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IDSL.GOA: gene ontology analysis 
for interpreting metabolomic 
datasets
Priyanka Mahajan 1, Oliver Fiehn 2 & Dinesh Barupal 1*

Biological interpretation of metabolomic datasets often ends at a pathway analysis step to find the 
over-represented metabolic pathways in the list of statistically significant metabolites. However, 
definitions of biochemical pathways and metabolite coverage vary among different curated 
databases, leading to missed interpretations. For the lists of genes, transcripts and proteins, Gene 
Ontology (GO) terms over-presentation analysis has become a standardized approach for biological 
interpretation. But, GO analysis has not been achieved for metabolomic datasets. We present a new 
knowledgebase (KB) and the online tool, Gene Ontology Analysis by the Integrated Data Science 
Laboratory for Metabolomics and Exposomics (IDSL.GOA) to conduct GO over-representation analysis 
for a metabolite list. The IDSL.GOA KB covers 2393 metabolic GO terms and associated 3144 genes, 
1,492 EC annotations, and 2621 metabolites. IDSL.GOA analysis of a case study of older versus 
young female brain cortex metabolome highlighted 82 GO terms being significantly overrepresented 
(FDR < 0.05). We showed how IDSL.GOA identified key and relevant GO metabolic processes that were 
not yet covered in other pathway databases. Overall, we suggest that interpretation of metabolite 
lists should not be limited to only pathway maps and can also leverage GO terms as well. IDSL.GOA 
provides a useful tool for this purpose, allowing for a more comprehensive and accurate analysis of 
metabolite pathway data. IDSL.GOA tool can be accessed at https:// goa. idsl. me/.

Metabolomics enables the simultaneous study of multiple metabolic processes, including pathways, transport, 
and reactions. Metabolomics assays are diverse and complex in terms of their analytical conditions, but they can 
generate quantitative and semi-quantitative data for hundreds of endogenous  metabolites1. Recently reported 
datasets can have between 1500 and 2000 named metabolites and several thousand unidentified  metabolites1,2. 
These metabolites originate from overlapping pathways of catabolic and anabolic reactions and can also be bio-
markers for metabolic  processes3. Environmental, genetic, or biological factors can alter the regulatory, signal-
ing, and enzyme kinetic mechanisms in one or more metabolic pathways and processes, leading to altered levels 
of related metabolites in cells, tissues or body  fluids4,5. For example, aging reprograms carbohydrate and lipid 
metabolism pathways in the  liver6, tobacco smoke exposure alters the nucleotide and reactive oxidative stress 
species  metabolism7, and FADS gene polymorphisms alter the levels of circulating  PUFAs8. We can expect to 
see a continuous growth in the number of named metabolites in metabolomic datasets due to new  advances9,10 
in analytical techniques and computational methods and resources.

One of the key challenges in utilizing metabolomic datasets is how to interpret these large chemical lists 
for mechanistic  insights11. Pathway and network analysis can provide mechanistic insights into the biological 
pathways linked to the altered  metabolites12. Interestingly, metabolomic datasets often have metabolites that are 
yet to be connected to a biochemical reaction and  pathway13,14. To also include these poorly studied metabolites, 
hybrid approaches of the atomic mapping of reaction and chemical similarity network (MetaMapp) and enrich-
ment analysis (ChemRICH) can be  used13,14. Transcripts and protein lists are also often interpreted using gene 
ontology (GO) term enrichment  analysis15, which covers terms that relate to pathways as well as other biologi-
cal processes such as cell cycle or apoptosis, or even pathways that are not yet included in other biochemical 
databases. However, there is not yet a single tool developed that can perform a GO analysis for a metabolite list.

We have developed a new tool named ’IDSL.GOA’ (Gene Ontology Analysis by the Integrated Data Science 
Laboratory for Metabolomics and Exposomics) to perform GO enrichment analysis for a list of metabolites. The 
tool is supported by a knowledge base of genes, enzymes, and reactants (metabolites) that are directly sources 
from National Center for Biotechnology Information (NCBI), Expasy and GO consortium databases. We present 
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a case study of an aging mouse metabolic atlas to highlight the metabolic processes that were suggested to be 
related to the aging process and were only identified by the IDSL.GOA based GO analysis method. The online 
tool is available at https:// goa. idsl. me/ site.

Material and methods
IDSL.GOA knowledgebase
We assembled and integrated information from a diverse set of data sources, including genes, enzymes, com-
pounds, gene ontology terms and the relationships among them. Table 1 provides the web addresses for the 
publicly available data sources and their respective locations. To focus specifically on metabolism, we restricted 
our gene selection to those related to GO term GO: 0,008,152 (metabolic process) and linked with the human 
genome. Only the downstream entities for these metabolic genes were included in the knowledgebase. Uti-
lized identifiers for creating the knowledgebase were—NCBI Gene, NCBI Protein, NCBI Nucleotide, GO Term, 
Enzyme Commission Number (EC) and InChiKeys. Linkages among these entities were extracted or accessed 
from the resources listed in Table 1.

Over-representation statistics
For the GO analysis, we employed an overrepresentation analysis (ORA) test using the hypergeometric distribu-
tion. This statistical test is a widely accepted method for determining whether a set of molecular entities (gene 
or proteins or metabolites) is significantly overrepresented in a particular biological pathway or process, given a 
background database. We also applied filters (1) overlap >  = 3, (2) at least three genes in the GO process (3) The 
set size < 5% of total compounds (4) FDR < 0.05 and (5) the overlap should be > 5% of the total set size for a GO 
term. The overlap represents how many out of the input InChiKey list are found among the InChiKey identifiers 
linked with a GO term. Only the first 14 characters of an InChiKey, which represent the two-dimensional struc-
ture were used to find the overlap. These filters narrow down the list of GO terms to only the most relevant ones.

We have used “phyper” function in R to compute the hypergeometric test. The parameter for the test were 
– phyper(x-1,y,a,b, lower.tail = FALSE), where x is the overlap between the input list of InChiKey and compounds 
linked with a GO term, y is the count of all compounds(2D structures) linked with the GO term, a is the count of 
all compounds (2D structures) not linked with the GO-term (1,856-y), b is the count of the InChiKey from the 
input list that were found in the knowledgebase. By default, the phyper function in R calculates the probability of 
drawing less than or equal to x for a GO term. Use of the parameters “x-1” and “lower.tail = FALSE” returns the 
probability of drawing more than or equal to x for a GO term. The total number of compounds (2D structures) 
linked with GO terms was 1856. For example, for the Nucleoside salvage (GO:0,043,174), x was 12, y was 58, 
b was 73, and a was 1798 (1,856–58) for the test study’s results. The p-value of this GO term was computed as 
‘phyper(11,58,1784,73, lower.tail = FALSE)’ which returns 1.158242e-06.

The IDSL.GOA tool uses the False Discovery Rate (FDR) cutoff of 0.05 to control the proportion of false 
positives in multiple hypothesis testing in GO analysis. We repeated this test for all metabolically relevant 2,392 
GO-terms.

Case study and its analysis
Our test study was based on publicly available data from the Aging Mouse Brain Metabolome  Atlas1, a compre-
hensive resource that provides information on the metabolites found in the different regions of brain of aging 
mice. Specifically, we compared the brain metabolome of the cortex region in an older female mouse against 
that of a young mouse. To identify the significantly different metabolites, we used the student t-test. We used 
InChiKey identifiers for the compounds that had a p-value of less than 0.05 in the student t-test.

IDSL.GOA online tool
The online tool was developed using the ReactJS JavaScript framework (https:// react js. org/), which is known 
for its efficient rendering of dynamic user interfaces. To facilitate data visualization, we utilized the Google 
Chart (https:// devel opers. google. com/ chart ) and Cytoscape JS plugins (https:// github. com/ plotly/ react- cytos 
capejs), specifically designed to work with ReactJS. Cytoscape online version is a lightweight and user-friendly 
tool that allows users to perform basic network visualization and analysis tasks without the need to install the 
software locally. For small networks, the online version may be sufficient, but for larger and complex network, 
it is recommended to download the Cytoscape SIF (Simple Interaction Format) file and use the local version of 

Table 1.  Data sources for assembling the IDSL.GOA knowledgebase. These information were accessed in 
December 2023.

Resource Address Information

Gene Ontology http:// purl. oboli brary. org/ obo/ go. obo GO-GO

Expasy Enzyme https:// ftp. expasy. org/ datab ases/ enzyme/ enzyme. dat EC Numbers

NCBI Gene Accession https:// ftp. ncbi. nlm. nih. gov/ gene/ DATA/ gene2 acces sion. gz Gene–Transcript
Transcript–Protein

NCBI Gene GO Annotation https:// ftp. ncbi. nlm. nih. gov/ gene/ DATA/ gene2 go. gz Gene–GO

NCBI PubChem https:// pubch em. ncbi. nlm. nih. gov/ EC-compounds

https://goa.idsl.me/
https://reactjs.org/
https://developers.google.com/chart
https://github.com/plotly/react-cytoscapejs
https://github.com/plotly/react-cytoscapejs
http://purl.obolibrary.org/obo/go.obo
https://ftp.expasy.org/databases/enzyme/enzyme.dat
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2accession.gz
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
https://pubchem.ncbi.nlm.nih.gov/
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Cytoscape software to create high resolution graphics. Instructions to use the IDSL.GOA tool are provided on 
the landing page.

Results
Creating the IDSL.GOA metabolic knowledgebase: To perform IDSL.GOA over-representation analysis, we first 
needed to create a database of relationships among metabolic entities. This database was designed to capture the 
heterogenous relationships among genes, enzymes, compounds, and gene ontology terms. The source data for 
these relationships were obtained from various publicly available key databases, including the NCBI, Expasy – SIB 
Swiss Institute of Bioinformatics, and the Gene Ontology Consortium (Table 1). We restricted the knowledge-
base to only human genes and their products in the first version of the KB. The resulting version 1 of the IDSL.
GOA database contained a total of 3,144 genes, 1,492 enzyme commission numbers, 2,621 compounds, 1,856 
2D chemical structures and 2,393 gene ontology terms for metabolic processes (Fig. 1). Overall, the IDSL.GOA 
database provided a comprehensive resource for performing GO over-representation analysis for metabolite lists.

Aging mouse brain metabolomics- a case study
In this study, we aimed to investigate the changes in metabolite levels in the brain cortex of old and young mice 
using a metabolomic atlas that contained close to 1,547 identified compounds. We identified 557 metabolites 
that were significantly different between the old (59 weeks) and young (3 weeks) female mouse brain cortex 
(Table S1). InChiKeys for these significant metabolites were used as input for IDSL.GOA analysis. The GO 
analysis results suggested a total of 82 GO processes that were over-represented in the input list at an FDR cutoff 
of 0.05 (Table S2). The GO network and the impact plot visualization suggested that processes in nucleotide and 
amino acid metabolism (GO:0,043,174, GO:0,046,415 and GO:0,006,166) were significantly affected during the 
aging process (Figs. 2 and 3, Table S2).

IDSL.GOA online tool
The IDSL.GOA online tool is a user-friendly resource for identifying overrepresented metabolic processes in a 
list of metabolites. The online interface offers features including analysis, query, explore, statistic and download 
options. The ‘Run Go Analysis’ option on the landing page allows users to input a list of InChiKeys and obtain 
results in various formats, including Cytoscape SIF, Microsoft Excel, and CSV. The InChiKeys for only the sig-
nificant compounds (p < 0.05) in a statistical test should be used as input. The Cytoscape SIF and node attribute 
files are useful for creating high-resolution figures in the Cytoscape desktop  software16. The primary analysis 
results are visualized in a ‘GO Ontology network’ graph using Cytoscape JS library, which provides an intuitive 
and interactive way to explore the data. This view is analogous to the pathway ontology visualization in the 
Reactome  database17. The size of the node in the graph reflects the significance of the term, with larger nodes 
indicating more significant terms in the hypergeometric test. Additionally, an impact plot shows how specific 
the GO terms are for the input list, by plotting the set size versus -log(p-value). The explore option allows users 
to navigate the GO ontology tree. Clicking on a GO term in the main analysis, query or explore options provide 
the GO-term specific InChikeys that overlap with the input list. The query option allows users to query a single 
compound, reaction, gene, protein and transcript to retrieve the associated metabolic GO terms. All GO network 
visualization has a basic set of layouts (views) implemented which can be explored by a user to find the most 
readable and helpful views for a GO ontology network that can aid in the biological interpretation of metabolite 
lists. Finally, the statistics and download tabs provide updates on the database version and download links, and 
the landing page offers Instructions for using the database.

Discussion
IDSL.GOA is the first bioinformatics tool that used GO terms for over-representation analysis of metabolomic 
datasets. By mapping the metabolites to their associated GO terms, IDSL.GOA can improve the mechanistic 
interpretation of metabolomics data by providing a functional annotation of the metabolites based on their 
associated metabolic processes and pathways in the Gene Ontology database. It is a more sensitive and accurate 
tool for data with larger lists (> 1000 named metabolites)1,2. This can lead to the identification of key regulatory 
pathways and molecular mechanisms that are involved in the observed changes and can guide further experi-
mentation and hypothesis testing. By leveraging the new IDSL.GOA knowledgebase, we were able to identify 
the overrepresented metabolic pathways and processes in our case study dataset and gain new insights into the 
underlying mechanisms that govern metabolic activity in aging brain tissue.

Figure 1.  Content and relationships in the IDSL.GOA metabolic knowledgebase. Total number of metabolic 
GO terms under the metabolic process (GO: 0,008,152) are 6084.
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Advantages of using GO terms for metabolomics data interpretation
There are several advantages of GO analysis over traditional pathway analysis. GO analysis provides a more com-
prehensive annotation system for genes and their products than pathway analysis, allowing for a broader range 
of metabolic processes and pathways to be  analyzed18. Unlike pathway analysis, GO analysis is not limited to 
hand-drawn pathway maps which tend to differ from one database to another, making it more flexible and adapt-
able to different experimental conditions. Depending on the background pathway database, the interpretation of 
metabolite lists can differ and may be inaccurate, leading to contradicting results and less  impact3. On contrast, 
GO analysis allows for a more detailed and accurate interpretation of results, as it provides a broader context 
for the function and regulation of metabolite levels. Because the GO system is standardized, it allows for greater 
consistency and comparability between different studies and datasets. GO terms not only covers the known 
pathway maps but also covers additional metabolic processes that are not yet included in the pathway databases.

Figure 2.  GO Tree visualization of the significantly overrepresented GO-terms in the input metabolite list. 
Node size indicates the statistical significance, larger ones are most significant.

Figure 3.  IDSL.GOA impact plot to show the most overrepresented GO terms by their specificity. A small 
set size shows more specific metabolic processes. For clarity, only the top metabolic processes are labelled but 
Table S2 has the names for all the significant metabolic processes.
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Key strengths of IDSL.GOA tool
The IDSL.GOA tool is a free, user-friendly and web-based platform that utilizes Gene Ontology (GO) terms for 
the analysis of metabolomics data. It offers an intuitive interface that allows users to perform GO enrichment 
analysis for an input metabolite list. The tool has a range of useful features to facilitate the interpretation and 
has a wide range of capabilities, including query, explore, statistics, and download options. The use of GO terms 
provides an improved biological interpretation of metabolomics data, which can help researchers identify novel 
and metabolically relevant pathways and processes. The tool is built on a robust knowledgebase that contains 
relationships among metabolic entities, obtained from various sources including NCBI, Expasy and the Gene 
Ontology Consortium databases. The tool allows for a more comprehensive and accurate analysis of metabo-
lomics data by identifying not only the predefined pathways but also relevant metabolic processes that are not 
included in the commonly used pathway databases. It is the first of its kind tool for metabolomics data.

Future plan
In the follow up work, we plan to improve IDSL.GOA by expanding the underlying database of GO to metabolite 
relationships. For this, we will curate and map the annotated compounds in the publicly available metabolomic 
datasets to the enzyme activity annotations and subsequently to the GO terms. There is also a need to harmo-
nize the chemical information across reaction databases and metabolomics reports. Since the mapping between 
GO terms to genes, proteins and transcripts is available, the future version of IDSL.GOA may also facilitate a 
multi-omics GO analysis.

Limitations
Few limitations should be noted. The IDSL.GOA tool relies on the availability of InChiKey-linked metabolite 
data, and the coverage of metabolite curation may vary across different metabolomics laboratories. Not all anno-
tated compounds in the metabolomic datasets have been linked with EC numbers in the biochemical databases. 
The GO hierarchy and associated annotations may contain biases or inaccuracies due to incomplete or outdated 
information. There is some redundancy in GO term names which may inflate the over-representation analysis 
results. The mechanistic interpretation still needs to be validated by additional experimentation. By discussing 
these limitations, we can provide a more balanced view of the capabilities and potential drawbacks of the IDSL.
GOA tool for GO analysis in metabolomics.

Conclusions
In summary, the IDSL.GOA tool can enable a comprehensive and accurate biological interpretation of metabo-
lomics data. A much-needed transition from pathway maps to GO terms for interpreting metabolomic datasets 
can be supported by the IDSL.GOA tool. It is more sensitive in identifying significantly enriched GO terms that 
are relevant for metabolic processes. By providing a comprehensive view of the underlying biology, this approach 
can facilitate the identification of key regulatory pathways and biomarkers that may be useful for diagnosis, 
prognosis, and therapeutic targeting.

Data availability
The Aging Mouse Metabolome Atlas dataset can be accessed at https:// doi. org/https:// doi. org/ 10. 21228/ M8C68D 
IDSL.GOA knowledgebase elements and relationships are available at https:// zenodo. org/ recor ds/ 10223 649. 
IDSL.GOA tool can be accessed at https:// goa. idsl. me/ site and https:// github. com/ idslme/ IDSL. GOA.
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