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Fragment molecular orbital‑based 
variational quantum eigensolver 
for quantum chemistry in the age 
of quantum computing
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Shane McFarthing 2, Rowan Pellow‑Jarman 2, Hyeon‑Nae Jeon 3, Byungdu Oh 3,4, 
June‑Koo Kevin Rhee 2* & Kyoung Tai No 1,3*

Quantum computers offer significant potential for complex system analysis, yet their application 
in large systems is hindered by limitations such as qubit availability and quantum hardware 
noise. While the variational quantum eigensolver (VQE) was proposed to address these issues, its 
scalability remains limited. Many efforts, including new ansätze and Hamiltonian modifications, 
have been made to overcome these challenges. In this work, we introduced the novel Fragment 
Molecular Orbital/Variational Quantum Eigensolver (FMO/VQE) algorithm. This method combines 
the fragment molecular orbital (FMO) approach with VQE and efficiently utilizes qubits for quantum 
chemistry simulations. Employing the UCCSD ansatz, the FMO/VQE achieved an absolute error of just 
0.053 mHa with 8 qubits in a H

24
 system using the STO-3G basis set, and an error of 1.376 mHa with 16 

qubits in a H
20

 system with the 6-31G basis set. These results indicated a significant advancement in 
scalability over conventional VQE, maintaining accuracy with fewer qubits. Therefore, our FMO/VQE 
method exemplifies how integrating fragment-based quantum chemistry with quantum algorithms 
can enhance scalability, facilitating more complex molecular simulations and aligning with quantum 
computing advancements.

Quantum mechanical (QM) methods have been utilized to address a wide range of chemical problems, provid-
ing precise descriptions of structural interactions within targeted systems. However, these methods come with 
a rapidly escalating computational cost, with even the most basic Hartree–Fock (HF) method scaling at least 
as O(N3−4) with the system size N1. Highly accurate calculations, such as those involving coupled-cluster (CC) 
methods, can be performed to attain chemical accuracy within 1 kcal/mol, given the use of a large basis set for 
small molecules. As the number of electrons and basis functions increases, the use of CC methods with single 
and double excitations (CCSD) and triple excitations (CCSD(T)) becomes progressively more time-intensive, 
with the computational cost scaling as O(N6) for CCSD and O(N7) for CCSD(T)2. To reduce these escalating 
costs while maintaining accuracy, many computational methods have been developed to improve the efficiency 
and scalability of quantum chemistry simulations2.

As an effective strategy to balance the conflicting demands of accuracy and speed, fragment-based quantum 
chemistry methods were proposed. These methods operate by dividing a large system into more manageable 
smaller fragments on which electronic structure calculations are more feasible. The primary advantage of this 
divide-and-conquer strategy lies in its capacity to substantially enhance computational efficiency without severely 
compromising accuracy. For example, the fragment molecular orbital (FMO) method was developed by Kitaura 
et al. in 1999 as a practical way to apply energy decomposition analysis to larger systems3. The FMO method 
promotes more efficient parallel processing by individually addressing smaller fragments, thereby enabling the 
simulation of larger systems with a reasonable computational cost. Moreover, the FMO method considers the 
electrostatic potential of the entire system in individual fragment calculations, making it retain its accuracy when 
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compared to traditional QM methods. It has been successfully employed in a range of applications, including the 
analysis of materials such as zeolites, nanowires, and nanoparticles, and biological systems with small ligands, 
DNA, RNA, and proteins4–11. Despite its enhanced computational efficiency and successful applications, the 
FMO method still has high computational costs when applied to highly accurate analysis on larger systems with 
the use of the CC method and large basis sets. Therefore, there remains a critical need for additional strategies 
to further reduce computational costs.

Quantum computers, leveraging unique quantum properties such as superposition, interference, and entan-
glement, are expected to significantly reduce the computational burden associated with quantum chemistry 
calculations. Such a shift could revolutionize the field of quantum chemistry by enabling the calculation of the 
ground state energy of molecular Hamiltonians and solving complex electronic structure problems. Central to 
this quantum acceleration, the quantum phase estimation (QPE) algorithm can exponentially determine the 
eigenstates and eigenvalues of unitary operators, including the electronic Hamiltonian, provided a suitable trial 
state is prepared12–14. However, the full implementation of QPE necessitates a considerable number of qubits, a 
demand currently strained by existing technological limitations. Moreover, as discussed in Lee et al.15, realizing 
an immediate exponential quantum advantage in applications such as ground-state energy estimation remains 
elusive due to the complexities involved in quantum state preparation. Given the early stages of quantum com-
puters, there is a growing interest in practical applications for devices with limited capabilities, known as noisy 
intermediate-scale quantum (NISQ) devices. These NISQ devices, which operate with fewer qubits, inherently 
show significant error rates. Therefore, error mitigation algorithms have become essential for managing these 
errors and additionally, hybrid algorithms have frequently been employed to increase operational efficiency by 
leveraging both quantum and classical computations.

The variational quantum eigensolver (VQE) is a hybrid algorithm that combines classical and quantum 
processing to solve eigenvalue problems, making it aptly suited for the NISQ devices currently available. Intro-
duced initially by Peruzzo et al.16 and later refined by McClean et al.17 and Romero et al.18, the VQE primarily 
aims to find an upper limit for the ground state energy of a Hamiltonian in quantum chemistry. This involves 
constructing a ground state trial wave function using the HF method and the unitary ansatz, often the UCCSD 
ansatz, on a classical computer, then preparing and measuring it on a quantum computer, followed by the opti-
mization of its parameters using the variational principle19–25. The VQE has been applied to studying the potential 
energy surfaces of small molecules and bimolecular nucleophilic substitution reactions16,26–28. Nevertheless, the 
scalability of the VQE is inherently constrained not only by the finite number of qubits in NISQ devices, which 
restricts its applicability but also by the complexities of both the quantum circuits and the classical optimization 
problems. Numerous efforts have been made to address these limitations while maintaining high accuracy, such 
as reducing the depth of quantum circuits, simplifying the electronic Hamiltonian, and reducing measurement 
overhead26,29–31. Ansätze such as k-UpCCGSD32, ADAPT-VQE33, DUCC​34, OO-UCC​35, qubit-ADAPT-VQE36, 
and SPA37 have been developed to minimize quantum circuit size. The Separable Pair Ansatz (SPA) was also 
developed to combine the hard-core boson model and Jordan–Wigner to produce shallow, memory-efficient 
quantum circuits37. The resulting wave function has a product structure of individual pair functions that are 
coupled through the Hamiltonian, essentially defining a mean-field model for pairs37. Additionally, to reduce 
the electronic Hamiltonian, quantum embedding theories such as dynamical mean field theory38 and density 
matrix embedding theory39 have been integrated with the VQE26. These methods were designed to algorithmi-
cally complement the limited qubit capacity of NISQ devices, thereby broadening their scope, even in investigat-
ing protein–ligand interactions for drug design40. Concerning the measurement overhead required by VQE, the 
number of shots required to estimate the energy of a Hamiltonian of N Pauli words to some accuracy ε in the 
base case is O

(
N4

ε2

)
 26; however, methods have been developed to reduce this, such as using the commutativity 

of the Pauli words in the Hamiltonian to group terms for simultaneous measurement26.
In this study, we introduced a novel quantum computing algorithm, FMO/VQE, which combines the fragment 

molecular orbital method with the variational quantum eigensolver. We verified the accuracy of the FMO/VQE 
algorithm by comparing the ground-state energies of hydrogen clusters obtained using classical FMO and QM 
methods. We first optimized the structures of cationic, neutral, and anionic hydrogen clusters using traditional 
QM methods. Next, we employed our UCCSD and QCC ansätze and validated their performance on the systems. 
We then implemented these ansätze within the FMO/VQE algorithm and validated them in neutral hydrogen 
clusters ranging from H6 to H24 . Finally, we extended the application of FMO/VQE to anionic hydrogen clusters 
from H−

3  to H−
23 . We found that the FMO/VQE approach can significantly reduce the computational resources 

required for quantum simulations of complex molecular systems, paving the way for the application of quantum 
computing to a wide range of chemical and materials science problems.

Methods
The electronic structure Hamiltonian
The electronic structure problem refers to the task of finding the lowest energy levels of chemical systems. The 
ab initio molecular Hamiltonian is an operator for the total energy of any molecular system based on its atomic 
coordinates, which include atomic compositions and relative positions of the nuclei. To obtain the electronic 
wave function at the ground state energy level, it is necessary to determine the correlated probability amplitudes 
of the electrons within the space around the nuclei, depending on the molecular system. In a non-relativistic 
setting, it is assumed that the heavier nuclei motion on a much slower time scale compared to electrons and their 
behaviors can be treated as decoupled from each other, based on the Born–Oppenheimer approximation1. The 
Hartree–Fock (HF) method approximates the N-body wave function of a molecular system by a single N-body 
spin determinant orbital, in which each electron is assumed to evolve in the mean-field created by all other 
electrons in the system. Through the self-consistent field (SCF) theory1, the mean-field created by the other 
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electrons is determined self-consistently, meaning that it is iteratively updated until convergence is achieved. 
The resulting single determinant wavefunction is used to calculate the electronic energy of the system, but the 
HF method has its limitations, particularly for strongly correlated systems1.

Fragment molecular orbital (FMO) calculations
Fragment molecular orbital (FMO) is a computational method for approximating the electronic structure of 
large molecules by dividing them into smaller fragments and then calculating the electronic structure of each 
fragment separately. The two-body FMO-based restricted Hartree–Fock (FMO-RHF) calculation involves four 
steps: fragmentation, monomer SCF calculation, dimer SCF calculation, and total property evaluation. Firstly, the 
whole system is divided into individual fragments. Each hydrogen molecule or ion in hydrogen clusters can be 
defined as a fragment. Secondly, the MOs on each fragment (monomer) are optimized by the SCF theory in the 
external electrostatic potential generated by the surrounding N − 1 fragments, with all-electron densities solved 
through self-consistent-charge iterations3,7,41. The Hamiltonian for the monomer is given by,

where the entities I and J represent different fragments and ρJ (r′) denotes the electron density with respect to 
the coordinate r′ in the fragment J . Just as in traditional QM where the wavefunction and energy are derived by 
solving the Schrödinger equation, the same approach is followed in FMO to obtain the wavefunction and energy 
for each fragment. Thirdly, the MOs of a fragment pair (dimer) are solved self-consistently in the same way as 
for the monomer calculations. However, the Hamiltonian operator used for the dimer calculation includes the 
external electrostatic potential generated by the surrounding N − 2 fragments and is given by,

where the entity K refers to a different fragment. The fourth step involves piecing together all of the MO results 
for the monomer and dimer fragments to generate a comprehensive description of the system and to determine 
overall properties such as energy and gradient,

where N is the number of fragments in the system and EI and EIJ are the electrostatically embedded energies in 
the monomer and dimer, respectively.

Coupled-cluster (CC) methods build upon the HF method by adding the electron correlation energy. They 
provide a more accurate representation of molecular properties and are generally accepted as a good standard 
for accurate QM calculations. The FMO-CC method, which is an FMO-based single-reference CC method, was 
developed to have linear computational scaling and can be parallelized, which involves adding the electron cor-
relation energy to the FMO-RHF energy42,
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where N  is the number of fragments in the system and EcorrI  and EcorrIJ  are the CC correlation energies in the 
monomer and dimer, respectively. The FMO-CC computational scheme is akin to that of FMO-RHF, but with 
CC calculations being performed on monomers after the monomer SCF calculation converges and on dimers 
after the dimer calculation converges. The FMO-CC calculations only consider occupied and virtual orbitals, 
and chemical core orbitals are not included in the computation. The two-body FMO methods inherently exhibit 
nearly linear O(N) scaling, a characteristic consistently maintained across n-body expansions and applicable 
to both correlated and uncorrelated wave functions41–43. The classical FMO calculations were performed in 
GAMESS5 with the version Sep 30, 2022.

Jordan–Wigner mapping
By using the canonical fermionic anti-commutation introduced by Jordan and Wigner44, the electronic Ham-
iltonian can be reconstructed through a straightforward projection onto the single-particle basis function. The 
conversion of the electronic structure problem into quantum states that can be processed by quantum computers 
necessitates the transformation of fermionic operators in the Hamiltonian into spin operators, which can be 
performed through the mapping methods. The Jordan–Wigner (JW) mapper allows qubits to directly represent 
the occupation of a given spin-orbital and shows the qubit operations of order O(n) . The JW mapping uses one 
qubit per spin-orbital and encodes the occupancy of the orbital in the state of the qubit. A detailed explanation 
of the JW mapping can be found in some papers26,45,46.

Variational quantum eigensolver (VQE) calculations
Variational quantum eigensolver (VQE) was first introduced by Peruzzo et al.16 and extended by McClean et al.17. 
The VQE is developed to compute the ground state energy of a Hamiltonian and is based on the variational prin-
ciple, which optimizes an upper bound for the lowest possible expectation value of an observable given a trial 
wavefunction26. The primary objective of the VQE is to minimize the expectation value of the Hamiltonian for 
a given trial wave function by finding the optimal set of parameters. This expectation value represents an upper 
limit on the ground state energy and, ideally, should be the same as the actual ground state energy within the 
desired level of accuracy. To implement this minimization task on a quantum computer, the trial wavefunction 
can be prepared using a parameterized quantum circuit known as an ansatz.

An ansatz generates the trial state that is used to measure the Hamiltonian and successful optimization of 
the ansatz parameters can produce a model for the ground state wavefunction. The choice of the parameterized 
ansätze greatly affects the performance of the VQE and much effort has been invested into designing accurate 
and efficient ansätze. Two essential aspects of the ansätze are its expressibility and trainability. The express-
ibility determines how well it can approximate the relevant low-energy states. It relies on having a good initial 
approximation to the eigenstate of the Hamiltonian since their performance is highly sensitive to the quality of 
the initial guess provided. The trainability relates to its practical optimization on quantum devices. The scaling 
and complexity of the ansatz circuit depth with system size are also important considerations, particularly for 
near-term VQE applications, as they can impact the noise resilience of the method.

A unitary coupled-cluster (UCC) is a physically inspired framework that can approximate the exact eigenstates 
of the Hamiltonian by increasing the rank of the excitation operators32. The UCC approach constructs a trial 
state by considering excitations beyond the initial reference state and can converge even when using multirefer-
ence initial states, which is not always possible with the CC method. The UCC ansatz is typically truncated at a 
certain excitation level, commonly including single and double excitations, and this reduced form is referred to 
as UCCSD and can be expressed as,

where T̂1 and T̂2 are the single and double excitations, the indices i , j are occupied orbitals, and the indices a , b 
are unoccupied orbitals. The UCC is widely used due to its robustness and accuracy22, but it can cause a growth 
in the number of simultaneously entangled qubits, which not all quantum computing architectures can handle. 
On the other hand, qubit coupled-cluster (QCC) was proposed as an alternative to UCC, which can be hindered 
by non-local action arising from the significant number of two-qubit gates required47. The QCC employs a dif-
ferent approach by using spin operators directly to construct the ansatz in the qubit space, avoiding the use of 
fermionic excitation operators that would require transformation. The QCC eliminates the need for fermion-to-
qubit mappings, so it can reduce the computational cost. Moreover, the QCC with the factorization technique 
uses only two-qubit entanglement gates, allowing for efficient use of quantum resources. The QCC wave function 
can be expressed as follows:

(12)|�UCCSD� = eT̂−T̂†

|�RHF�,

(13)T̂ = T̂1 + T̂2,

(14)T̂1 =
∑

i,a

tai â
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where φi and θi are the azimuthal and polar angles of the ith qubit, respectively, while |α� and |β� are spin-up and 
spin-down eigenstates of the ŝz(i) = 1

2
ẑi operator.

As mentioned in “Introduction” section, there is a variety of different ansätze that have been developed for 
VQE with varying motivations and advantages, however in this study, we limit the scope of our investigation to 
the UCCSD and QCC ansätze to showcase the FMO/VQE method with a standardized VQE approach.

Fragment molecular orbital‑based variational quantum eigensolver (FMO/VQE)
To run the VQE on monomer or dimer fragments generated by OpenFMO48 for the FMO/VQE, the system 
information in each fragment needs to be provided to the VQE. The information is a collection of critical data 
including one- and two-electron integrals, the nuclear repulsion energy, molecular orbitals’ occupation numbers 
and RHF energies, the number of electrons within the system, the active space’s orbital lists, and the orbitals 
designated to be frozen. The OpenFMO is utilized to produce this comprehensive set of system information. 
The active space is chosen by specifying how many orbitals to select around the highest occupied molecular 
orbital and the lowest unoccupied molecular orbital. The relevant VQE settings, such as which ansatz and 
optimizer to use, are specified in the call to the VQE. This information is all provided to the VQE through a 
secure server connection and is then used to initialize and run the VQE algorithm. The one-electron integrals, 
two-electron integrals, and nuclear repulsion energy are all used to build the fermionic Hamiltonian. If the 
active space is not provided, the full Hamiltonian is generated. If provided, only the integrals for the orbitals in 
the active space are included, thereby defining the active Hamiltonian. This Hamiltonian is transformed into 
a Pauli Hamiltonian using the specified mapping. Though the orbital energies and occupation numbers aren’t 
necessary when using the QCC ansatz, if the UCCSD ansatz is selected then this information is used in the 
calculation of initial amplitudes for the excitations. These initial amplitudes allow the estimated contribution 
of each excitation to be considered and then screened using a specified threshold, reducing the computational 
cost of these ansätze through a reduction in terms. Once the VQE has finished running, the resulting energies 
are sent back to OpenFMO for further processing. Here, we used the full Hamiltonian without active space, the 
JW transformation, the quasi-Newton optimizer (SLSQP)49, and the threshold of 10−3 for initial amplitudes and 
considered all entanglements in the specified ansätze (QCC and UCCSD). Each hydrogen molecule, cation, and 
anion is defined as a fragment. In the FMO/VQE, monomer and dimer calculations require a maximum of 4 
and 8 qubits, respectively, when using the STO-3G basis set. Moreover, these calculations demand up to 8 and 
16 qubits when applying the 6-31G basis set.

Structure preparation
Three sets of test molecules were composed and prepared. The purpose of the first set is to validate two VQE 
algorithms (QCC and UCCSD ansätze) by comparing the results to those from ab initio CCSD (QM/CCSD). 
Due to the limited qubit numbers of the state-vector simulator, three cationic H+

n  clusters ( n = 3 , 5 , 9 ) and the 
two basis sets (STO-3G and 6-31G) were used. The second test set was constructed to validate the FMO/VQE 
algorithms by comparing the results to those from QM/CCSD and FMO/CCSD, where ten neutral Hn clusters 
( n = 6 , 8 , . . . , 24 ) and two basis sets (STO-3G and 6-31G) were used. The purpose of the third test set was to apply 
the FMO/VQE algorithms to analyze the anionic hydrogen clusters, where nine H−

n  clusters ( n = 5 , 7 , . . . , 21 ) and 
the 6-31G basis set were used. The geometries of the cationic and neutral hydrogen clusters were obtained by full 
optimization at the aug-cc-pVDZ/CCSD level, while the structures of anionic hydrogen clusters were derived 
from Calvo et al.50. All quantum chemistry calculations of QM/CCSD and FMO/CCSD were performed in 
GAMESS5 with the version Sep 30, 2022, while all calculations of FMO/VQE were performed with OpenFMO48.

Results
The fragment molecular orbital-based variational quantum eigensolver (FMO/VQE) approach is grounded on 
the FMO framework and its process is illustrated in Fig. 1. By integrating independent SCF calculations on 
FMO with the VQE, the FMO/VQE framework reduces the number of required qubits for the same system 
compared to the VQE, thereby providing a more efficient alternative. The traditional VQE approaches often 
require a substantial number of qubits, normally twice the number of molecular orbitals, for accurately estimat-
ing the system’s energy. However, the FMO/VQE alleviates this burden by employing a strategy that performs 
the SCF calculations on individual fragments and leverages the VQE to estimate the electron correlation energy 
of the fragments, effectively lowering the overall qubit requirements. In this framework, each SCF calculation 
is coupled with a VQE call, substituting conventional post-Hartree–Fock methods, such as the CCSD, with a 
quantum computational algorithm. After all SCF calculations of all monomers and dimers converge, the indi-
vidually obtained fragment energies, inclusive of the electron correlation contributions from the VQE, are then 
amalgamated to estimate the total system energy. To validate the efficiency and accuracy of the FMO/VQE as 
a highly effective, practical, and reliable alternative in comparison to traditional VQE methods, we applied the 
FMO/VQE to hydrogen cluster systems.

(17)|�� =
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To validate the VQE ansatz, we prepared a range of hydrogen cluster systems with positive, neutral, and 
negative charge states and summarized the VQE results in Table 1. These systems include different charge states 
of hydrogen atoms (cation, neutral, and anion): three cationic systems ( H+

3  , H+
5  , and H+

9  ), three neutral systems 
( H6 , H8 , and H10 ), and four anionic systems ( H−

3  , H−
5  , H−

7  , and H−
9  ). Each structure of these systems was used 

for quantum chemistry simulations in a state-vector simulator with varying numbers of qubits depending upon 
system sizes and basis sets (STO-3G and 6-31G). However, the application of the VQE ansatz to larger systems 
was not feasible because the number of qubits required by the calculations surpassed the maximum capacity of 
32 qubits offered by the state-vector simulator.

To evaluate the accuracy of the VQE ansatz, we compared the performance of QM/CCSD, VQE/QCC, and 
VQE/UCCSD algorithms against the ab initio values at the full configuration interaction level (QM/FCI). The 
QM/FCI method provides an exact solution to the Schrödinger equation for a specific basis set and considers all 
possible excitations of electrons, so the QM/FCI serves as the gold standard in quantum chemistry for a given 
basis set. The discrepancies in absolute energy in milliHartree (mHa) and relative accuracy (%) were measured 
between our calculated results and the QM/FCI values. The accuracy of quantum calculations, often termed 

Figure 1.   The workflow of fragment molecular orbital-based variational quantum eigensolver (FMO/VQE).

Table 1.   The error of VQE relative to QM/FCI in hydrogen cluster systems.

Class System Basis set Qubit

Absolute Energy Error (mHa) Relative accuracy (%)

QM/CCSD VQE/QCC VQE/UCCSD QM/CCSD VQE/QCC VQE/UCCSD

Cation

H3
+

STO-3G

6 0.000 0.181 0.000 99.99999 99.98570 100.00000

H5
+ 10 0.160 0.849 0.164 99.99339 99.96486 99.99322

H9
+ 18 0.128 2.391 0.195 99.99726 99.94900 99.99583

H3
+

6-31G
12 0.000 0.239 0.000 100.00000 99.98167 99.99996

H5
+ 20 0.356 1.643 0.174 99.98545 99.91841 99.97835

Neutral

H6

STO-3G

12 0.001 1.781 0.001 99.99997 99.94777 99.99996

H8 16 0.002 3.558 0.054 99.99995 99.92169 99.99882

H10 20 0.003 7.236 0.136 99.99995 99.87268 99.99761

Anion

H3
−

STO-3G

6 0.000 0.015 0.001 100.00000 99.99888 99.99991

H5
− 10 0.000 0.124 0.001 100.00000 99.99490 99.99998

H7
− 14 0.000 1.707 0.023 100.00000 99.95231 99.99936

H9
− 18 0.000 3.358 0.016 100.00000 99.92887 99.99966

H3
−

6-31G
12 0.034 0.682 0.134 99.99788 99.95718 99.99160

H5
− 20 0.082 2.344 0.293 99.99702 99.91493 99.98937
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chemical accuracy, is typically set to a threshold of approximately 1.594 mHa, equivalent to 1 kcal/mol. This 
gives us an acceptable margin of error for these complex calculations and ensures the effectiveness and reliability 
of quantum chemistry methods.

To establish a comparative baseline for the VQE and FMO/VQE algorithm evaluation, we compared the 
results from the well-established QM/CCSD and QM/FCI methodologies. The QM/CCSD method is a highly 
accurate ab initio method and has shown chemical accuracy compared to QM/FCI. With its robust performance 
across hydrogen cluster systems, the QM/CCSD showed minimal absolute energy errors and consistently high 
relative accuracy. Specifically, the QM/CCSD showed its biggest error in H+

5  of 0.160 mHa in STO-3G and 
0.356 mHa in 6-31G basis set and achieved very low absolute energy errors of 0.055 mHa across all the systems 
on average. Likewise, in relative accuracy, the QM/CCSD showed its lowest accuracy in H+

5  of 99.99339% in STO-
3G and 99.98545% in the 6-31G basis set and achieved a very high relative accuracy of 99.99792% across all the 
systems on average. Therefore, the QM/CCSD achieved very similar accuracy to the QM/FCI and showed chemi-
cal accuracy in all hydrogen clusters with substantially reduced computational costs, compared to the QM/FCI.

Next, we evaluated the performance of the VQE/QCC and VQE/UCCSD ansätze against the gold standard 
QM/FCI. Our initial focus was the simplest system of H+

3  , employing the simplest STO-3G basis set. Both the 
VQE/QCC and VQE/UCCSD demonstrated good performance with very low absolute energy error (0.181 mHa 
and 0.000 mHa, respectively) and high relative accuracy (99.98570% and 100%, respectively), suggesting a profi-
cient ground for each method in managing systems of lower complexity. However, the performance gap between 
the two ansätze became more pronounced as they were applied to increasingly larger systems, up to H+

9  . The 
VQE/QCC demonstrated a rising trend in absolute energy error, while VQE/UCCSD maintained its laudable 
consistency with minimal energy error increases. This pattern persisted even when the basis set was changed 
to the more complex 6-31G. Despite the greater qubit requirements due to larger systems or higher basis sets, 
VQE/UCCSD managed to match the performance of QM/FCI in terms of low absolute energy errors, but the 
VQE/QCC consistently showed relatively high absolute energy errors.

When examining neutral and anionic systems, a similar trend was observed. The VQE/UCCSD maintained 
commendable performance metrics, delivering low energy errors and high relative accuracies, even with increas-
ing system complexity. On the other hand, the performance of the VQE/QCC was less consistent, exhibiting 
larger energy errors and achieving the highest absolute energy error of 7.236 mHa in the biggest system ( H10 ). 
One particularly noteworthy observation is the consistency in the performance of the VQE/QCC and VQE/
UCCSD across hydrogen cluster systems with different charge states. This robust behavior underscores the adapt-
ability of these quantum computational methods in handling a diverse range of charged systems. Therefore, the 
VQE/UCCSD showed remarkable resilience and effectiveness against system size expansion. Even when higher 
numbers of qubits were required, the VQE/UCCSD maintained its accuracy within the chemical accuracy thresh-
old of 1.594 mHa. It emphasizes the inherent strength of the VQE/UCCSD method in managing more complex 
quantum systems without compromising on the accuracy of energy calculations.

After we validated the performance of the VQE ansatz, we integrated the VQE ansatz into an FMO frame-
work to make the FMO/VQE. To validate the performance of the FMO/VQE, we performed the FMO/VQE 
calculations with the neutral hydrogen cluster systems. These systems range from the cluster of three hydrogen 
molecules, denoted as H6 , to the cluster consisting of twelve hydrogen molecules, represented as H24 . The cal-
culations employed two classical references (QM/CCSD and FMO/CCSD) and two quantum computational 
ansätze (FMO/VQE/QCC and FMO/VQE/UCCSD) with two different basis sets (STO-3G and 6-31G). The 
results from the FMO/VQE on the neutral clusters are summarized in Table 2, where the absolute error and 
relative accuracies were measured against the ab initio values derived from the QM/CCSD. Although the QM/
FCI is widely accepted as the gold standard in quantum chemistry, its extensive computational requirements 
often limit its application to smaller systems. The QM/CCSD, conversely, achieves similar accuracy to QM/FCI 
but with substantially reduced computational costs. Thus, by setting QM/CCSD as our reference standard, we 
can establish a valid benchmark for accuracy and enable a more efficient validation of our FMO/VQE algorithm.

The FMO/CCSD method is known to be a highly accurate fragment-based ab initio method and can pro-
vide a baseline for the accuracy assessment42. The FMO/CCSD with the STO-3G basis set showed relatively 
high absolute energy errors ranging from its lowest energy error (3.863 mHa) in H6 to its highest energy error 
(51.012 mHa) in H22 against the QM/CCSD, which is illustrated in Fig. 2A. The FMO/CCSD with the STO-3G 
basis set also achieved relative accuracies ranging from its lowest accuracy (99.55768%) in H20 to its highest 
accuracy (99.88673%) in H6 . In contrast, the FMO/CCSD with the 6-31G basis set maintained low absolute 
energy errors and showed chemical accuracy through the various system sizes against the QM/CCSD in the 
neutral hydrogen clusters. The absolute energy errors range from its lowest energy error (0.051 mHa) in H20 to 
its highest energy error (1.260 mHa) in H14 , which is illustrated in Fig. 2B. The relative accuracy of FMO/CCSD 
was the lowest (99.98437%) in H14 and highest (99.99956%) in H20 . The combination of FMO/CCSD with the 
STO-3G basis set leads to relatively large absolute energy errors compared to the FMO/CCSD with the 6-31G 
basis set. This could be because the FMO/CCSD was not specifically designed for small basis sets such as STO-3G. 
The FMO/CCSD with the 6-31G basis set exhibited low absolute energy errors in the examination of the neutral 
hydrogen cluster systems. Despite the presence of a slight error, the FMO/CCSD approach with the 6-31G basis 
set remains a robust and effective method in evaluating the total absolute energies of neutral hydrogen cluster 
systems. Due to its demonstrated reliability, it can confidently be used as a point of reference, offering a viable 
alternative to the traditionally used QM/CCSD method.

Next, we compared the absolute energies from the FMO/VQE methods with two different ansätze (FMO/
VQE/QCC and FMO/VQE/UCCSD) to those obtained using the QM/CCSD, which is illustrated in Fig. 2. The 
absolute energy errors of the FMO/VQE/QCC exhibited an increasing trend as the system size expanded. In 
the STO-3G basis set, the FMO/VQE/QCC showed the absolute energy errors from its lowest energy error of 
0.332 mHa for H6 to its highest energy error of 5.280 mHa for H18 (Fig. 2A). Also, the FMO/VQE/QCC achieved 
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relative accuracies ranging from its lowest value (99.94724%) in H14 to its highest value (99.99025%) in H6 . This 
increase in error is even more striking when the 6-31G basis is employed (Fig. 2B). The absolute energy errors 
ranged from the lowest energy error (3.895 mHa) in H6 to the highest energy error (35.160 mHa) in H22 , while 
the relative accuracies ranged from the lowest accuracy (99.70516%) in H18 to the highest accuracy (99.88725%) 
in H6 . This suggests that the FMO/VQE/QCC ansatz, while effective in smaller systems, may struggle to maintain 
an equivalent level of accuracy as the complexity and size of the system grow.

In contrast, the FMO/VQE/UCCSD method demonstrates a noteworthy level of consistency and reliability 
across all system sizes, maintaining a remarkably low energy error even as the complexity of the hydrogen 
molecule cluster system increases. In the STO-3G basis set, the FMO/VQE/UCCSD showed absolute energy 
errors from its lowest energy error of 0.007 mHa for the H6 to its highest energy error of 5.280 mHa for H22 . 
Furthermore, the FMO/VQE/UCCSD achieved relative accuracies from its lowest accuracy (99.99883%) in 
H16 to its highest accuracy (99.99984%) in H12 . These relatively high accuracies and low errors in FMO/VQE/
UCCSD are maintained even in the 6-31G basis set. The absolute energy errors ranged from the lowest energy 
error (0.026 mHa) in H6 to the highest energy error (1.588 mHa) in H18 , while the relative accuracies ranged 
from the lowest accuracy (99.98420%) in H16 to the highest accuracy (99.99925%) in H6 . This suggests a high 
degree of resilience and robustness in the FMO/VQE/UCCSD ansatz, making it an excellent choice for larger, 
more complex quantum systems, irrespective of basis sets. Its ability to handle larger and more complex quantum 
systems without a significant loss of accuracy highlights its potential applicability and effectiveness in the realm 
of quantum chemistry computations.

To compare the performance of the VQE and the FMO/VQE, the absolute energy error and relative accuracy 
for the neutral hydrogen cluster systems ( H6 , H8 , and H10 ) were measured against QM/CCSD from the calcula-
tions with the STO-3G basis set, which is summarized in Table 3. Consistent with previous results, as the system 
size or the number of required qubits increased, the VQE/QCC method showed an increased error and reduced 
accuracy. In contrast, the FMO/VQE/QCC method not only reduced the required number of qubits compared to 
VQE/QCC, but it also decreased the absolute energy error to within the level of chemical accuracy and showed a 
relative accuracy of over 99.9%. On the other hand, the VQE/UCCSD method showed smaller errors than VQE/
QCC, reaching the level of chemical accuracy, and also demonstrated an accuracy of over 99.99%. The FMO/
VQE/UCCSD method, compared to VQE/UCCSD, reduced the required number of qubits, further minimized 
the absolute energy error, and reached a relative accuracy of over 99.999%. Therefore, we can conclude that the 
FMO/VQE method not only requires fewer qubits than the VQE methodology but also enhances its performance 
by decreasing the absolute energy error and increasing the relative accuracy.

Lastly, we applied the FMO/VQE method to an analysis of anionic hydrogen systems and compared the 
absolute energies from two FMO/VQE methods to those from the FMO/CCSD with a 6-31G basis set, which 
is summarized in Table 4 and illustrated in Fig. 2C. The absolute energy errors obtained from the FMO/VQE/
QCC ranged from its lowest value of 1.461 mHa for the H−

5  system to its highest value of 12.043 mHa for the 
H

−
19 system, while the relative accuracies of the FMO/VQE/QCC ranged from its lowest value of 99.88924% for 

the H−
19 system to its highest value of 99.94698% for the H−

5  system. On the other hand, the FMO/VQE/UCCSD 
yielded smaller absolute energy errors than the FMO/VQE/QCC, ranging from its lowest error (0.179 mHa) in 
H

−
5  to its highest error (13.181 mHa) in H−

23 . Furthermore, the FMO/VQE/UCCSD achieved even higher relative 

Table 2.   The error of FMO/VQE relative to QM/CCSD in neutral systems.

System Basis set

Absolute energy error (mHa) Relative accuracy (%)

FMO/CCSD FMO/VQE/QCC FMO/VQE/UCCSD FMO/CCSD FMO/VQE/QCC
FMO/VQE/
UCCSD

H6

STO-3G

3.863 0.332 0.007 99.88673 99.99025 99.99980

H8 7.171 1.132 0.016 99.84227 99.97511 99.99965

H10 10.267 1.286 0.016 99.81935 99.97386 99.99972

H12 15.449 1.378 0.011 99.77346 99.97979 99.99984

H14 22.831 4.197 0.055 99.71303 99.94724 99.99930

H16 30.035 3.141 0.107 99.66968 99.96545 99.99883

H18 45.098 5.280 0.076 99.55913 99.94838 99.99926

H20 50.275 4.572 0.082 99.55768 99.95977 99.99927

H22 51.012 4.499 0.142 99.59198 99.96402 99.99886

H24 48.148 3.216 0.053 99.64700 99.97642 99.99961

H6

6-31G

0.211 3.895 0.026 99.99390 99.88725 99.99925

H8 0.668 6.248 0.316 99.98550 99.86434 99.99314

H10 0.481 11.101 0.432 99.99164 99.80718 99.99250

H12 0.753 12.251 0.581 99.98910 99.82267 99.99158

H14 1.260 21.076 1.053 99.98437 99.73850 99.98693

H16 0.078 22.535 1.456 99.99915 99.75535 99.98420

H18 0.057 30.553 1.588 99.99945 99.70516 99.98467

H20 0.051 32.331 1.376 99.99956 99.71922 99.98805
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accuracies, from the lowest value of 99.90006% for H−
23 to the highest value of 99.99350% for H−

5  . It demonstrates 
that both FMO/VQE/QCC and FMO/VQE/UCCSD consistently show good accuracy relative to the FMO/CCSD 

Figure 2.   The Absolute Energy Errors and Relative Accuracy of FMO/VQE in Hydrogen Systems. (A) Results 
for neutral hydrogen systems using STO-3G basis set. This graph on the left side illustrates the absolute energy 
error (left axis) and relative accuracy (right axis), with QM/CCSD as the reference. A rescaled graph is provided 
on the right for enhanced visualization of the FMO/VQE/QCC and FMO/VQE/UCCSD methods. (B) Results 
for neutral hydrogen systems using 6-31G basis set. This graph on the left side also shows absolute energy 
errors and relative accuracy against QM/CCSD. The right graph has an adjusted y-axis scale for the FMO/
CCSD and FMO/VQE/UCCSD. (C) Results for anionic hydrogen systems using 6-31G basis set. This graph uses 
FMO/CCSD as the reference, showing absolute energy errors and relative accuracy. Across all graphs, FMO/
CCSD is shown in red, FMO/VQE/QCC in blue, and FMO/VQE/UCCSD in green. Absolute energy errors are 
represented by bar charts, while relative accuracy is shown with dotted line graphs.
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calculation for anionic systems. These methods exhibit reduced absolute energy errors and higher relative accura-
cies, indicating their effectiveness in approximating the reference FMO/CCSD calculation. These results highlight 
the potential of the FMO/VQE methods as reliable tools for quantum chemistry calculations in the context of 
anionic systems, offering accurate and efficient computational approaches in this domain.

Discussion
The FMO method has been a critical development in managing large systems effectively for quantum chemistry 
calculations and significantly enhanced computational efficiency compared to conventional QM methods. It 
strategically dissects large systems into smaller, manageable fragments, maintaining reasonable accuracy through-
out the process. Despite its advantages, the FMO method, particularly when coupled with the CC method and 
extensive basis sets, still requires a substantial computational cost, representing a substantial challenge for its 
broader applications. The incorporation of quantum computing into the FMO method presents a viable solution 
to overcome these limitations. In the present study, we have developed the FMO/VQE by merging the FMO 
framework with the VQE algorithm and demonstrated its usefulness with hydrogen cluster systems. The FMO/
VQE can reduce the number of qubits required for the same molecular system, showcasing the feasibility of 
applying quantum computations to larger systems with fewer qubits.

Next, we focused on the validation of the FMO/VQE approach. The accuracy of the FMO/VQE was measured 
by applying it to hydrogen cluster systems, affirming its effectiveness. In general, the VQE tends to scale poorly 
for large molecules due to the need for repeated measurements or tomography to form the expected value of 
the Hamiltonian terms51. In contrast, the FMO/VQE approach determines the scope of the VQE application 
based on the size of the fragment, regardless of the system size. This aspect of FMO/VQE enables it to run VQE 
on larger systems with a smaller number of qubits, offering a significant advantage in handling more extensive 
molecular systems efficiently. However, based on our results, there is room for improvement and consideration. 
Firstly, in this study, the FMO/RHF was performed using a classical computer, and only the post-Hartree–Fock 
calculation, CCSD, was replaced by the VQE. The current implementation of FMO/VQE indeed relies on FMO/
RHF results as the initial state. This dependency could lead to a bottleneck, even with the FMO/RHF approach. 
Therefore, it becomes essential to consider adapting the FMO/RHF component within a quantum computing 
framework, highlighting this as a crucial area for improvement in methodologies like FMO/VQE. By doing so, we 
can expect quantum acceleration, which would offer not only an opportunity to enhance computational efficiency 
but also further the fundamental understanding of quantum algorithm applications within complex molecular 
systems. Secondly, in the NISQ era, quantum hardware is inherently accompanied by significant quantum noise, 
which presents substantial challenges to the reliability and accuracy of quantum algorithms. Within this context, 
a critical aspect for the future development and evaluation of the FMO/VQE method is the exploration of its 
robustness in the presence of such quantum noise. This exploration should not be viewed merely as a techni-
cal necessity, but rather as a crucial step towards realizing the practical application of quantum computing in 
complex chemical systems. Hence, enhancing the stability of the FMO/VQE method in noisy environments 

Table 3.   The error of VQE and FMO/VQE relative to QM/CCSD in neutral systems.

Metric System Basis set VQE/QCC FMO/VQE/QCC VQE/UCCSD FMO/VQE/UCCSD

Absolute energy error (mHa)

H6

STO-3G

1.781 0.332 0.001 0.007

H8 3.558 1.132 0.052 0.016

H10 7.233 1.286 0.133 0.016

Relative accuracy (%)

H6

STO-3G

99.94780 99.99025 100.00000 99.99980

H8 99.92174 99.97511 99.99886 99.99965

H10 99.87273 99.97386 99.99766 99.99972

Table 4.   The error of FMO/VQE relative to FMO/CCSD in anionic systems.

System Basis set

Absolute energy error (mHa) Relative accuracy (%)

FMO/VQE/QCC FMO/VQE/UCCSD FMO/VQE/QCC FMO/VQE/UCCSD

H5
−

6-31G

1.461 0.179 99.94698 99.99350

H7
− 2.622 1.075 99.93308 99.97256

H9
− 3.713 2.536 99.92689 99.95006

H11
− 4.958 3.080 99.92052 99.95064

H13
− 7.234 4.570 99.90222 99.93823

H15
− 8.283 6.666 99.90320 99.92209

H17
− 8.805 6.723 99.90936 99.93079

H19
− 12.043 9.114 99.88924 99.91618

H21
− 11.335 10.796 99.90579 99.91027
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would be a key future direction for its advancement. Thirdly, the FMO/VQE/QCC method underperformed 
compared to FMO/VQE/UCCSD in some cases. UCCSD is known for its accuracy and ability to capture a sig-
nificant portion of electron correlation effects, while QCC, with its simpler structure, is more hardware-efficient 
but might offer a compromise in terms of accuracy. This balance between accuracy and resource efficiency may 
become particularly crucial in FMO, where compromising accuracy at the fragment level can have significant 
ramifications for the accuracy of overall system energy calculations. The choice of the VQE method should be 
tailored to the specific problem, taking into account both the accuracy requirements of the application and the 
hardware resources at hand. Furthermore, the exploration of enhancements in the FMO/VQE method opens 
new avenues for integrating additional quantum computing methods. While our focus has been on augmenting 
computational efficiency through VQE, there lies significant potential in exploring other quantum algorithms 
that could synergize with the FMO framework. This exploration is crucial, especially considering the rapidly 
evolving landscape of quantum computing and its applications in complex molecular systems. Given these 
considerations, the FMO/VQE would provide not only increased computational efficiency for the NISQ era but 
also offer a promising path for the practical application of quantum computers.

The QPE method is considered an algorithm to revolutionize the field of quantum chemistry and holds 
potential through exponential speedup. However, its effective deployment, specifically on fault-tolerant quantum 
computers, requires not only many qubits but also some challenges in harnessing practical quantum advantages. 
Firstly, the application of the QPE necessitates an accurate initial state for a molecular system, traditionally deter-
mined using classical computers. The process may be exponentially complex and important for larger molecular 
systems, such as biological systems because the computational cost of determining the correct ground state 
energy is contingent upon the overlap between the initial and target states. A decreasing overlap corresponds to 
a progressive increase in computational cost, thereby constituting a substantial impediment to practical applica-
tion. Furthermore, even with an accurate initial state, the electronic structure problems in biological systems may 
not be strongly correlated, which could limit the expected quantum advantage from QPE alone. One potential 
strategy could involve fragmenting the total system into smaller subsystems to preserve the overall overlap, 
thereby facilitating a more effective application of the QPE. In this context, fragment-based quantum chemistry 
methods like the FMO approach may enhance the effectiveness of the QPE, by dividing the total system into 
smaller fragments to preserve the overall overlap, thereby complementing its strengths. Therefore, to fully lever-
age the practical benefits offered by quantum computing, it is important to develop new methodologies that can 
reduce computational costs, possibly through the compact representation of Hamiltonians.

Current quantum algorithms predominantly aim to achieve peak accuracy improvements, a characteristic not 
always necessary for industrial applications. For instance, the QPE will provide high accuracy in many quantum 
chemistry simulations through its quantum advantages, and one may want to utilize the advantages to acceler-
ate the drug discovery process. However, many drugs, typically small and closed-shell organic molecules, often 
lack strong correlations. Thus, while the theoretical pursuit of maximal accuracy is commendable, it may not 
be the primary requirement for practical applications such as drug design. From a more applied perspective, 
using perturbation theory-level results coupled with a multitude of single-point calculations can more efficiently 
predict thermodynamic quantities such as binding affinity. Looking further, if we could directly compute ther-
modynamic properties such as free energy using a thermal ensemble through quantum computers, it could be 
a game-changing strategy in industrial applications. Current quantum algorithms may offer extreme accuracy, 
but in the world of practical application, other factors such as computational efficiency and direct computation 
of industrially relevant properties can often supersede the necessity for accuracy. In conclusion, while the peak 
accuracy provided by quantum algorithms is essential in certain contexts, practical industrial applications often 
require a balance between accuracy and efficiency. Therefore, future research and development in quantum 
computing should also consider these requirements to make quantum computing a truly game-changing tech-
nology in the industry.

Conclusion
Our newly developed algorithm, FMO/VQE, demonstrates remarkable proficiency in conducting quantum chem-
istry simulations within the constraints of current quantum computing technologies, effectively surpassing the 
limitations of standard VQE methods. Specifically, we applied the FMO/VQE to several hydrogen systems and 
validated its accuracy and efficiency, where the FMO/VQE showed the capability to efficiently utilize a limited 
number of qubits, making it exceptionally well-suited for larger molecular systems. In contrast to traditional VQE 
methods, our FMO/VQE’s scalability is significantly enhanced by its ability to apply VQE within a defined scope 
based on fragment size, independent of the overall system size. This attribute allows FMO/VQE to tackle larger 
systems with fewer qubits. Furthermore, our FMO/VQE not only showcases impressive efficiency in handling 
larger systems but also demonstrates accuracy that is on par with traditional VQE. As such, our findings herald 
a promising path for the future of quantum chemical simulations in the age of quantum computing, potentially 
accommodating the analysis of increasingly complex systems as quantum computing technologies continue to 
advance and the availability of qubits grows.

Data availability
All results in this study are available in the GitHub repository (https://​github.​com/​QuNov​aComp​uting/​OpenF​
MO-​VQE).
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