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Linking gene expression to clinical 
outcomes in pediatric Crohn’s 
disease using machine learning
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Chinmaya U. Joisa 6, Matthew R. Schaner 1, Grace Lian 1, Caroline Beasley 1, Lee‑Ching Zhu 4, 
Surekha Bantumilli 4, Muneera R. Kapadia 2, Shawn M. Gomez 6, Terrence S. Furey 1,3* & 
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Pediatric Crohn’s disease (CD) is characterized by a severe disease course with frequent complications. 
We sought to apply machine learning‑based models to predict risk of developing future complications 
in pediatric CD using ileal and colonic gene expression. Gene expression data was generated from 
101 formalin‑fixed, paraffin‑embedded (FFPE) ileal and colonic biopsies obtained from treatment‑
naïve CD patients and controls. Clinical outcomes including development of strictures or fistulas 
and progression to surgery were analyzed using differential expression and modeled using 
machine learning. Differential expression analysis revealed downregulation of pathways related 
to inflammation and extra‑cellular matrix production in patients with strictures. Machine learning‑
based models were able to incorporate colonic gene expression and clinical characteristics to predict 
outcomes with high accuracy. Models showed an area under the receiver operating characteristic 
curve (AUROC) of 0.84 for strictures, 0.83 for remission, and 0.75 for surgery. Genes with potential 
prognostic importance for strictures (REG1A, MMP3, and DUOX2) were not identified in single gene 
differential analysis but were found to have strong contributions to predictive models. Our findings in 
FFPE tissue support the importance of colonic gene expression and the potential for machine learning‑
based models in predicting outcomes for pediatric CD.

Pediatric Crohn’s disease (CD) is the fastest growing age group for incidence of the disease with about 80,000 
children in the US  affected1–3. CD is characterized by a relapsing, remitting disease course with complications, 
such as strictures or perforation, affecting around 50% of patients within 5 years of  diagnosis4,5. Pediatric CD 
follows a more severe disease course, more often involving strictures and  fistulas6–8. These complications drive 
further morbidity and healthcare utilization associated with CD including growth failure, delayed puberty, 
hospitalizations, and  surgery4,8.

Analysis of gene expression and identification of biological pathways which drive development of CD and 
CD complications may give insight into more precise treatment decision-making to prevent a complicated CD 
course. Genes associated with immune and cytokine pathways have been associated with CD  development9–13. 
Further, specific genes including oncostatin M, IL1B, S100A8, and CXCL1 have been associated with response 
to anti-tumor necrosis factor  therapy14–16. Genes controlling extracellular matrix production and inflammatory 
processes have been associated with  strictures17–19. Predictive modeling which incorporates this genetic informa-
tion to prognosticate disease course could assist with clinical decision-making.

Previous studies have developed predictive models for CD outcomes based on gene expression and other 
risk factors, most notably using the RISK  cohort17. However, these studies relied on logistic regression models, 
which may fail to capture the multi-factorial, non-linear interactions between genes and clinical characteristics 
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that predict increased risk for complications. Machine learning techniques, which have more capacity to cap-
ture these complex patterns, have been successfully applied to inflammatory bowel disease (IBD)-related topics 
including identification of risk genes, prediction of outcomes from serum proteins, and prediction of response 
to medication from multi-omic  data20–22. However, they have not yet been applied specifically to prediction of 
complications for pediatric CD from gene expression.

The goals of our study are: (1) to identify genes which are differentially expressed in CD and complicated CD 
and (2) to apply machine learning techniques that use those genes to predict risk of complications. We hypoth-
esize that machine learning techniques can incorporate the gene expression profiles of patients with complicated 
disease to outperform previous predictors.

Materials and methods
Study design and outcomes
This study included patient data from 120 patients that was collected at the University of North Carolina at Chapel 
Hill. This consisted of 101 colonic tissue specimens and 101 ileal tissue specimens of which 83 were matched. 
This included patients younger than 18 with suspected IBD, who underwent endoscopy between 2008 and 2012. 
Patients who were found to have no histologic evidence of gut inflammation were used as non-IBD controls. At 
the time of diagnosis, patients were selected based on non-penetrating, non-stricturing disease phenotype. This 
study was approved by the University of North Carolina Institutional Review Board (Study ID#: 15-0024). All 
experiments were performed in accordance with relevant guidelines and regulations and informed consent was 
obtained from patients’ guardians.

Disease behavior was defined according to the Montreal classification system. Disease complications included 
strictures (B2), fistulas (B3), progression to surgery, and experiencing remission. B2 and B3 disease were defined 
using endoscopy and/or imaging (fluoroscopy, CT, or MRI) and correlation with patient symptoms, in contrast 
to the non-stricturing, non-fistulizing phenotype (B1)23,24. Progression to surgery was defined as requiring an 
abdominal surgical procedure for resection of bowel. Remission was defined as experiencing a steroid-free 
interval of at least 6  months9. Outcomes were recorded with a mean follow-up period of 6 years.

Specimen, mRNA, and data processing
Macroscopically uninflamed mucosal samples from the ascending colon and terminal ileum were obtained at the 
time of initial diagnosis, before therapy was started. These samples were preserved as formalin-fixed paraffin-
embedded (FFPE) tissue.

RNA was isolated from FFPE tissue using the Quick-RNA FFPE MiniPrep (Zymo Research, Irvine, CA). This 
kit preserves mRNA content while using column-based DNase to eliminate DNA contamination. Total RNA was 
then purified using the MagMAX kit in the KingFisher system (ThermoFisher, Carlsbad, CA). RNA-seq libraries 
were prepared using TruSeq Stranded Total RNA with Ribo-Zero (Illumina, San Diego, CA). Paired-end (50 base 
pairs) sequencing was processed on the NovaSeq 6000 platform using default parameters (Illumina, San Diego, 
CA). Transcript expression was then quantified using Salmon with default  parameters25.

Purity and integrity of the samples was assessed using a variety of quality control metrics. We first identified 
samples with a low number of transcripts counted (< 25,000). Further investigation of these samples confirmed 
low transcript integrity number (TIN)26, percentage of sequences aligned, and high duplication percentage. These 
samples (n = 2) were then discarded. Further, we used PCA (principal component analysis) plots to identify 
samples which did not cluster with their respective tissue (ileal or colonic) and discarded these samples as well 
(n = 5). Submission of raw and processed sequencing data to a public repository is pending.

Differential expression analysis
PCA showed that batch, sex, and TIN drove the greatest variation between samples that was unrelated to disease 
phenotype, so these variables were explicitly included as covariates. Additional factors of unwanted variation were 
identified using  RUVSeq27. Control genes were selected by identifying the top 1000 genes with the lowest variance 
out of the top 5000 genes with the highest expression. Based on variation seen in relative log expression plots 
across samples, correlation between factors of unwanted variation and the desired outcomes, and the number of 
differentially expressed genes identified by DESeq2, we used one factor of unwanted variation for final analyses.

The filterbyExpression function from EdgeR was used to select genes with at least 10 read counts in 70% of 
 samples28. Differential expression analysis was then performed using DESeq2 with false discovery rate (FDR) 
adjusted P-value (p-adj) of < 0.05 considered significant. Default settings, including Wald test with Benja-
mini–Hochberg correct for multiple tests were used. Final PCA plots were generated using the plotPCA func-
tion from DESeq2, based on the top 500 most variable genes, after applying the variance stabilizing trans-
form (VST) and the removeBatchEffect function from  limma29,30. Pathway analysis was performed using the 
Molecular Signatures Database hallmark gene set collection and  fgsea31,32. Volcano plots were generated using 
 EnhancedVolcano33. Exploratory data analysis and differential expression analysis was performed in R (v4.2)34.

Modeling
Predictive models were developed for the collected outcomes, including development of B2 phenotype, pro-
gression to surgery, and remission. Consecutive models were built including clinical variables alone (Table 1) 
and clinical variables with gene expression in order to evaluate the contribution of gene expression to overall 
predictions. Separate models were also built with and without rectosigmoid involvement, a clinical feature not 
previously reported in other predictive models for pediatric  CD17,35. Based on the results of the differential expres-
sion analysis, colonic gene expression data was used. Models were trained based on normalized gene counts, 
processed as described above including filtering genes by expression, controlling for batch, sex, TIN, and 1 factor 
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of variation, and normalizing using the variance stabilizing  transformation27–29. Given the small sample size, 
leave-one-out cross-validation was used. With this approach, a unique model is trained for each sample in the 
dataset, that sample is excluded from training and used for evaluation, and model performance is calculated as 
an average across all samples. Genes were selected for inclusion within models using the least absolute shrinkage 
and selection operator (LASSO), a regularized linear model that identifies a concise set of predictive features. 
While many feature selection techniques exist, LASSO provides an efficient, multivariate method, which provides 
consistent, repeatable  results36. Care was taken to apply gene selection within folds, with LASSO applied to only 
the training data for each fold.

Multiple machine learning approaches were tested and compared, including LASSO, random forest (RF), 
gradient boosting (XGB), deep neural networks (NN)37. RF and XGB are decision tree-based methods, while 
NN, also known as deep learning, uses layers of non-linear functions to process  data36. Each model was assessed 
using area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve 
(AUPRC). Feature importance was determined for the LASSO model using its coefficients. Coefficients were 
summarized across cross-validation folds by summing the absolute value for each fold. PCA plots were then 
generated using the genes with the highest coefficient values across all folds. Model training, evaluation, and 
interpretation was performed in Python (v3.8) using the Scikit-Learn and Tensorflow  libraries37–39. The overall 
analysis strategy is summarized in Fig. 1. Code to reproduce differential expression analysis and model develop-
ment is available at https:// github. com/ gomez lab/ ped_ ibd_ rnaseq.

Results
Study population characteristics
After applying quality control, 56 CD patients with colon samples and 56 CD patients with ileum samples were 
included in the study cohort, while 46 non-IBD patients with colon samples and 46 non-IBD patients with 
ileum samples were used as controls. For CD patients with colon samples, 33.9% of patients were female, the 
average age of diagnosis was 11.7, and 69.6% of patients had ileocolonic disease. 19.6% of patients developed 
B2 complications, 10.7% developed B3 complications, 32.1% required surgery, and 76.8% experienced a period 

Table 1.  Clinical and demographic characteristics of the Crohn’s Disease study cohort.

n

Colon Ileum

56 56

Sex, n (%)
F 19 (33.9) 18 (32.1)

M 37 (66.1) 38 (67.9)

Diagnosis Age, mean (SD) 11.7 (3.2) 11.6 (3.4)

Disease location, n (%)

L1 4 (7.1) 9 (16.1)

L2 9 (16.1) 7 (12.5)

L3 39 (69.6) 36 (64.3)

L3/L4 3 (5.4) 3 (5.4)

L4 1 (1.8) 1 (1.8)

Family history of IBD, n (%) 21 (37.5) 24 (42.9)

Perianal disease, n (%) 21 (37.5) 18 (32.1)

Rectosigmoid involvement, n (%) 31 (55.4) 29 (51.8)

B2, n (%) 11 (19.6) 10 (17.9)

B3, n (%) 6 (10.7) 7 (12.5)

Progression to surgery, n (%) 18 (32.1) 17 (30.4)

Remission, n (%) 43 (76.8) 43 (76.8)

Figure 1.  Flowsheet summarizing analysis strategy. CD Crohn’s disease, ML Machine learning.

https://github.com/gomezlab/ped_ibd_rnaseq
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of remission (Table 1). Of note, all 12 patients who developed B2 complications required surgery and 12 of 19 
(63.1%) of patients who required surgery had B2 complications.

Differential expression analysis
PCA of CD compared with non-IBD samples showed some differences in disease status across the first princi-
ple component for both colonic and ileal tissues (Fig. 2A,B). We first identified differentially expressed genes 
(DEGs) between patients with CD compared with non-IBD controls, in both colonic and ileal tissue. In total, 
10,973 DEGs were identified for colonic tissue and 8799 for ileal tissue (p-adj < 0.05) (Fig. 2C,D). Genes related 
to inflammatory response (CXCL8, AQP9, INHBA, IL1B, CXCL6, and IL6) were upregulated in CD compared 
with non-IBD, while genes related to DNA repair (MPC2, VPS28, EDF1, ALYREF, and PCNA) and oxidative 
phosphorylation (IDH3B, ATP5MC1, ATP5ME, MRPL11, COX7C, and PHB2) were downregulated. A complete 
list of all differential expression results is available in Supplementary Table 1 (colon) and 2 (ileum).

We then analyzed DEGs between patients experiencing specific outcomes (B2—stricturing, B3—fistulizing, 
progression to surgery, and remission) and those who did not. Of the four outcomes, B2 showed the clear-
est difference in gene expression (Fig. 3A,B). For colonic tissue, genes related to extracellular matrix (ECM) 
production (MMP3, MMP1, CHI3L1), as well as inflammatory processes (CXCL5, CXCL8, AQP9, INHBA) 
were downregulated in patients who experienced B2 complications. The Hallmark pathways interferon-gamma 
response, inflammatory response, and epithelial mesenchymal transition were notably downregulated (Fig. 3C). 
A full list of differential expression results for B2 in colonic tissue is available in Supplementary Table 3. For B2 
in ileal tissue, no significant DEGs were identified. Analysis of DEGs for B3 showed 2 for colon and 1 for ileum, 
although these showed no specific pattern. For progression to surgery, 4 DEGs were identified for colon and 1 
for ileum. This included upregulation of mitochondrial genes (MTCO1P12 and MTND1P23) and downregula-
tion of UCN2 and CXCL5 in colonic tissue. For ileal tissue, MTCO1P12 was upregulated. Finally, analysis of 
remission showed no DEGs.

Predictive modeling
We first developed models for each of the recorded outcomes based on clinical variables alone (sex, diagnosis 
age, disease location, perianal disease, and family history of IBD). Overall, these showed poor accuracy with 
AUROC of < 0.6 for all models for all outcomes. Adding gene expression resulted in a significant improvement 
in predictive ability (Fig. 4). For B2, neural networks (NN) showed the highest performance, with an AUROC of 
0.806 (95% CI 0.753–0.859) compared with 0.583 (95% CI 0.518–0.649) for clinical variables alone. For remission 
and surgery, NN was also the highest performing model, obtaining an AUROC of 0.834 (95% CI 0.784–0.883) 

Figure 2.  Differential gene expression analysis for pediatric patients with Crohn’s disease versus controls. (A) 
PCA plot based on colonic gene expression. (B) PCA plot based on ileal gene expression. (C) Volcano plot 
showing differentially expressed genes with p < 0.05 and log2 fold change > 1.5 based on colonic gene expression. 
(D) Volcano plot based on ileal gene expression (same criteria). (E) Gene set enrichment analysis based on 
Hallmark pathways for colonic gene expression. (F) Gene set enrichment analysis based on Hallmark pathways 
for ileal gene expression.
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Figure 3.  Differential gene expression analysis for pediatric Crohn’s disease patients experiencing stricturing 
versus non-stricturing disease based on colonic tissue (A), PCA plot of colonic gene expression. (B) Volcano 
plot showing differentially expressed genes with p < 0.05 and log2 fold change > 1.5. (C) Gene set enrichment 
analysis based on Hallmark pathways. (D) Boxplots for selected genes, 0; non-stricturing, 1; stricturing.

Figure 4.  Receiver operating characteristic curves for all models predicting pediatric Crohn’s disease 
complications based on clinical variables and gene expression RF random forest, XGB gradient boosting, NN 
neural network, AUROC area under the receiver operating characteristic curve, CI confidence interval.
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and 0.732 (95% CI 0.673–0.792) for each outcome respectively. AUROC and AUPRC results for all models are 
available in Supplementary Table 4.

Addition of rectosigmoid involvement to the clinical model also resulted in significant improvements for all 
outcomes compared with the original clinical variables with AUROC 0.7–0.8. Finally, combining all variable 
types (clinical variables, rectosigmoid involvement, and gene expression) resulted in the highest accuracy for 
B2, with NN showing an AUROC of 0.836, and remission, with XGB showing an AUROC of 0.834 (Fig. 5). In 
contrast, for surgery, clinical variables with gene expression and clinical variables with rectosigmoid involvement 
showed the best performance, with an AUROC for XGB of 0.751. AUROC and AUPRC results for these models 
are available in Supplementary Table 4.

Analysis of the LASSO prediction model for B2 to determine which genes showed the strongest contributions 
to model predictions revealed differences compared with differential expression analysis. Of the 131 genes used 
across all folds, 33 were found to be significantly differentially expressed. Genes related to inflammatory/immune 
processes were highly important, including CXCL9, DUOX2, and FOXP3. ECM-related genes were also impor-
tant, including MMP3, MMP1, and CHI3L1. Genes with the largest cumulative absolute values for coefficients are 
listed in Fig. 6A. Pathway enrichment analysis showed that the Hallmark pathways interferon-gamma response 
and IL-6/JAK/STAT signaling showed the strongest enrichment (Fig. 6B). PCA plots based only on the top 20 
genes identified by the LASSO models showed strong clustering of the B2 samples (Fig. 6C). Interestingly, of the 
5 genes used in > 50% of folds (REG1A, FGL2, DMBT1, MMP3, and DUOX2), only 1 (DMBT1) was found to 
be significantly differentially expressed (Fig. 6D). Two of these, FGL2 and DUOX2 trended towards significance, 
with adjusted p-values of 0.17 and 0.07 respectively. Boxplots of expression of these specific genes showed clear 
differences between the two groups, but significant heterogeneity between samples.

Discussion
Patients with pediatric CD who experienced stricturing complications showed a distinct colonic transcriptome 
at time of diagnosis compared with those who did not, with downregulation of inflammatory and extracellular 
matrix (ECM) production pathways. Patients who required surgery also showed downregulation of the ECM-
related pathways. In contrast, there was no clear difference in the pattern of gene expression between patients 

Figure 5.  Receiver operating characteristic curves for all models predicting pediatric Crohn’s disease 
complications based on clinical variables, rectosigmoid involvement, and gene expression RF random forest, 
XGB gradient boosting, NN neural network, AUROC area under the receiver operating characteristic curve, CI 
confidence interval.
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who experienced fistulizing complications or those who experienced remission based on differential expression 
analysis. Machine learning-based models were able to incorporate information from gene expression to improve 
upon predictions based on clinical variables alone and predict with good accuracy which patients would develop 
stricturing complications, experience remission, or require surgery. This was despite limited changes in individual 
genes for the remission and surgery outcomes, suggesting improved predictions based on combinations of genes.

Previous studies have established a link between gene expression, particularly in the ECM and inflammatory 
pathways, and pediatric CD  outcomes40. Haberman et al. identified DUOX2, MMP3, AQP9, and IL8 as highly 
upregulated and APOA1, NAT8, and AGXT2 as highly downregulated in ileal tissue for pediatric CD. These 
gene signatures were then used to predict steroid-free remission with an AUROC of 0.7219. Kugathasan et al. 
identified upregulation of several ECM-related gene ontology pathways in the ileum of pediatric CD patients 
experiencing B2 complications and used an ECM gene signature to predict development of B2 complications 
with an AUROC of 0.7217. Ta et al. also identified inflammatory and ECM gene signatures as associated with 
transmural healing for pediatric CD patients with inflammatory small bowel  disease41. Finally, Dovrolis et al. 
studied fibrotic disorders across 9 different organ types, including fibrotic CD, and similarly showed differential 
expression of the genes MMP1, AQP9, and CXCL5 in fibrotic  disease42.

The results of our study broadly agree with previous work and confirm the importance of ECM and inflam-
matory pathways for pediatric CD outcomes. However, they also differ from previous work in pediatric CD 
in that our analysis focuses on colonic rather than ileal tissue and shows downregulation of the inflammatory 
response and epithelial mesenchymal transition pathways in this tissue type. Location-based studies have shown 
that colonic and ileal disease show stark differences at the transcriptomic  level43. The current results agree with 
previous studies suggesting prognostic significance of colonic gene expression for predicting mainly ileal com-
plications, as the ileal transcriptome may be completely dominated by current, active  disease23,44. Similar results 
were recently demonstrated in a single-cell transcriptomic profiling of CD, with terminal ileal samples dominated 
by inflammation and a higher total number of differentially expressed genes identified in the colon. This study 
also similarly identified alteration of mucin gene expression as a signal of rewiring of mucosal barrier  function45. 
In addition, Bai et al. showed that CD patients have increased CD4 + T cells and memory-activated CD4 + T cells 
in the rectum compared with controls, suggesting a cellular sequelae of this differential  expression46.

Of note, these results relied on FFPE tissue, which allowed assembly of a broader cohort at lower cost, but 
showed broad agreement with results based on fresh tissue, especially in CD versus non-IBD  comparisons9. FFPE 
has been previously used in multiple previous studies, including of cardiac, breast, and rectal tissue, with overall 
robust  results47–49. In addition, despite using a smaller training set and rigorous cross-validation, our models 
show higher predictive accuracy (AUROC > 0.8) compared with previous studies, demonstrating the potential 
for more complex, machine learning-based models to outperform traditional logistic regression.

Analysis of the contributions of individual genes to our models reveals associations between genes and out-
comes that may be overlooked by single gene differential expression techniques. Due to heterogeneity in gene 
expression, these associations may not appear when groups are considered in aggregate. In particular, the genes 

Figure 6.  Analysis of model predicting stricturing (B2) complications for pediatric Crohn’s disease (A) Top 
genes based on LASSO coefficients across all cross-validation folds. (B) Pathway analysis based on top genes. (C) 
PCA plot based on top genes. (D) Boxplots of expression by B2 status for genes used in > 50% of folds, but not 
found to be differentially expressed.
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REG1A, MMP3, and DUOX2 strongly influenced model predictions and have been found to be associated with 
IBD and disease severity in previous studies, but were not identified as significantly differentially  expressed9,50,51.

Another interesting finding from our study was the strong inverse relationship between rectosigmoid involve-
ment and development of stricturing disease. Previous studies have identified young age, ileocolonic involvement, 
perianal involvement, and early response to initial therapy as predictive of CD  complications5,35,52. However, few 
studies have specifically examined rectosigmoid  disease52. This finding merits further study in other populations.

Our results join a growing body of research highlighting the potential for machine learning to predict out-
comes related to IBD and support clinicians in providing therapies tailored to those predictions. Machine learn-
ing has been used to predict hospitalization and outpatient steroid  use53, response to biologic  therapy54, post-
operative CD  recurrence55, and identify novel serum  markers21. Machine learning can identify relationships 
within multi-omic, high dimensional data and is particularly well-suited to assist the transition from a “trial and 
error” approach to precision medicine in  IBD56.

Our study has important limitations. First, it is based on a relatively small, single-institution dataset. While 
the exact models generated using this dataset may not be generalizable, the described methods for selecting and 
modeling on gene expression should be broadly applicable. Second, similar to previous studies, we were not able 
to consistently model B3 complications, likely due to the heterogeneity of the  subtype17. Third, analyzing paired 
affected and unaffected regions for each patient may have captured the impact of inflammation on molecular 
phenotypes. Fourth, treatment in this study was left to the discretion of the primary pediatric gastroenterologist 
and differences in treatment selection had an unadjusted effect on outcomes. Finally, our analysis does not include 
other data types, such as small RNA, chromatin biology, serum markers, or microbial composition. Prediction of 
IBD outcomes by applying machine learning to these multi-omic data sources represents an exciting direction 
for future  research22,57.

Conclusions
Pediatric CD patients who experience complications show a distinct colonic transcriptome at the time of diag-
nosis. Machine learning can use this information to predict future outcomes, including strictures, remission, 
or progression to surgery. Applied to larger, multi-institutional datasets, this approach can develop prognostic 
models to support clinicians in identifying which patients are at highest risk of CD-specific complications and 
tailor therapies to improve outcomes.

Data availability
Processed transcript counts are available at the Gene Expression Omnibus (GEO), accession # GSE221161. Raw 
sequences are available at the NIH database of Genomes and Phenotypes (dbGaP), accession # phs003156.v1.p1.
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