.05 95.67 96.30 2903
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progressing to wakefulness. Moreover, the arousal index is highest during N1 and lowest during N3, consistent 
with the arousal  threshold32.

Although there are limited studies on the differences in the microstructure of arousal across sleep stages, a few 
studies have reported no significant difference in arousal intensity between healthy individuals and those with 
OSA, as well as between REM and NREM  sleep10. However, it is difficult to conclude the relationship between 
arousal intensity and sleep stage based on visual scoring methods used in these studies, as appropriate classifiers 
for each sleep stage were not utilized.

Our study selected the combination of features with the highest mean accuracy for each sleep stage. The REM 
stage achieved the highest accuracy using 31 features with the LightGBM classifier, and the N1 stage selected 31 
features with the random forest classifier. The N2 stage used 36 features with the random forest classifier, while 
the N3 stage used 11 features with the same classifier. Assuming that the microstructure of arousal is consist-
ent across all sleep stages, it would be reasonable to expect that the selected feature and the classifier with the 
highest accuracy would demonstrate common characteristics. This represents a novel perspective in approach-
ing arousal and its related factors and has important implications for developing more accurate and effective 
predictive models in sleep research.

However, there are some limitations to this study. Experiments could not be conducted using a more diver-
sified set of machine learning models, and the optimization by sleep stages phase took a considerable amount 
of time since RFE, which selects features by removing features one by one and confirms the performance, was 
adopted. Another limitation is that since arousal intensity was calculated as the vertical distance from the EEG 
amplitude, time-frequency factors could not be included in the level calculation. In addition, we recognize that 
our data collection was limited to a local hospital, which may affect the diversity of participant composition. We 
also acknowledge that our study’s design, while robust, may not completely eliminate subject-related factors. 
In future research, exploring additional techniques for subject-independent analyses or conducting larger-scale 
studies may offer further insights and enhance the generalizability of our findings.

Conclusion
Our finding offers several notable advantages in the field of sleep arousal research. First and foremost, it proposed 
an automatic scoring method for arousal intensity, which does not require relying on human experts to inspect 
all EEG recordings and subjectively score them visually. Additionally, our proposed methodology introduces a 
refined and more granular approach to assessing sleep arousal intensity by analyzing it by each of the four sleep 
stages, contributing to a more nuanced understanding of sleep fragmentation. By categorizing arousal intensity 
into five distinct levels and employing machine learning techniques, this method enhances the precision and 
objectivity of sleep quality assessment. In conclusion, this study successfully developed classifiers optimized for 
each sleep stage to improve the accuracy of arousal intensity classification using machine learning techniques. The 
optimized classifiers showed high sensitivity and specificity for each sleep stage, achieving an average sensitivity 
of 82.68%, specificity of 95.68%, and AUROC of 96.30%. The sensitivity of the control, arousal intensity level 0, 
was 83.07%, a 1.25% increase over the unoptimized model. The findings shed light on the unique characteristics 
of arousal intensity during different sleep stages, and the selected features and classifiers with the highest accu-
racy demonstrated common characteristics. Developing a classifier for each sleep stage based on the concept of 
arousal intensity represents a novel approach to sleep arousal research. It has important implications for the future 
development of more accurate and effective predictive models in sleep research. The classification model, which 
is optimized for each sleep stage, not only provides a reliable means of distinguishing between different arousal 
intensity levels but also offers a valuable tool for researchers and clinicians seeking to quantify sleep disturbances 
accurately. Furthermore, the novel approach of this study to arousal research holds the promise of advancing the 
development of more accurate and helpful models in the field of sleep research, ultimately benefiting individuals 
affected by sleep disorders and promoting improved overall health.

Data availibility
The data that support the findings of this study are available from Samsung Medical Center, but restrictions apply 
to the availability of these data, which were used under license for the current study, and so are not publicly 
available. Data are available from the authors upon reasonable request and with permission of Samsung Medical 
Center (eunyeon.joo@gmail.com).
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