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Species‑specific SNP arrays 
for non‑invasive genetic 
monitoring of a vulnerable bat
Rujiporn Thavornkanlapachai 1*, Kyle N. Armstrong 2,3, Chris Knuckey 4, Bart Huntley 1, 
Nicola Hanrahan 5,6 & Kym Ottewell 1

Genetic tagging from scats is one of the minimally invasive sampling (MIS) monitoring approaches 
commonly used to guide management decisions and evaluate conservation efforts. Microsatellite 
markers have traditionally been used but are prone to genotyping errors. Here, we present a novel 
method for individual identification in the Threatened ghost bat Macroderma gigas using custom-
designed Single Nucleotide Polymorphism (SNP) arrays on the MassARRAY system. We identified 
611 informative SNPs from DArTseq data from which three SNP panels (44–50 SNPs per panel) 
were designed. We applied SNP genotyping and molecular sexing to 209 M. gigas scats collected 
from seven caves in the Pilbara, Western Australia, employing a two-step genotyping protocol and 
identifying unique genotypes using a custom-made R package, ScatMatch. Following data cleaning, 
the average amplification rate was 0.90 ± 0.01 and SNP genotyping errors were low (allelic dropout 
0.003 ± 0.000) allowing clustering of scats based on one or fewer allelic mismatches. We identified 19 
unique bats (9 confirmed/likely males and 10 confirmed/likely females) from a maternity and multiple 
transitory roosts, with two male bats detected using roosts, 9 km and 47 m apart. The accuracy of our 
SNP panels enabled a high level of confidence in the identification of individual bats. Targeted SNP 
genotyping is a valuable tool for monitoring and tracking of non-model species through a minimally 
invasive sampling approach.

Species worldwide are experiencing dramatic population declines leading to extirpation and extinction, which 
has largely been attributed to human activities1. To understand threatening processes, implement conservation 
actions and evaluate outcomes, wildlife monitoring has traditionally employed invasive live capture techniques 
which can inflict stress, injuries or even death to the animals that are being studied2. Traditional marking and 
sampling practices, including catching, toe clipping, physical tagging, attaching data loggers, and taking blood 
and tissue samples, can negatively affect animals’ physiology and behaviour2. There have been calls for more com-
passionate wildlife research to investigate and implement less invasive monitoring methods2. Minimally invasive 
or non-invasive (MIS) monitoring consists of methods to monitor animals without disturbance to their normal 
behaviour, ecology or physiology. Genetic monitoring using non-invasively collected samples such as hairs, 
faeces, feathers, shells and shed skin has been implemented for many vertebrate species3–5. With the advance-
ment of genetic sequencing platforms and improved DNA extraction methods, MIS genetic monitoring offers 
the ability to monitor population demography (e.g. population size and trajectory6), as well as gain insight into 
microevolutionary processes such as, genetic diversity7, hybridization8, movement, dispersal and migration6,7,9 
and social structure10, as well as assisting in identification of genetic stocks for management11 and diet analysis12.

Whilst minimally invasive sampling can alleviate disruption and harm to individuals, its application in wildlife 
monitoring is not without challenges. Scats are easily located for many species and are the basis for one of the 
most frequently used MIS methods, however, the quality and quantity of DNA obtained from scats are dependent 
on scat age, environmental conditions, and the concentration of digestive by-products derived from the target 
species’ diet. Rapid degradation of DNA typically occurs in the first 5–7 days post-deposition13,14 but, in some 
species, it can occur at the slower rate of 2–3 weeks4,5. Environmental conditions such as exposure to sunlight, 
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high temperature, and precipitation can accelerate degradation rate, decrease genotyping success, and inflate 
genotyping error rate4,5,15–17. In addition, PCR inhibition by digestive by-products, DNA extraction by-products 
or DNA preservatives can all lower amplification success18.

Faecal genotyping with microsatellite markers has been applied successfully in wildlife monitoring for many 
years5,15,16. The benefit of microsatellite markers is that statistical power to identify individuals is achieved with 
relatively few markers but many alleles. However, for low and/or poor-quality DNA samples, laboratory artefacts 
such as stutter peaks, false alleles and allelic dropout can reduce the reliability of genotype calling. While this can 
be ameliorated by applying additional laboratory protocols (e.g., multiple PCR replicates and calling a consensus 
genotype) and manually assessing genotypes to ensure correct and consistent calls, both are expensive and time-
consuming19,20. Moreover, comparing results generated by different laboratories and/or laboratory technicians 
requires further standardising to maintain accuracy, making multi-year or multi-jurisdictional projects difficult. 
Recent advances in DNA sequencing technology have led to the expanded use of single-nucleotide polymorphism 
(SNP) markers in wildlife genetic studies. Unlike microsatellites, SNPs have fewer alleles per locus–theoretically 
up to four, but mostly two due to low mutation rates21; and larger numbers of loci can be surveyed simultane-
ously to achieve similar resolution as microsatellite markers. A panel of moderately polymorphic ~ 100 SNPs 
(minimum allele frequency of 0.2) is sufficient to provide statistical power to estimate pedigree relationships 
equivalent to 16–20 microsatellites, and less SNPs required if they are highly polymorphic21. Species-specific SNPs 
can be identified, and due to their binary nature, SNPs are relatively easy to score, analyse and compare between 
laboratories. SNP markers have been shown to outperform microsatellite markers for faecal DNA genotyping 
with higher precision, lower genotyping error rates and requiring fewer repeats22. Once a suite of informative 
markers is identified, they can be pre-selected into SNP panels allowing automated genotyping on array-based 
platforms such as MassARRAY, Ampliflour and Fluidigm; see3.

The ghost bat (Macroderma gigas) is one of the largest microchiropteran bats in the world23, with the largest 
individuals weighing 140–165 g and a wingspan of 60 cm23,24. The species has a slow reproductive rate, with 
females breeding from 2 to 3 years of age25 with a generation time of 8 years26. M. gigas was once distributed 
widely over most of Australia (excluding Tasmania and Victoria27) but their distribution has now contracted 
to several geographic isolates across northern Australia in response to increasing aridity and anthropogenic 
threats26. Key identified threats include the loss of roost sites and foraging habitat from mining, the disturbance 
of roosts during biological surveys, the deterioration in condition and flooding within old underground mines 
used for roosting, entanglement in barbed wire fences, foraging habitat modification for livestock, cave tourism, 
competition with introduced foxes and cats and poisoning by ingestion of cane toads26,28,29. The Pilbara popu-
lation is the most geographically and genetically isolated population of M. gigas26,30. It is estimated to consist 
of ~ 1200 bats31 while global population is estimated to be < 10,00023,26. Most known large colonies are located 
in present and past mining exploration areas23. Australia-wide, it is estimated that the global population of M. 
gigas has declined between 16–45%23 and the species is currently listed as Vulnerable on the International Union 
for Conservation of Nature (IUCN) Red List of Threatened Species28, and on the Australian Commonwealth 
Government Environment Protection and Biodiversity Conservation Act 1999.

Monitoring demographic processes and assessing trends in population size of this species have been par-
ticularly challenging. Rather than capturing bats, colonies of M. gigas are most often monitored through visual 
counts of individuals within roosts or exiting roosts after sunset or by quantifying bat activity from social and 
echolocation calls on bat detector recordings32. In general, Capture-Mark-Recapture (CMR) methodologies can 
provide additional information on bat populations, where recaptures over multiple CMR sessions can be used 
to track the movements of individuals; and the identification of novel captured individuals allows population 
size, longevity and recruitment within a population to be monitored. CMR relies on being able to recapture 
and identify individuals, which is achieved typically through live capture and by tagging using radio-frequency 
identification (RFID) or other methods of marking33–35. However, CMR analyses from these methods can be 
unreliable due to heterogeneity in individual detection probability, low capture/recapture rates, trap shyness, or 
tag loss36. The use of ‘molecular tags’, i.e., using individual genotypes generated from scats, can overcome many of 
these issues because tags are ‘permanent’ and capture/recapture does not rely on the target species encountering 
and entering traps. Thus, molecular tagging represents a robust alternative to the CMR method to monitor M. 
gigas colonies, and with minimal interference as an additional advantage.

Scat genotyping has been applied successfully in previous studies of M. gigas using microsatellite markers37–39, 
but due to the high genotyping error rate, can lead to uncertain identification of captured/recaptured bats and 
consequently inaccurate estimation of population size. SNP panels offer improved reliability and accuracy of 
genotyping18, and enable pre-selection of highly informative markers with additional statistical power to discrimi-
nate between highly-related individuals. Here, we describe the development of a set of 140 novel SNP markers 
designed specifically for application on the MassARRAY genotyping platform, plus a modification of four sexing 
markers from Ottewell et al.38, to facilitate rapid genotyping for M. gigas monitoring in the Pilbara region of 
Western Australia. We began with SNP marker selection, SNP panel design and in silico evaluation of marker 
informativeness. We then evaluated the performance of SNP panels and modified sexing markers in a case study 
of M. gigas roosts at West Angelas, in the eastern Hamersley Range in the Pilbara, and assessed the application 
of these markers in identifying temporal and spatial cave usage of M. gigas in the study area.

Materials and methods
Identification of SNP loci and MassARRAY SNP assay design
We obtained short read genomic data from a previous study of eight Pilbara colonies of M. gigas (K.N. Arm-
strong, unpublished data; generated by Diversity Arrays Technology Pty Ltd, Canberra). From trimmed 69 bp 
reads, 33,340 informative SNP loci were identified for individual and population genetic analysis using Diversity 
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Arrays Technology (DArT) from 120 tissue samples. To identify informative and high-quality loci for individual 
identification, we screened SNP loci for those suitable for MassARRAY primer design (single SNP per locus, 
> 25 bp flanking sequence), with high read depth and coverage, high information content (heterozygosity, minor 
allele frequency) and removing those failing tests for Hardy–Weinberg equilibrium and linkage disequilibrium 
(Table 1). SNPs were filtered using custom scripts, and functions from the dartR version 1.9.640 and SNPRelate 
version 0.9.19 packages41 in the R Statistical Software v4.0.342. The script used to filter informative SNPs is pro-
vided in Supplementary 1. To determine the number of SNPs to be included in the MassARRAY SNP panels, we 
compared genetic diversity estimates and genetic structure in silico using four sets of randomly selected SNPs 
(n = 50, 100, 150, 200). Population genetic diversity statistics observed heterozygosity (Ho), gene diversity or 
expected heterozygosity (Hs), and the inbreeding coefficient (FIS) were calculated and permuted 500 times for 
sites that had sample size > 8 in the Hierfstat package version 0.5-10 using R42. Population structure was analysed 
using a Pearson Principal Component Analysis implemented in the dartR package with the gl.pcoa function40. 
Probability of identity (PID) was estimated using GENALEX v6.5 to determine the number of loci needed to 
distinguish unique individuals43. We chose the threshold of 0.0001 or exclusion probability > 99.9% as suggested 
by Waits et al.44 for SNP data from natural populations.

Sequence information for the filtered loci (n = 611) was sent to the Australian Genome Research Facility, 
Brisbane (AGRF) to identify three multiplex SNP panels of 44–49 SNPs each and design primers using the Assay 
Design Suite (v2.2, Agena Bioscience, San Diego, CA, USA). We trialled the performance of designed panels with 
seven tissue and 11 scat samples, tested the effect of DNA concentration on amplification success and error rate, 
and, lastly, compared the relative efficiency of two different DNA extraction kits, the Omega Biotek Mag-Bind 
Stool DNA 96 kit (Omega, USA, Cat No: M4016-01) and QIAamp® Fast DNA Stool Mini kit (Qiagen, Germany, 
Cat No: 51604) using scat samples from this case study (n = 209) and from a previously published study (Ottewell 
et al.38, n = 160). SNP genotyping was carried out on the MassARRAY system (Agena Biosciences, San Diego, 
CA, USA) at AGRF. Amplification and extension reactions were performed with the iPLEX Gold Reagent Kit 
(Agena Bioscience, San Diego, CA, USA) according to the manufacturer’s protocols using 1 μL of extracted faecal 
DNA. Resultant SNP genotypes were identified by mass spectrometry and called by AGRF using MassARRAY 
TyperAnalyzer 4.1 software (Agena Bioscience, San Diego, CA, USA). The genotypes identified from MassAR-
RAY analysis were cross-checked with the expected genotypes from the DArTseq data.

Sexing markers
Four putative sex chromosome markers were previously identified for M. gigas in Ottewell et al.38. To improve 
efficiency of data handling and to reduce processing time, we developed TaqMan probes to sex scats on a real-
time PCR (qPCR) machine. Multiplexed probes were designed using the PrimerQuest™ online tool (https://​sg.​
idtdna.​com/​Prime​rquest/​Home/​Index).

The newly developed TaqMan probes and selected dyes are listed as followed:

DDX3Y: 5′-/56-FAM/CGC​CGT​AAG​CAA​TAC​CCA​GTC​TCC​/3IABkFQ/-3′.
SRY: 5′-/5HEX/TTT​GCA​CCA​GGA​GAA​ATA​CCC​GGA​/3IABkFQ/-3′.
Zfy: 5′-/5TEX615/TGT​GCT​ATG​GAA​CTC​ATG​TGC​CCT​/3IAbRQSp/-3′.
Zfx: 5′-/5Cy5/CCA​AGG​AAA​TCA​TTC​ATG​AAT​ATC​A/3IAbRQSp/-3′.

We tested and optimised the new probes using one male tissue and three scats with three different concen-
trations of primer/probe mixes (0.5, 1.0, and 2.0 μM, Supplementary 2 Fig. S1). Then, we tested sex allocation 
consistency with eight tissue samples (four females and four males) and six scats (Supplementary 2 Fig. S2). 
Zfy was excluded in the second trial and subsequent runs because DDX3Y and SRY provided sufficient data. 

Table 1.   Macroderma gigas SNP filtering steps to select potential loci from DArTseq for MassARRAY panels.

Filter No. of SNPs No. of individual

Raw data 33,340 120

Loci that have only 1 SNP 18,616 120

Sequence length > = 50 base pairs 16,377 120

SNP position 25 to 45 5551 120

Average read depth per locus between 5 and 200 5179 120

Genotyping rate per locus > = 0.80 3047 120

Genotyping rate per individual > = 0.80 3043 119

The ratio of allele read depth difference between Reference and Alternative SNP 0.2–0.8 3038 119

Reproducibility > 0.95 in technical replicates 2875 119

Paralog (sequence similarity of ≥ 25% removed) 2769 119

Heterozygosity between 0.2–0.5 1273 119

Minimum allele frequency between 0.3–0.5 625 119

Select for loci in Hardy–Weinberg equilibrium 625 119

Loci in linking equilibrium 611 119

https://sg.idtdna.com/Primerquest/Home/Index
https://sg.idtdna.com/Primerquest/Home/Index
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The final reaction consisted of primer and probe mix (1.0 μM) amplified in 10 µL reactions using the Prime-
Time™ Gene Expression Master Mix (Cat No: 1055772) as per the manufacturer instructions with an annealing 
temperature of 60 °C, 40 amplification cycles and 4 µL of faecal DNA. The reactions were run on the CFX96™ 
Real-Time System C1000 Touch Thermal Cycler (BIO-RAD, Singapore) and analysed using the CFX Maestro 
software (BIO-RAD, Singapore).

Case study
Scats (n = 209) were collected from seven roosts in West Angelas between 15–19 October 2019 (Fig. 1). At each 
roost, a maximum of 20 fresh to moderately fresh M. gigas scats were collected from tarpaulins placed on the cave 
floor for several months. We chose single scats that were not touching others to avoid any cross-contamination, 
and placed each into an individual envelope. Samples were kept frozen until DNA extraction and every scat 
was handled separately onwards using sterile laboratory and handling procedures. DNA was obtained from the 
scats by scraping the outer surface of frozen scats with a blade. Scraped material was processed using the Omega 
Biotek Mag-Bind Stool DNA 96 kit following the manufacturer’s instructions with a modification of using 50% 
diluted elution buffer in the final elution step to reduce EDTA inhibition for downstream analyses. Samples were 
eluted in 100 μL elution buffer.

We employed a two-step genotyping protocol. In the first step, we genotyped all samples with the first SNP 
panel (Panel 1, 47 SNPs) to identify unique individuals (PID analysis indicates 20 markers were needed to sepa-
rate related individuals; “Results”). We were unable to obtain matched tissue and scat samples to evaluate the 
performance of the panel on invasively-collected vs non-invasive samples due to ethical considerations as the 
species is highly sensitive to disturbance. Instead, we re-genotyped 10% of samples (23 randomly selected sam-
ples) with Panel 1 to ensure consistency across runs and allow calculation of allelic dropout error rate. Rather 
than using the multi-tubes approach employed previously for microsatellite studies, we accounted for genotyp-
ing error estimates from re-genotyping in the clustering analysis (i.e. 2.5% from allelic dropout × 47 loci is 1.2 
SNP). This approach is much cheaper than a multi-tubes approach and the data is handled based on scat qual-
ity. MassARRAY SNP results were processed in a custom R package ‘ScatMatch’45. ScatMatch contains several 
custom functions and visualisations for assessing genotype quality and clustering of samples based on their 
genotype dissimilarity. First, scat genotypes are ‘cleaned’ based on sample and locus amplification rates (typi-
cally 90% and 80%, respectively) to retain only high-quality data. Samples with low amplification rates (Sup-
plementary 3 Fig. S1) are likely to be older and contain more errors4,13,14. ScatMatch then employs hierarchical 
cluster analysis using the R package ‘stats’ with the function ‘hclust’ and the method “average”42 to group scats 

Figure 1.   The spatial arrangement of roosts where Macroderma gigas scats were collected. The top insert is the 
site location within Western Australia and the bottom inserts are movement patterns of M. gigas male number 8 
(M8) and male number 10 (M10). The map is generated by an R package ‘leaflet’ version 2.2.176.
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based on the number of allele mismatches. Each scat genotype is assigned initially to its own cluster, and then 
the algorithm proceeds iteratively to join the two most similar clusters, and continues until only one cluster is 
left. The clustering is visualised as a dendrogram and we determined the cut height h (essentially the number of 
allele mismatches) at which to accept clustered samples are from the same individual. This threshold is decided 
based on inspection of several data visualisations. An elbow graph (‘elbow_plot’ function) shows the numbers of 
groups or putative individuals identified with increasing numbers of allele mismatches, and with the clustering 
threshold determined by the point at which the number of groups stabilises. We looked for a clear distinction 
in the number of SNP differences between grouped and ungrouped genotypes when the pairwise dissimilarity 
matrix is visualised as a heat map (‘heat_plot’ function). Lastly, we assessed the clustering threshold from the 
misassignment graph (‘misassign’ function). The graph plots the frequency of allelic differences within groups 
(SNP differences among scats from the same individual) and between groups (SNP differences between scats 
from different individuals) assuming the allelic frequency to follow a binomial distribution. Any allelic differ-
ences falling into the within group distribution are likely to be genotyping errors resulting from variation in 
DNA quality between scat samples from the same individual. Each selected value of h generates an overlap of 
the upper 0.995 percentile of the within group distribution and the lower 0.005 percentile of the between groups 
distribution. A greater degree of overlap means a higher probability of misassigning scats to individuals or would 
indicate the lack of SNP variation for individual identification.

In the second step, after scats had been assigned to individuals by ‘ScatMatch’, we selected one sample per bat 
with the best amplification rate to be genotyped with MassARRAY Panels 2 and 3 to obtain population genetic 
information. We also selected up to three random samples per bat to determine sex using the TaqMan qPCR 
assay. Because the amplification of sexing markers from scats is not always consistent due to variable sample 
quality, we established several criteria for assigning sex. Amplification was considered successful if the qPCR 
amplification RFU signal was ≥ 50. Samples were considered male if they met additional criteria as follows: a 
ratio of Y- to X-linked RFU signal > 0.1; and consistently assigned to the same sex in multiple samples. ‘Likely’ 
sex was defined when a group of samples with a small level of disagreement among markers and/or samples 
and the sex selected made up the majority of the result. ‘Undetermined’ was defined when a group of samples 
with amplification signal below 50 RFU from multiple markers or sex could not be assigned with confidence 
(Supplementary 3 Table S1).

Using all filtered loci from three panels, summary population genetic diversity statistics such as observed 
heterozygosity (Ho), gene diversity or observed heterozygosity (Hs), allelic richness (A) and inbreeding coef-
ficient (FIS) were calculated from all bats in the Hierfstat package in R42. The contemporary effective population 
size (Ne) was estimated in NeEstimator46 using the Linkage Disequilibrium method46,47. The parametric method 
was used to calculate the 95% confidence intervals of each Ne estimate48. Pairwise genetic relatedness between 
all bats was calculated using an R package ‘Related’49. We used the Ritland estimator as recommended by Attard 
et al.50 for SNP data that gives a value of 1.0 for identical twins or clones, 0.5 for parent–offspring or full-sib, and 
0.25 and 0.125 for second and third-order relationships51.

Ethical approval
No animals were directly involved during study and only data has been used. The unpublished DArTseq data of 
Pilbara M. gigas tissue samples were collected under scientific permits issued by the Western Australian Depart-
ment of Biodiversity, Conservation and Attractions (SF002775, SF003138, SF005423, and SF005774).

Results
SNP selection
Out of 33,340 SNPs, 611 SNPs were identified as suitable, high quality, polymorphic candidate loci for the 
MassARRAY panels (Table 1). The filtered markers exhibited variation of homozygosity and heterozygosity in 
the in silico dataset as anticipated (Fig. 2a). A Pearson Principal Component Analysis of the original DArTseq 
genotypes showed an emergence of population structure pattern when more loci were included (Fig. 2b and 
Supplementary 3 Fig. S2). At the threshold of 0.0001, PID analysis of one panel (50 SNPs) showed that at least 10 
or 20 loci were required to separate unrelated or related bats respectively (Fig. 2c). Inclusion of a larger number 
of loci did not change the result of PID analysis (Supplementary 3 Fig. S3), but it reduced standard deviations 
in population genetic diversity estimates although actual parameter estimates were consistent across all data 
subsets (Supplementary 3 Fig. S4). As a balance between per-sample genotyping costs and information content 
we designed three SNP panels. One MassARRAY SNP panel can contain up to 50 SNPs but due to constraints 
on multiplex primer design, our initial panels contained a total of 140 SNPs (Panel 1 = 47 SNPs, Panel 2 = 49, 
Panel 3 = 44, Supplementary 4).

SNP panel performance
First, we compared genotyping success and error rates for seven tissue (20 ng/μL) and 11 scat (concentration 
unknown) samples. Based on 108 SNP loci with ≥ 50% amplification rate, tissue samples had an average sample 
amplification of 0.691 ± 0.082 (range 0.34–0.99) and 0.708 ± 0.067 (range 0.0–0.98) for scats. We allowed a lower 
amplification threshold because we used all three SNP panels for this trial. Average allelic dropout was low for 
both scat and tissue samples (tissue: 0.0 and scat: 0.038 ± 0.018). We also trialled the effects of DNA concentration 
on amplification and error rates. We found that the sample amplification rate ranged between 0.89 to 1.0 and the 
rate increased with DNA concentration but reached a plateau after 0.6 ng/μL (Supplementary 2 Fig. S3). Lastly, 
we compared sample amplification rates of scat DNA extracted with the Omega Biotek Mag-Bind Stool DNA 
96 kit (Omega, USA, Cat No: M4016-01) and the QIAamp® Fast DNA Stool Mini kit (Qiagen, Germany, Cat No: 
51604). The average amplification rates, after removing completely failed samples, were also significantly higher 
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for the Omega kit (0.901 ± 0.007, range 0.537–1.0) compared to the Qiagen kit (0.764 ± 0.013, range 0.293–1.0) 
(W = 20,605, P-value < 0.001, Supplementary 2 Fig. S4).

Case study
In the first step of our genotyping protocol, all samples were genotyped for Panel 1 to identify individuals rep-
resented in the collection of scats. Out of 209 scats and 23 replicates, 13 scats and 2 replicates (6.5%) failed to 
amplify. The overall sample amplification rate (excluding failed samples) ranged from 0.54 to 1.0, with a mean of 
0.90 ± 0.01. Allelic dropout in repeated samples was 0.025 ± 0.004 and was negatively correlated with amplification 
rate (Supplementary 3 Fig. S1). Evaluation of alternative sample and locus filtering thresholds (Supplementary 
3 Fig. S5) clearly shows the impact of data quality on the ability to confidently cluster scat genotypes. Remov-
ing lower quality samples/loci results in a clear plateau in the number of individuals identified regardless of the 
number of SNP mismatches past h = 1 visualised in the elbow graph, and greater distinction between ‘within 
individual’ (caused by genotyping errors) and ‘between individual’ (caused by biological variation) SNP differ-
ences (Supplementary 3 Fig. S5). As a result of these visualisations, we chose to filter our data to samples and 
loci with ≥ 0.9 and ≥ 0.8 amplification rates, respectively, which resulted in 125 scats and 40 loci (Panel 1), and 
allelic dropout rate reduced to 0.003 ± 0.000. For high quality samples, we identified the threshold SNP mismatch 
number as h = 1 based on inspection of elbow and misassignment graphs (Fig. 3a,b), with the heat map show-
ing that scats tend to cluster together if there were SNP differences of ≤ 1 (Fig. 3c). Based on these analyses, we 
assigned scats with ≤ 1 SNP mismatch to the same bat.

Based on stringent filtering criteria, we identified 19 unique genotypes (individuals) from 125 filtered scats 
and 40 filtered loci. Of the 19 individuals identified, there were eight males, one likely male, five females and five 
likely females (Supplementary 3 Table S2). This gave a sex ratio of males to females of 1.6:1 for confirmed sex, 
or 0.9:1 for all bats. We detected between 1 to 8 unique individuals per roost (Fig. 4). Stringent filtering resulted 
in a loss of 40% of the total number of scats, indicating 19 individuals as a minimum estimate of the number 
of bats present. Using more relaxed filtering criteria and threshold mismatch number allowed identification of 

Figure 2.   Macroderma gigas SNP selection for MassARRAY panels assessing for genotype variation for all 611 
SNPs (a), A Pearson Principal Component Analysis of 150 SNPs (b), and Probability of Identity of 50 SNPs (c). 
Different colours in (a) represent 3 genotypes: blue (0) for a homozygote of the reference allele, purple (1) for a 
heterozygote, and red (2) for a homozygote of the alternative allele. Colours in (b) represent locations of M. gigas 
tissue samples collected across the Pilbara. Different PID colours in (c) represent the probability of identifying 
unrelated individuals (PID, green) and related individuals (PIDsib, orange).
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further individuals (30 to 38 bats using loci/scat amplification rates of 0.8 and 0.7 respectively, Supplementary 
3 Fig. S5), however, lowered data quality reduces confidence in these identifications.

Of 19 bats, we only detected two individuals (M8, M10) using more than one roost during the sampling 
period (Supplementary 3 Table S2) with the remaining bats only detected using a single roost. M8 was detected 
in roost AA1 and L3, 9.2 km apart while M10 was detected in roost AA2 and A1, 47 m apart (Fig. 1). Based on 
the number of scats, we infer that bats Flikely5 (No. scats = 8), M6 (13), F7 (19), M8 (37), F9 (17), and M10 (7) spent 
significant time in the study area and were likely to be resident bats. While both M8 and M10 were detected in 
multiple roosts, based on the number of scats, M8 spent most of his time in roost AA1 while M10 spent a similar 
amount of time in both roosts (Supplementary 3 Table S2).

Roost AA1 had the largest number of scats and the highest number of bats detected (Fig. 4). Many of these 
bats were females or likely females, suggesting this cave may be a maternity roost. Interestingly, despite the like-
lihood of roost AA1 being used by breeding females, resident bats with many scats collected consisted of both 
sexes (Supplementary 3 Table S2). The remaining caves were clustered spatially, with only 3 bats detected using 
cluster L3/AA2/A1, including two resident bats F9 and M10. In contrast, 9 individuals were detected using cave 
cluster N22/N13/N21, however, only low numbers of scats were detected for each individual (n = 1–3) possibly 
indicating visits to these caves were occasional.
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Following identification of individual bats, representative scats from each individual were genotyped with 
all 93 loci on SNP Panels 2 and 3 to obtain population genetic diversity metrics. Loci were then filtered to those 
with ≥ 50% amplification rate (n = 74) before combined with loci from Panel 1 (n = 40) resulted in a total of 114 
filtered SNPs. The group of bats detected in this site had an average observed heterozygosity of 0.40 ± 0.02 and 
expected heterozygosity 0.46 ± 0.01 indicating a moderate level of inbreeding (FIS 0.14 ± 0.03). We anticipated 
that genetic relatedness may be higher in the maternity roost if there is maternal philopatry, implying that female 
offspring return to their natal cave to reproduce, as has been suggested in past population genetic studies30,34. 
Despite having more females in some roosts, average genetic relatedness was low in all roosts (overall mean 
R = − 0.04) and not significantly different between roosts (Fig. 4). All roosts consisted of unrelated individu-
als except one pair of bats from roost AA1 with a relatedness value closer to parent–offspring or full-sibling 
relationship and another similarly related pair located in AA1 and L3 (Fig. 5). The effective population size was 
estimated as 52.6 (CI 35.8–92.6).

Discussion
Genetics-based non-invasive sampling is recognised as an efficient and cost-effective tool for monitoring rare 
and elusive species52. Mark-recapture approaches to estimate population abundance have relied traditionally on 
live capture, which risks injuries or death from capture and handling and may perform inadequately for species 
exhibiting trap avoidance behaviour35. The usefulness of faecal genotyping with microsatellite markers has been 
shown previously for addressing these issues for ad hoc monitoring of M. gigas populations38,39, however, the 
limited number of markers and higher error rates associated with this marker type suggest they may be problem-
atic for use in statistical mark-recapture analyses. Transitioning from microsatellite markers to pre-selected SNP 
markers offers increased power to distinguish related individuals, improve faecal genotyping efficiency and reduce 
error rates. We developed and successfully tested 114 novel high-quality SNPs for automated genotyping of faecal 
DNA on the MassARRAY platform using a two-step genotyping protocol to firstly identify individuals from scats 
using a panel (‘Panel 1’) of 40 high-quality SNPs, and then estimating population genetic parameters (relatedness, 
genetic diversity and effective population size) from the total SNP set. Combining individual assignment and 
sexing information, we answered relevant demographic and ecological questions using scats collected across an 
83 km2 study site in the eastern Pilbara. Below, we discuss the development of this technology in comparison 
to other studies, and in particular how the information gained from this technology provides insight into the 
biology of M. gigas. Lastly, we discuss limitations and possible future research directions of faecal genotyping.

Performance of SNP panels for faecal DNA genotyping
Scat DNA analysis is often impacted by low DNA quality and quantity, which can lead to errors in assigning 
scats to individuals, and introduce biases into mark-recapture analyses53. We demonstrated that M. gigas scats 
produced a high locus amplification rate (90%) with very low genotyping error rates (< 2.5%), which was observed 
in both the trial and the case study at West Angelas. The average amplification and error rates in this study are 
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comparable to other faecal genotyping studies using the MassARRAY platform (e.g. amplification rate 71%, allelic 
dropout or ADO rate 0–37% in Bornean elephant54; amplification rate 60%, ADO < 1% in pumas55). Low DNA 
concentration (< 0.6 ng/μL) negatively impacted the sample amplification rate in our trials, however we did not 
see a consistent pattern of increasing allelic dropout in our data, with low rates across all DNA concentrations 
tested (Supplementary 2). Microsatellite studies typically show a negative relationship between genotyping errors 
and amplification rate, with the rate of allelic dropout increasing with greater scat age (assumed to be a result of 
low DNA quantity and/or quality4). The better performance of M. gigas scats could be due to environmental fac-
tors since caves provide a stable microclimate where scats are sheltered from UV light and rain compared to those 
exposed to ambient weather conditions4,5,16,17. In addition, we found an interaction between the DNA extraction 
method used and MassARRAY amplification rate with the QIAamp® Fast DNA Stool Mini kit performing more 
poorly than the Omega Biotek Mag-Bind Stool DNA 96 kit, most likely due to the presence of EDTA in buffers 
interfering with MassARRAY multiplex PCR reactions.

Overall, we found 94% of faecal samples in our empirical study produced genotypes, but after stringent 
filtering we retained only high-quality genotypes for analysis, representing a final success rate of 60%. Notwith-
standing this relatively low rate, stringent filtering enabled us to match genotypes and identify individuals with 
a very high level of confidence (allowing 0–1 allelic mismatch between samples). Such high precision also builds 
trust in an ability to identify recaptures unambiguously within a mark-recapture framework. Allowing greater 
levels of missing data and a higher mismatch threshold between scats increased the number of scats available for 
analysis (81–89%) and doubled the numbers of individuals detected. However, relaxing data quality thresholds 
can increase misassignment of scats to individuals, either by failing to discriminate between scats from related 
individuals (overmerging) or by differentiating between scats from the same individual due to genotyping errors 
(oversplitting). Mark-recapture analysis relies on accurate identification of individuals to estimate recapture 
parameters; consequently misassignment of genotype IDs can have significant implications for estimates of 
population size made from such studies56.

Genotyping error rates have been reported in the range of < 1–49% in microsatellite studies38,56,57 but are 
typically lower for SNP arrays18. Pre-selection of SNP markers enables high performing bi-allelic loci to be tar-
geted, and automated SNP allele calling on array platforms is less prone to genotype scoring error introduced by 
humans. The use of bi-allelic markers also reduces the impact of genotyping artefacts (‘false alleles’) that are often 
detected in microsatellite studies58. Improved control over the performance of genetic markers and consistency 
in genotype calling permit the increased confidence in identification of individuals for mark-recapture analysis. 
We also found that sexing markers were more sensitive to DNA degradation from a few inconsistent callings 
in scats assigned to the same individual. This could be due to null results or allelic dropouts, which were more 
frequently reported in fox faecal sexing markers than autosomal markers15.
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Automated SNP genotyping is efficient for individual identification since pre-selection of highly variable 
SNP makers requires only a small number of markers to differentiate related individuals18,52. From simulated 
data, Glaubitz et al.21 showed that 22–28 biallelic loci are required to achieve an exclusion probability greater 
than 0.99 if these loci have a minimum allele frequency between 0.25 to 0.50. Similarly, here we found that 20 
SNPs (frequency > 0.4) are required to differentiate related individuals (PIDsib < 0.0001). Our simulations how-
ever showed that at least 100 SNPs are needed for reliable genetic diversity estimates and population structure 
analysis. A further limitation of using high frequency, highly variable SNP markers is, whilst cost-efficient, they 
will overestimate genetic diversity statistics and underestimate effective population size59. Such markers can be 
less sensitive to genetic diversity changes and hence may be less informative for conservation-related questions.

Faecal genotyping reveals M. gigas biology
Our minimum estimate of 19 bats at the West Angelas study site is comparable to previous surveys at the same 
site where we detected 12 bats in 2015 and 24 bats in 2017 using microsatellite markers60. Consistent with previ-
ous observations of M. gigas across the Pilbara31,60, we detected low numbers of individuals per roost (1–8 bats 
per cave) with the largest number of bats detected in roost AA1 with a bias towards females (6F:2M) in this 
cave, suggesting it is likely be a maternity roost. Roost AA1 is one of the largest in the area and has character-
istics of a maternity roost with a dome ceiling located at the back of the cave creating dark, warm and humid 
microclimates31. Breeding activity has also been previously reported at this site31. Despite a general expectation of 
female philopatry30, we detected only one close to first-order pedigree relationship (parent–offspring or sibling) 
pair in roost AA1. The average genetic relatedness was similar to other roosts and the incidence of first- and 
second-degree related individuals was not higher than in other roosts.

Two male bats were detected moving between roosts. Male 8 travelled 9 km between roosts AA1 and L3, but 
spent most of its time in roost AA1; while Male 10 only travelled between nearby caves AA2 and A1 that are 
47 m apart, and appeared to use both roosts equally. Tracking studies of bats indicate movements of 10–15 km 
during foraging bouts37 or between diurnal roosts61, although Toop’s35 records of marked M. gigas, indicate longer 
dispersal distances between 20 and 50 km, with one bat travelling as far as 150 km, suggesting a high capacity 
for dispersal in this species. Likewise, recapture analyses from scats have detected inter-roost movements up to 
36 km apart, with an average of 4.0–8.6 km62–64, although many bats are found to persist in the same roosts over 
multiple sampling periods, consistent with the observations in this study and with tracking studies showing bats 
consistently returning to the same diurnal roosts after foraging37,61.

Our genetic diversity estimates revealed a moderate level of inbreeding (FIS) for the population of M. gigas at 
West Angelas. Despite this observation, we found that mean relatedness within roosts was typically low (most 
individuals were unrelated) with only two individuals detected close to first-order pedigree relationships (par-
ent–offspring or full-sib). Previous microsatellite analysis has indicated that genetic diversity in the Pilbara 
population of M. gigas is moderately high (Ho = 0.816), albeit lower than in colonies in the Northern Territory 
(Ho = 0.874–0.928; Worthington Wilmer et al.30). Further sampling of Pilbara roosts is required to place the 
population genetic diversity estimates from West Angelas obtained from SNP analysis into a regional context.

Limitations and future directions
Mark-recapture analysis using non-invasive samples has been applied successfully to estimate colony size in 
bat species Myotis sodalis65, Rhinolophus hipposideros66, as well as to estimate annual changes in population size 
in iconic species such as the brown bear Ursus arctos9 and the Eurasian otter Lutra lutra57, demonstrating the 
viability of genetic mark-recapture approaches. Our single-session field survey case study demonstrated the 
ability of our novel SNP genotyping approach to confidently identify M. gigas individuals and their recapture 
using faecal DNA samples. Further monitoring sessions are required to establish a robust design statistical 
mark-recapture monitoring approach to estimate population abundance using a combination of closed and open 
sessions. Nevertheless, results from our single-session survey provided insight into aspects of M. gigas biology 
that can inform survey design and choice of population models in future studies, including confirmation of a 
high rate of cave fidelity and the spatial scale of inter-roost movements. Further, application of molecular sexing 
markers provides additional information that may enable application of sex-specific mark-recapture models, 
incorporating heterogeneity in recapture rates amongst sexes.

We designed our assay specifically for the Pilbara population of M. gigas, yet the species also persists in 
disjunct, threatened populations elsewhere in northern Australia. SNP panels are known to be impacted by 
ascertainment bias since SNP selection is typically made based on the allele frequencies of only a subset of 
individuals or populations that are available to study, rather than the global population67,68. Whilst we only 
had genomic data from eight colonies of M. gigas, these spanned the two main geographic sub-regions in the 
Pilbara (Chichester and Hamersley). We also have a priori knowledge of low genetic structure in M. gigas in 
the Pilbara69 suggesting our SNP panels can be effectively applied to non-sampled colonies in the Pilbara with 
potentially little or minor loss of utility. However, it is likely that our SNP panels will have lowered effectiveness 
if applied to disjunct populations elsewhere in Australia due to significant variation in allele frequencies amongst 
regions30. As a result, development of region-specific SNP panels may be necessary to apply this mark-recapture 
methodology elsewhere. Nevertheless, as a disturbance-sensitive Threatened bat species, faecal DNA monitor-
ing, in combination with an appropriate survey design, provides an opportunity for obtaining robust population 
abundance information to assist in the conservation and management of the species.

Here, we applied stringent filtering criteria to obtain only high-quality samples and genotypes to ensure a high 
confidence in assigning scats to individuals. Previous reviews of non-invasive mark-recapture approaches56,64 
have argued that stringently filtering genotype data could inadvertently bias individual recapture probabilities, 
violating mark-recapture models since individuals shed varying amounts of DNA70. Lukacs and Burnham53 
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suggest that allowing a small amount of genotyping error to account for heterogeneity in an individual’s capture 
probability53. In addition, acknowledging that genotyping errors are somewhat unavoidable in genetic mark-
recapture studies, Lampa et al.57 recommended using specific population-models that account for misidentifica-
tion error (e.g. Lukacs and Burnham71 estimator, α, implemented in the program MARK72).

As genomic technology advances, it is increasingly possible to obtain detailed population information on 
threatened species non-invasively. An exciting prospect in recent years is the use of DNA methylation changes 
as a biomarker to estimate chronological age in humans73 and non-model species, including the bat Myotis bech-
steinii74,75. At this stage such approaches are only effective for tissue samples, however, it would be of interest to 
assess the application of such techniques to target DNA methylation from cells in the intestinal tract for scats. 
Adding markers for molecular ageing to our scat assays could provide further valuable information on the age 
structure of populations and recruitment rates to assist in conservation monitoring.

Data availability
The datasets generated and/or analysed during the current study are available in the National Centre for Bio-
technology Information (NCBI) Sequence Read Archive, accession number SRR25822243. Author K. Armstrong 
can be contacted for access to the unpublished raw DArTseq data.
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