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Reduction of NIFTI files storage 
and compression to facilitate 
telemedicine services based 
on quantization hiding 
of downsampling approach
Ahmed Elhadad 1, Mona Jamjoom 2 & Hussein Abulkasim 3,4*

Magnetic resonance imaging is a medical imaging technique to create comprehensive images of the 
tissues and organs in the body. This study presents an advanced approach for storing and compressing 
neuroimaging informatics technology initiative files, a standard format in magnetic resonance 
imaging. It is designed to enhance telemedicine services by facilitating efficient and high-quality 
communication between healthcare practitioners and patients. The proposed downsampling approach 
begins by opening the neuroimaging informatics technology initiative file as volumetric data and then 
planning it into several slice images. Then, the quantization hiding technique will be applied to each 
of the two consecutive slice images to generate the stego slice with the same size. This involves the 
following major steps: normalization, microblock generation, and discrete cosine transformation. 
Finally, it assembles the resultant stego slice images to produce the final neuroimaging informatics 
technology initiative file as volumetric data. The upsampling process, designed to be completely blind, 
reverses the downsampling steps to reconstruct the subsequent image slice accurately. The efficacy of 
the proposed method was evaluated using a magnetic resonance imaging dataset, focusing on peak 
signal-to-noise ratio, signal-to-noise ratio, structural similarity index, and Entropy as key performance 
metrics. The results demonstrate that the proposed approach not only significantly reduces file sizes 
but also maintains high image quality.
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In recent years, the utilization of medical imaging has become an essential tool in clinical practices. Medical 
imaging is a technique and process utilized to observe the internal organs of the human body for diagnostic 
and treatment  processes1,2. Medical imaging is used to examine and decline in mortality, fewer hospital admis-
sions, longer life expectancy, shorter hospital stays, and reduced need for exploratory surgery. Different types 
of medical imaging are used to scan the human body, such as Magnetic resonance imaging, X-ray, Ultrasound 
imaging, Computed tomography Scanning, etc. Nowadays, the development and need for medical imaging 
modality have tremendously increased, and the need for producing, transferring, and sharing medical images 
has also been  amplified3,4.

Telemedicine has emerged as a pivotal component of modern healthcare, offering a means to overcome geo-
graphical barriers, improve access to medical services, and facilitate timely medical  interventions5. Central to the 
efficacy of telemedicine, particularly in diagnostics and treatment planning, is the reliance on medical imaging 
technologies. Magnetic Resonance Imaging (MRI), with its capability to produce high-resolution images critical 
for accurate medical assessments, plays a significant role in this  domain6. However, this advancement comes with 
its own set of challenges, primarily associated with the management of MRI data, which is often stored in the 
Neuroimaging Informatics Technology Initiative (NIfTI) format. These files, characterized by their substantial 
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size, pose significant challenges in terms of storage and transmission, especially in telemedicine scenarios where 
bandwidth and storage resources may be limited.

The need for efficient and effective telemedicine services is not just a matter of convenience but a crucial 
element in ensuring equal access to healthcare services, particularly in remote or resource-limited settings. The 
efficient transmission of large MRI files while maintaining the integrity and quality of the images is vital for 
accurate diagnosis and treatment planning. Current approaches to managing these large files, such as standard 
compression techniques, often lead to a trade-off between file size reduction and image quality. This compromise 
can impede the clinical utility of the transmitted images, potentially affecting patient outcomes.

Since medical images are stored in different formats by different modalities, retrieval, processing, and trans-
mission are challenging tasks. The authors  in7 described four main file formats widely used to store medical 
scans. They are NIfTI, Analyze, Medical Imaging NetCDF (MINC), and Digital Imaging and Communications 
in Medicine (DICOM). Medical Image file formats are categorized into two types. First is the format that wishes 
to standardize images generated by medical imaging modalities like DICOM. Second is different formats that 
aim to improve and expedite the post-processing analysis, like Analyze, MINC, and NIfTI.

It leads to insufficient bandwidth of the network and storage of memory devices. Medical images contain 
more details or information than simple text or document files, so they require extra demand of bandwidth to 
travel through different types of networks. Therefore, we have to minimize the volume of the images before the 
storing or transmitting processes. Here comes the need for compression. Compression is defined as minimiz-
ing the size/volume of data needed to describe a given amount of information. Therefore, efficient compression 
techniques are essential in the field of telemedicine and its  applications8,9.

NIfTI is a file format developed in the 2000s to store neuroimaging, which retains the characteristics of the 
Analyze format while addressing its  flaws10. Such a format employs some fallowed/underutilized fields in the 
Analyze 7.5 header for new data recording, such as picture orientation, to eliminate left–right ambiguity in 
brain studies. Moreover, NIfTI can also maintain different data types other than the Analyze format, such as 
unsigned 16-bit.

Despite the different files, header, and data pixels generated by such format, the outcome is one image file that 
is stored with the ’.nii’ extension. The files are 348 bytes for the header and the data pixels with the extensions’.
hdr’ and ’.img,’ and 352 bytes for one ’.nii’ file owing to the existence of four extra bytes at the end, primarily to 
make the size a divisible by 16, and guarantee a mechanism to for more metadata storing, where these four bytes 
are nonzero. In practice, an enhanced NIfTI format for diffusion-weighted magnetic resonance data processing 
has been developed.

The motivation behind this research stems from the growing need for efficient and effective telemedicine 
services, particularly in the realm of medical imaging. MRI plays a pivotal role in diagnostics and treatment 
planning, generating high-resolution images that are crucial for accurate medical assessments. However, the 
substantial size of MRI files, especially those in the NIfTI format, poses significant challenges in terms of storage 
and transmission, particularly in telemedicine scenarios where bandwidth may be limited. This issue is accentu-
ated in remote or resource-limited settings, where access to advanced medical imaging and rapid communication 
between healthcare providers and patients is crucial.

Recognizing these challenges, our research is driven by the objective of developing a method that not only 
reduces the file size of MRI images without compromising their quality but also facilitates their swift and reli-
able transmission in telemedicine applications. By introducing an innovative downsampling approach using a 
quantization hiding technique coupled with a blind upsampling process for accurate reconstruction, we aim to 
address the pressing need for efficient and high-quality medical image communication. This advancement holds 
the potential to revolutionize the delivery of healthcare services, making high-quality medical imaging more 
accessible and improving the overall efficacy of telemedicine practices.

This study makes significant contributions to the field of medical imaging and telemedicine by:

• Introducing an innovative compression technique for NIfTI files using a quantization hiding of downsampling 
approach.

• Addresseing a critical gap in telemedicine, offering a solution that efficiently reduces file sizes without com-
promising the quality of MRI images.

• Enhancing telemedicine efficacy, particularly in bandwidth and storage-limited settings, ensuring high-
quality image transmission vital for accurate diagnostics and patient care.

• Preserving the integrity of critical medical data and suggesting a comprehensive impact on digital healthcare 
solutions.

Through these contributions, our study presents a pivotal development in managing medical imaging data, 
facilitating improved healthcare delivery and access globally.

This paper proposes a new methodology for reducing the NIfTI file storage and compression to facilitate com-
munication among health practitioners themselves. The proposed methodology uses the features of the discrete 
cosine transform (DCT) to embed two consecutive slice images to generate the stego slice. The performance of 
the proposed method was measured based on the MRI dataset, as well as the peak signal-to-noise ratio (PSNR), 
signal-to-noise ratio (SNR), structural similarity index (SSIM), and Entropy metrics. The paper is organized as 
follows: Section "Related work" surveys the work related to data-compressed techniques using the NIfTI for-
mat. Section "Materials and methods" discusses the materials and methods used. The proposed downsampling 
and upsampling approaches are described in Sect. "The proposed downsampling and upsampling approach". 
Section "Experimental results and discussion" presents the experiment results, the analysis of the results, and a 
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comparison of the performance of the original and the retrieved NIfTI files. Finally, Section "Conclusion" sum-
marizes the findings and conclusions.

Related work
In the field of medical imaging and telemedicine, significant strides have been made to address the challenges of 
data management and transmission. Early studies primarily focused on conventional compression techniques 
to reduce the file size of medical images, yet often at the cost of image quality, which is crucial for diagnosis 
and treatment planning. For instance, Huffman encoding, a lossless compression algorithm, has been applied 
to medical images, offering some efficiency in storage without quality loss but with limitations in compression 
 ratio11. Compression techniques have been a primary focus of research to tackle this issue. Huffman encoding, 
a lossless compression method, has shown effectiveness in medical image  compression12. However, its efficiency 
varies with image size and complexity, especially for larger 3D MRI images. Block processing methods have also 
been  explored13, but they often compromise critical image details, which is not viable for medical diagnostics. A 
novel index structure was presented to achieve speed up for compressing the data. The large files of neuroimag-
ing data are compressed using the NIFTI format. The gzip-compression technique, which reduces the size of 
the data, is available. The compressed format can be accessed with high speed for performing the simple task 
of presenting the data and scrolling among time points. Depending on the user-configurable arrangement, the 
speed-up might vary between hundreds to thousands of times. The test findings show that this unique method 
has real-world applications in neuroimaging research. The neuroimaging data program is an enhanced library 
(libznz) that can read NIfTI files with additional indexes. The performance is demonstrated, which helps to 
avoid interference  change14.

The study  in10 has explored different medical imaging file formats like NIfTI, Analyze, MINC, and DICOM, 
each with distinct characteristics. For instance, the NIfTI format, an improvement over the Analyze format, is 
widely used for its ability to store neuroimaging data with enhanced data recording capabilities, including picture 
orientation and support for multiple data types. While these formats have facilitated the storage and analysis 
of medical images, the challenge of efficiently transmitting large file sizes over limited bandwidth networks, as 
often encountered in telemedicine scenarios, remains a concern. Meanwhile,  in15, the authors illustrate the main 
types of medical image formatting. The first type is the desired format for standardizing pictures produced by 
the modalities of images such as DICOM. Second, formats like Analyze, MINC, and NIfTI are designed to make 
post-processing analysis easier and more powerful. Huffman encoding is a lossless compression algorithm, and 
the occurrence of the symbol is based on the frequency. The performance of metrics, such as compression ratio, 
percentage, and bit per pixel, is evaluated using the Huffman algorithm. It can be modified to get high compres-
sion output for 3D images. The most common modeling methodology and attack tree were used to build a risk 
assessment method with the attack occurrence probability (AOP) and assault success probability (ASP) as vari-
ables and evaluated the benefits and possible limits of the method.

Recent developments have seen the incorporation of AI and machine learning into image processing. The 
application of Variational Autoencoders (VAEs) for tumor identification in 2-D MRI images represents a notable 
 advancement16. These self-learning models harness the power of artificial intelligence to not only compress data 
but also enhance feature extraction and image analysis capabilities. Such advancements indicate a shift towards 
integrating AI and machine learning techniques for more efficient image processing, compression, and diagnostic 
accuracy. The NIfTI file format, widely adopted for neuroimaging, emerged as a solution to limitations in earlier 
formats like Analyze. It offers enhanced capabilities for data recording and supports multiple data  types17. Despite 
these advancements, efficient transmission of these large files remains a challenge, particularly in telemedicine 
contexts where bandwidth is  limited18.

A heterogeneous platform is developed for analyzing and storing MRI data, which is created to process auto-
matically with the subsequent  visualization19.  In20, the module will be utilized to organize classes for training on 
neuroimaging. The proposed model is used to analyze the MRI data of the laboratory animal. Data processed and 
analyzed will be stored in the NIfTI file and then separated into a text file. The file in NIfTI is used for processing 
and analyzing. The proposed module is utilized for the neuroimage training process. However, the challenge of 
efficiently transmitting large neuroimaging files, particularly in NIfTI format, remains a largely unresolved issue. 
While studies have explored various compression algorithms, there’s a gap in research that specifically targets the 
compression of NIfTI files for telemedicine use without compromising image quality. The existing literature often 
overlooks the unique requirements of telemedicine, such as the need for efficient data transmission over limited 
bandwidth and the necessity to maintain high image fidelity for accurate remote diagnosis. Current methods 
still grapple with either data loss in lossy compression or insufficient size reduction in lossless methods, limiting 
their practicality in real-time  telemedicine13.

The basic concept of an image file is examined with some format that mainly describes the usage of medi-
cal images, pixel data, and interpretation of data. The pixel number is utilized to examine the field view of the 
acquisition modality. The photometric interpretation specified the interpreted data for displaying the correct 
image. The medical image file format is used to standardize the image generated by the modalities for image 
 diagnosis21. NIfTI format is used to store the image orientation in the space of the image volume. The default file 
format is doing the analysis, and the NIfTI file format is used for storing the analyzed neuroimage. The modalities 
are diagnosed by encoding the image file. A compression-decompression technique is proposed in which each 
image is segmented into non-overlapping blocks to achieve the benefits of block processing. The most frequent 
pixel is predicted, and occurrences are deleted permanently for 4 × 4 blocks. The decoding stage has completely 
regenerated the block in which others are encoded.

Our research addresses this gap by introducing a novel quantization hiding downsampling technique specifi-
cally designed for NIfTI files. This method achieves significant file size reduction and maintains the high quality 
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and integrity of MRI images, which is crucial for accurate medical diagnosis. While previous research in medical 
imaging has laid a strong foundation for data management and analysis, our study builds upon this by addressing 
the specific challenges associated with the compression and transmission of NIfTI files in telemedicine.

Materials and methods
A. OpenNeuro dataset ds003799
In this paper, we propose a down-sampling method to reduce the multi-dimensional neuroimaging data size 
using the concept of data hiding by quantization hiding technique. The OpenNeuro ds003799 dataset is used 
in this work. Such a data set is used in a study to test the effect of running sports on decreasing and minimizing 
the symptoms of depression and increasing the Hippocampal volume for young adults over 14  days22,23. The 
study was approved by the University of Graz’s authorized ethics committee. Informed consent was obtained 
from all individual participants involved in the study. The data supporting this dataset findings are available 
online under OpenNeuro Dataset ds003799. This study’s running intervention was divided into seven units, 
each lasting 50–60 min, and carried out over two weeks. The typical running path was about five kilometers 
long and led through a largely woodland region at a local leisure park. Two groups of volunteers shared in this 
experiment were examined at three different periods. In this dataset, a total of 68 people were enlisted. Out of 
this group, 48 people completed all of the requisite MRI scans and psychometric tests and took part in the run-
ning intervention. Participants said they exercise for approximately 30 min weekly (M = 0.53; SD = 1.2). They 
were randomly allocated to one of two intervention groups, each receiving a time-delayed intervention. The 
first group (the intervention group) ran between the first (t1) and second (t2) test sessions, whereas the second 
group (the waiting group) got training between the second and third test sessions (t3). The German version of 
the Center for Epidemiological Studies Depression Scale was used at each time point of evaluation (t1, t2, and 
t3).  In24, it was administered to test intervention-related changes in depressive symptoms. The dataset includes 
the MRI data of n = 48 participants who completed all three MRI scans (at t1, t2, t3). Specifically, for every single 
participant (e.g., sub-season101), three subfolders of MRI data (’ses-1’, ’ses-2’, and ’ses-3’ for each time point of 
assessment) are available.

B. NII (or NIfTI) files
As of this writing, NII (or NIfTI) files are the most used format for multi-dimensional neuroimaging  data25. NIfTI 
is a raster format that requires at least 3-dimensional data in the form of voxels, or pixels having a width, height, 
and depth. The first four dimensions are defined as three spatial dimensions and time, with the other dimensions 
being utilized for other things, but the time dimension is frequently used to convey anything other than  time26.

The NIfTI file format stores the orientation of image volume space and allows it in a double way. The transla-
tion is used to map the coordinates of the voxel to frame the reference and define the image’s alignment with the 
standard system. The NIfTI format adopted the default format of widely used public domain software packages 
such as SPM, FSL, and AFNI. The extension NIfTI file format is used for processing the diffusion-weighted 
magnetic resonance  data27.

The proposed downsampling and upsampling approach
Figure 1 shows a high-level view of the main part, which uses the quantization hiding technique of the proposed 
downsampling technique to embed a slice image into another slice image of NIfTI files. The primary idea behind 
this approach is to create a new slice picture (stego slice) with pixels that are a composite of two identical slice 
images; the cover and the other are used as the hidden message (Msg). Similar to the cove image (the first slice), 
the resulting stego slice picture should have as low distortion as possible. Then, without the availability of these 
slice images, this stego slice picture might be utilized blindly to construct the embedded next slice image. The 
proposed downsampling method first opens the NIfTI file as volumetric data with the dimension m× n× slices . 
Then, it plans the volumetric data into the number of slice images of the size m× n . Subsequently, the quantiza-
tion hiding technique will be applied on each two consecutive slice images to generate the stego slice with the 
same size. Finally, it assembles the resultant stego slice images to produce the final NIfTI file as volumetric data 
with the dimension m× n× slices

2 .
In the upsampling process, the steps of the downsampling process are generally reversed to recover the next 

slice image, as depicted in Fig. 2. The process starts by opening the stego NIfTI file as volumetric data and then 
preparing the volumetric data into the number of slices images. So, the reconstructed slice can be extracted using 
the quantization extraction technique. Finally, the final reconstructed NIfTI file will be assembled from the Stego 
and reconstructed slice images, respectively.

The quantization hiding and extraction technique
Initially, the cover and Msg pictures will be the current and next slice images, respectively. The Cover and Msg 
slice pictures are normalized in the preprocessing step to provide float pixel values with float values in the range 
[0, 1] rather than the integer range. Consequently, normalization changes the slice image 
Slice :

{

X ⊆ R
d
}

→ {Min, · · · ,Max} from the range values [Min,Max] into a new slice image 
Normalized(Slice) :

{

X ⊆ R
d
}

→ {0, · · · , 1} . The following Eq. 1 represents the linear normalization of the 
slice image:

(1)Normalization(Slice) = Slice−Min
Max−Min
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The resultant normalization ( Slice ) and normalizing ( Slice + 1 ) pictures are separated into several sections 
of 4× 4matrices , which are called microblocks after normalization (MB). If the dimensions of the image are not 
divisible by four, the technique ignores the last MB of the image without making any adjustments.

The main goal of this phase in the quantization concealment process is to incorporate the normalized slice + 1 
MB (Msg) into the matching normalized slice MB (Cover) to create a combined stego slice MB picture (stego). 
To begin, the cover’s MBs are subjected to a 2D DCT as follows in Eq. 2:

(2)DCTcoefficients = T ×MBCover × T
′

Figure 1.  The proposed downsampling overview (Quantization Hiding).

Figure 2.  The proposed upsampling overview (Quantization Extraction).
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T Represents the DCT transform matrix, and its transpose is denoted by T ′ . The DCT coefficient is the result 
obtained in the dot product utilized in the matrix product. There are 4 × 4 coefficients in the final matrix: one 
calculation and fifteen detailed coefficients. Following that, a substitution process is made to embed the Cover 
DCT coefficients with the relevant fuzzified Msg’s MB pixel values using the following Eq. 3:

where β fulfills the cover coefficients on the interval [0, 4], which is the total number of intervals, the sign func-
tion returns the value 1 or -1 when the relevant component is greater than or less than 0. The DCT coefficients’ 
absolute values fall within the range [0, 4], with the range set by the lowest and highest for each coefficient 
value. As a result, it will be employed as an extra parameter to split the absolute value range [0, 4] of the cover 
DCT coefficients. During the embedding process, the estimated coefficient value of the cover MB is maintained 
constant for each MB to enhance stego slice picture quality against noise. The Stego slice image is attained after 
the embedding process by using the inverse DCT using the following Eq. 4:

Finally, the Stego slice picture is denormalized to restore the original domain of the pixel values. On the 
other hand, the stages of the quantization extraction procedure are exactly the opposite of those taken during 
the quantization concealment phases. As a result, these operations begin by using normalization to transform 
pixel data to the [0, 1] domain. In the second stage, the normalized Stego slice image is partitioned into 4 × 4 
MB, and the following Eq. 5 is used to compute the DCT decomposition:

The Stego DCT coefficient is the extraction stage according to the third step, as shown as follows in Eq. 6:

where β is the same integer number employed during quantization, additionally, the mean value of two neighbor-
ing elements is computed and substituted on the first element in MBRecMsg to rebuild it appropriately. The pixel 
values are then denormalized to return to their original domain in the resulting rebuilt slice. Finally, to enhance 
the visual quality of the reconstructed slice image, a 3-by-3 neighborhood median filter is applied to each pixel 
of the slice image surrounding the consistent pixel.

We developed two distinct algorithms to compress and decompress MRI data stored in NIfTI files effi-
ciently, which is crucial for enhancing telemedicine services. As illustrated in Algorithm 1, The Downsampling 
Algorithm focuses on compressing the MRI data. This process begins by normalizing each slice of the NIfTI 
file to a standard range and then dividing them into 4 × 4 micro-blocks. These blocks undergo a 2D Discrete 
Cosine Transform (DCT) for frequency domain conversion. The core of this algorithm is the quantization hiding 
technique, where consecutive slices are merged, embedding one slice into another to create a ’stego’ slice with 
minimal distortion. After applying the inverse DCT, these stego slices are assembled to form the compressed 
NIfTI file. Conversely, in Algorithm 2, the Upsampling Algorithm serves to decompress the data. It starts by 
processing each stego slice from the compressed file, extracting the embedded slice using a quantization extrac-
tion technique. Following inverse normalization, the extracted slices are reassembled, reconstructing the original 
MRI data. These algorithms, when combined, provide a robust solution for handling large neuroimaging files, 
significantly reducing their size while preserving essential diagnostic details, thereby facilitating more efficient 
and effective telemedicine services.

T =















1√
4

1√
4

1√
4

1√
4

�

2
4Cos(

π
8 )

�

2
4Cos(

3π
8 )

�

2
4Cos(

3π
8 )

�

2
4Cos(

3π
8 )

�

2
4Cos(

3π
8 )

�

2
4Cos(

3π
8 )

�

2
4Cos(

3π
8 )

�

2
4Cos(

3π
8 )

�

2
4Cos(

3π
8 )

�

2
4Cos(

3π
8 )

�

2
4Cos(

3π
8 )

�

2
4Cos(

3π
8 )















.

Stego coefficient = sign
(

DCT coefficientCover
)

[

2

β

(

MBMsg + i
)

,
2i

β
≤

∣

∣DCT coefficientCover
∣

∣ ≤
2(i + 1)

β

]

(3)∀i = 0, 1, 2, . . . ,β − 1

(4)MBStego = T
′ × DCTStego coefficients × T

(5)DCT coefficients = T ×MBStego × T
′

MBRecMsg =
β

2

(

DCT coefficientStego −
2i

β

)

,
2i

β
≤

∣

∣DCT coefficientStego
∣

∣ ≤
2(i + 1)

β
,

(6)∀i = 0, 1, 2, . . . ,β − 1



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5168  | https://doi.org/10.1038/s41598-024-54820-4

www.nature.com/scientificreports/

Algorithm 1.  Downsampling for NIfTI File Compression.

Algorithm 2.  Upsampling for NIfTI File Decompression.

Experimental results and discussion
The description metrics were utilized to implement and assess the suggested technique using the OpenNeuro 
ds003799 dataset (version: 2.0.0) in this section. This dataset was mentioned and downloaded  from23, and it con-
tains 48 individuals’ data and 144 NIfTI files in total, for every single participant 3 subfolders, 224 × 256 × 256 the 
image size of each MRI and 2.03 GB total files size. For the DCT process in the quantization hiding technique, a 
kernel size of 4 × 4 has been optimized. The stride configuration is set to a stride of 1, which is essential for ensur-
ing comprehensive pixel processing and maintaining the integrity of the image. Regarding loss functions, PSNR, 
SNR, and Bit error rate (BER) are used for fidelity assessment, while SSIM and Entropy are employed to evaluate 
the perceptual quality of the images. The MATLAB version: 9.9.0.1467703 (R2020b) is used for implementing 
the simulation with the toolbox of image processing and comprises reading the metadata and volumetric data 
facilities for NIfTI file importing and processing.

Figure 3 illustrates the original two-slice images, stego slice image, and reconstructed slice image samples 
from two participants: ’sub-season101’ and ’sub-season130’ slices of the proposed method. Figure 3a, b, e, and f 
shows the original slice pictures for participants’ sub-season101’ and ’sub-season130,’ respectively. Figure 3c and 
g, however, show the resultant slice after quantization, which hides the next slice inside the present slice. Figure 3 
and h illustrate the rebuilt slice after an authorized person used the quantization extraction technique to a Stego 
slice. A simple visual evaluation of the findings reveals that the Stego slice photos are of excellent quality, while 
the recovered slice images are of acceptable quality.

To assess the performance of the proposed algorithm for each slice, we employed the PSNR, SNR, and 
 SSIM28,29. The PSNR and SNR are methods for determining the quality of invisibility observation. On the other 
hand, the SSIM index is a perceptual metric that assesses picture quality decline as perceived structural infor-
mation  changes30,31. These metrics provide insights into the quality of invisibility observation and perceptual 
changes in the structural information of the images.

The PSNR, a widely used metric in image compression, is defined as Eq. 7:

(7)PSNR = 10log10

(

peakval2

1
MN

∑M−1
i=0

∑N−1
j=0 (f (xi ,yj)−g(xi ,yj))

2

)
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where f(x, y) is the NIfTI file’s original slice and g(x, y) is the stego slice pictures; the height and breadth of the 
slice pictures are M and N. The peakval is the picture datatype’s range (e.g., the value is 65,535 for the uint16 
image). Higher PSNR values generally indicate better-quality invisibility. In addition to PSNR, SNR is another 
crucial metric that quantifies the level of the desired signal relative to the level of background  noise32. It is cal-
culated as Eq. 8:

The SSIM index, on the other hand, is a perceptual metric that evaluates image quality degradation as per-
ceived structural information changes. It is given by the formula in Eq. 9:

where µx and µy are the local means of x and y, σ 2
x  and σ 2

y  are the variances, andσ xy is the cross-covariance. The 
two variables, c1, and c2, are variables to stabilize the division with a weak denominator.

Tables 1 and 2 examine the performance comparison of the original slice and the stego slice images in deci-
bels (dB) to the resulting average PSNR and average SNR values for each of the three subfolders of participants’ 
MRI data ("ses-1", "ses-2", and "ses-3"). The average PSNR values are 53.59 dB, 53.60 dB, and 53.55 dB of "ses-1", 
"ses-2", and "ses-3" respectively for β = 500. PSNR has a minimum of 43.80 dB ("ses-3" and a value of 100) and 
a maximum of 58.11 dB (’ses-2’ and a value of 1000). In general, greater PSNR values denote the invisibility of 
higher quality. Similarly, the average SNR values for β = 500 are 46.46 dB, 46.46 dB, and 46.41 dB for the respective 
three subfolders of participants’ MRI data, reaching up to 50.96 dB for β = 1000. These values indicate that higher 
SNR values correspond to higher quality invisibility and clearer signals in the stego images. Figure 4 displays the 
average SSIM values obtained for 48 individuals for various values between the original and stego slice pictures. 
For = 500, the average SSIM values were between 0.99760 and 0.99762. While the lowest and maximum values 
of SSIM for = 100 and = 1000, respectively, demonstrate that the greatest value creates a high-quality stego image.

To evaluate the performance of the extraction process in the proposed algorithm, both PSNR, SNR, SSIM 
and Entropy measurements were utilized. These metrics provide insights into the quality of the reconstructed 
slice images compared to the original ones. As indicated in Fig. 5, the average PSNR values for the comparison 
between the original and reconstructed slice images varied from 33.70 to 36.82 dB across different β values. 

(8)SNR = 10log10

(
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∑N−1
j=0 f (xi ,yj)

2
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2

)

(9)SSIM
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)
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Figure 3.  Slice images samples of participants’ sub-season101’ and ’sub-season130’ and the results Stego slice 
images of the quantization hiding method.
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These readings suggest a certain level of quality in the reconstructed images, with higher PSNR values generally 
indicating better reconstruction fidelity. In addition to PSNR, SNR was also measured to evaluate the extraction 
performance. As shown in Fig. 6, the average SNR values for the comparison between the original and recon-
structed slice images varied across different β values in the three subfolders of participants’ MRI data (ses-1, ses-2, 
and ses-3). For β = 100, the SNR values were around 29.69 dB, decreasing gradually to 26.57 dB for β = 1000 in 
ses-1. This trend was consistent across all subfolders. Generally, a higher SNR indicates a clearer signal amidst 
noise, thus suggesting a relative decrease in signal clarity in the reconstructed images as β increases. Addition-
ally, Table 3 presents the average SSIM values obtained to evaluate the reconstructed and original slice images. 
The SSIM values ranged from 0.9499 to 0.9585 on average, with the highest values observed at β = 100 (0.9585) 
and the lowest at β = 1000 (0.9499). The SSIM metric, being a measure of structural similarity, indicates how well 
the structural information of the original image is preserved in the reconstructed image. The high SSIM values 

Table 1.  The average of PSNR for the original slice and stego slice images.

β ses-1 ses-2 ses-3

100 43.86 43.85 43.80

200 47.83 47.83 47.78

300 50.33 50.33 50.28

400 52.16 52.16 52.11

500 53.59 53.60 53.55

600 54.77 54.78 54.73

700 55.77 55.78 55.73

800 56.63 56.64 56.60

900 57.41 57.41 57.37

1000 58.10 58.11 58.06

Table 2.  The average SNR for the original slice and stego slice images.

β ses-1 ses-2 ses-3

100 36.73 36.71 36.66

200 40.70 40.69 40.64

300 43.19 43.19 43.14

400 45.02 45.02 44.97

500 46.46 46.46 46.41

600 47.63 47.64 47.58

700 48.63 48.64 48.58

800 49.50 49.50 49.45

900 50.27 50.27 50.22

1000 50.96 50.96 50.92

Figure 4.  The average of SSIM for the original slice and Stego slice images.
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suggest that the structural integrity of the images is largely maintained during the extraction process, although 
a slight decrease is noted with increasing β.

In the context of image processing, Entropy is a fundamental concept derived from information theory 
that quantifies the amount of information or randomness contained in an  image33. Essentially, it measures the 
unpredictability or uncertainty of the image data. The Entropy of an image is calculated based on the probabil-
ity distribution of the intensity levels (or pixel values) within the image. Mathematically, for a grayscale image, 
entropy H is defined as Eq. 10:

where L is the number of possible intensity levels in the image, P(i) is the probability of occurrence of intensity 
level i, and the logarithm is to the base 2, reflecting the binary nature of digital information. The probability P(i) 
is typically computed as the frequency of the intensity level i divided by the total number of pixels in the image. 
In practical applications, Entropy is used as a tool to analyze the texture and content of an image. For instance, 
in medical imaging, Entropy can be employed to assess the quality and information content of an image, which 
is crucial for accurate diagnosis.

(10)H = −
∑L−1

i=0 P(i)log2P(i)

Figure 5.  The average of PSNR for the original slice and reconstructed slice images.
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Figure 6.  The average of SNR for the original slice and reconstructed slice images.

Table 3.  The average of SSIM for the original slice and reconstructed slice images.

β ses-1 ses-2 ses-3

100 0.9583 0.9585 0.9583

200 0.9569 0.9571 0.9570

300 0.9568 0.9571 0.9569

400 0.9563 0.9566 0.9563

500 0.9554 0.9557 0.9554

600 0.9543 0.9547 0.9543

700 0.9532 0.9536 0.9532

800 0.9521 0.9526 0.9521

900 0.9511 0.9516 0.9510

1000 0.9499 0.9504 0.9499



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5168  | https://doi.org/10.1038/s41598-024-54820-4

www.nature.com/scientificreports/

Table 4 presents the average entropy values for original, stego, and reconstructed slice images across differ-
ent β values for each of the three subfolders of participants’ MRI data. The Entropy, a measure of randomness 
or unpredictability in the image data, provides insight into the effect of the quantization hiding and extraction 
process on image information content. The entropy values for the original, stego, and reconstructed images 
are relatively consistent across all three subfolders of participants’ MRI data. This consistency indicates that 
the quantization hiding technique and the reconstruction process maintain a stable impact on the informa-
tion content of the images across different datasets or conditions. As β increases, there is a noticeable trend in 
the Entropy of the stego and reconstructed images. Initially, for lower values of β (100 to 600), the Entropy of 
the stego images decreases slightly compared to the original, while the reconstructed images show a marginal 
decrease or remain relatively stable. This suggests a minor loss of information or predictability due to the embed-
ding process. However, for higher values of β (700–1000), the Entropy of both stego and reconstructed images 
begins to increase, eventually surpassing the Entropy of the original images. This trend could be indicative of the 
increasing complexity or randomness in the image data as the quantization parameter increases, possibly due 
to the embedding of more detailed information from the message image. The fact that the Entropy of the recon-
structed images approaches or exceeds that of the original images at higher β values is particularly noteworthy. 
This could imply that the reconstruction process is effective in retaining or even enhancing the informational 
content of the images, which is a positive indicator of the quality of the reconstructed images.

In descriptive statistics, a box plot is a standard method for representing the distribution of data based on 
a five-number summary (minimum, first quartile, or 25th percentile (Q1), median, third quartile, or 75th per-
centile (Q3), and maximum). It is a graphical method for displaying numerical data’s locality, dispersion, and 
skewness through their  quartiles34,35. To conclude the evaluation between the final reconstructed and original 
NIfTI files for various β values, Figs. 7 and 8 depict the resultant box plot diagrams of the PSNR and SSIM. The 
PSNR value for β = 500, the minimum value is 34.85 dB, the median value is 36.58 dB, the maximum value is 
38.53 dB, the 25th percentile value is 35.82 dB, and the 75th percentile value is 37.35 dB. While the SSIM value 
for β = 500, the minimum value is 0.9648, the median value is 0.9739, the maximum value is 0.9799, the 25th 
percentile value is 0.9714, and the 75th percentile value is 0.9767.

Finally, a scalar with a Bit Error Rate (BER) is returned, which is the bit error of the total number of bits used 
in the binary form. Figure 9 shows the box plot of the BER evaluation between the final reconstructed and the 
original NIfTI files for various β values. The BER value for β = 500, the minimum value is 0.191%, the median 

Table 4.  The average of Entropy for the original slice, stego slice, and reconstructed slice images.

β

ses-1 ses-2 ses-3

Original Stego Reconstructed Original Stego Reconstructed Original Stego Reconstructed

100 3.981 3.975 3.950 3.976 3.968 3.943 3.984 3.975 3.950

200 3.981 3.966 3.953 3.976 3.959 3.946 3.984 3.966 3.954

300 3.981 3.962 3.954 3.976 3.955 3.946 3.984 3.963 3.954

400 3.981 3.960 3.954 3.976 3.953 3.947 3.984 3.961 3.955

500 3.981 3.959 3.956 3.976 3.952 3.949 3.984 3.959 3.957

600 3.981 3.959 3.959 3.976 3.952 3.951 3.984 3.959 3.959

700 3.981 3.960 3.965 3.976 3.953 3.957 3.984 3.960 3.965

800 3.981 3.962 3.966 3.976 3.955 3.958 3.984 3.962 3.966

900 3.981 3.964 3.970 3.976 3.957 3.962 3.984 3.964 3.970

1000 3.981 3.965 3.970 3.976 3.958 3.962 3.984 3.965 3.970

Figure 7.  The PSNR values between the finished reconstructed files and the original NIfTI files are shown in a 
box plot.
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value is 0.221%, and the maximum value is 0.251%, the 25th percentile value is 0.206%, the 75th percentile 
value is 0.237%.

The most prevalent image compression techniques fall into two categories: Lossy compression and lossless 
compression. Moreover, the details of the image or quality of the image are lost in lossy compression, whereas 
in lossless compression, there is no information loss, and the image remains the same as the original, with less 
storage space. Lossless compression is often required when compressing medical images due to the high value 
of the information contained in the images, and it is important to preserve those details during compression. 
Therefore, this study reduces the NIfTI file storage and compression to facilitate communication among health 
practitioners themselves and with their patients in telemedicine services. Therefore, Fig. 10 shows the total size 
of the subfolders of participants’ MRI data (’ses-1’, ’ses-2’, and ’ses-3’) in Gigabytes (GB). The proposed technique 
provides a better compression ratio when compared to the original NIfTI and the GZ compressed files by the 

Figure 8.  The Box plot of the SSIM values between the final reconstructed and the original NIfTI files.

Figure 9.  The Box plot of the BER values between the final reconstructed and the original NIfTI files.

Figure 10.  The total size sum of the subfolders of participants’ MRI data files.
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standard GNU zip. So, the proposed technique provides a better compression ratio when compared to other 
existing techniques.

Hence, we present a detailed analysis of the complexity of the proposed downsampling and upsampling 
approach. The complexity assessment encompasses both the downsampling and upsampling processes, consider-
ing key steps such as quantization hiding, extraction, and associated transformations. The downsampling process 
begins by opening the NIfTI file as volumetric data with dimensions m× n× slices . The data is then planned 
into a number of slice images of size m× n . This initial step involves minimal computational complexity and is 
linear with respect to the size of the input volumetric data. The quantization hiding technique is applied to each 
pair of consecutive slice images. This involves the following major steps: Normalization and MB generation, 
DCT transformation, Quantization concealment, and final assembly.

Cover and Msg slice images undergo normalization, transforming pixel values into the range [0, 1]. The 
normalization process has a linear complexity with respect to the number of pixels in the slice images. The 
normalized images are divided into 4 × 4 microblocks (MB), and if the dimensions are not divisible by four, the 
last MB is ignored. The generation of microblocks has a linear complexity. The DCT transformation is applied 
to Cover MBs, introducing a complexity proportional to the number of pixels in each MB, particularly the DCT, 
which has a complexity of O(N log N) for each 4 × 4 MB within the slice images. The embedding process involves 
quantization concealment, which includes computing Stego coefficients, applying inverse DCT, and denormal-
izing the resulting slice. The complexity of these operations is linear with respect to the size of the microblocks. 
The resultant stego slice images are assembled to produce the final NIfTI file with dimensions m× n× slices

2  . 
The assembly has a linear complexity.

In the same context, the complexity of the upsampling approach is primarily governed by the extraction 
process, which mirrors the downsampling steps but in reverse. The upsampling process begins by opening the 
stego NIfTI file as volumetric data and preparing it into the number of slice images. The quantization extraction 
technique involves the following major steps: Normalization, DCT transformation, Quantization extraction, and 
Final reconstruction. The complexity of these operations is linear with respect to the size of the microblocks. The 
overall complexity of the proposed downsampling and upsampling approach is dominated by the computational 
cost of the DCT transformations, quantization concealment, and extraction operations. The linear complexity of 
these steps with respect to the size of the microblocks and the number of slices contributes to an overall linear 
complexity for the entire process. The proposed approach demonstrates computational efficiency, making it 
suitable for practical implementation in telemedicine applications.

We conducted a comparative analysis with current state-of-the-art compression methods to highlight the 
efficacy of our proposed quantization hiding of downsampling technique for NIfTI files. Recent advancements 
in this field, such as the utilization of advanced codecs like JPEG2000 or sophisticated AI-driven approaches 
like deep learning-based  compression36,37, have set high benchmarks in balancing compression efficiency and 
image quality. However, our method surpasses these models by achieving higher compression ratios without 
compromising the diagnostic quality of MRI images. For instance, while JPEG2000 offers significant compression, 
it tends to introduce artifacts in higher compression  settings37. Similarly, AI-based methods, though efficient, 
require substantial computational resources and training data. In contrast, our approach demonstrates supe-
rior performance with PSNR values up to 58.11 dB and SSIM values in the range of 0.9499–0.9585, indicating 
minimal loss of image fidelity. Additionally, the quantization hiding technique ensures a more straightforward 
implementation and lower computational overhead, making it more suitable for real-time telemedicine applica-
tions. This comparative analysis underscores the potential of our method as a more effective solution for medical 
image compression in the context of telemedicine.

Conclusion
In this paper, we presented a novel approach for the reduction of NIfTI file storage and compression to facilitate 
telemedicine services, employing a quantization hiding of downsampling technique. Our method primarily 
focuses on embedding a slice image into another slice image of NIfTI files, thereby creating a new stego slice 
picture with minimal distortion compared to the original. This technique was designed to enhance the efficiency 
of telemedicine services by reducing the storage and bandwidth requirements for transmitting neuroimaging 
data. The downsampling process involved a quantization hiding technique that normalized the slice images and 
embedded them into each other using an algorithm based on Discrete Cosine Transform (DCT). The upsampling 
process, essentially the inverse of downsampling, utilized a quantization extraction technique to recover the next 
slice image from the stego slice.

The comprehensive evaluation of this approach using an MRI dataset and metrics such as Peak Signal to Noise 
Ratio (PSNR), Signal to Noise Ratio (SNR), and Structural Similarity Index (SSIM) has demonstrated its efficacy. 
Notably, the method achieved high PSNR and SNR values and maintained SSIM values within a range indica-
tive of excellent image quality preservation. For instance, we observed PSNR values ranging up to 58.11 dB and 
SSIM values between 0.9499 and 0.9585, indicating excellent preservation of image fidelity. Furthermore, SNR 
measurements corroborate the effectiveness of the technique in maintaining signal clarity amidst compression. 
These results signify a substantial improvement over existing compression techniques, both in terms of file size 
reduction and retention of image fidelity.

The entropy analysis across various parameters showed that the information content of the reconstructed 
slices was closely aligned with the original slices, indicating a successful recovery of data with minimal loss of 
complexity. The slight reduction in Entropy in the stego slices compared to the original slices was negligible, 
emphasizing the effectiveness of the method in maintaining image integrity. Moreover, the study’s analysis of 
the overall complexity of the proposed downsampling and upsampling approach showed that while the method 
involves computational and memory complexities, it effectively balances compression and reconstruction quality. 
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Future work could focus on optimizing the algorithm further, exploring its application in different types of medi-
cal imaging data, and extending its utility in various telemedicine scenarios.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding authors 
upon request.

Received: 6 September 2023; Accepted: 16 February 2024

References
 1. Anwar, S. M. et al. Medical image analysis using convolutional neural networks: A review. J. Med. Syst. 42(11), 1–13 (2018).
 2. Suetens, P. Fundamentals of Medical Imaging 3rd edn, 268 (Cambridge University Press, 2017).
 3. Park, C. et al. Development and validation of the radiology common data model (R-CDM) for the international standardization 

of medical imaging data. Yonsei Med. J. 63(Suppl), S74 (2022).
 4. Wake, N., Vincent, J. & Robb, F. Medical imaging technologies and imaging considerations for 3D printed anatomic models, in 

3D Printing for the Radiologist, 11–29 (Elsevier, 2022).
 5. Kissi, J., Dai, B., Dogbe, C. S., Banahene, J. & Ernest, O. Predictive factors of physicians’ satisfaction with telemedicine services 

acceptance. Health Inform. J. 26(3), 1866–1880 (2020).
 6. May, C. et al. Understanding the normalization of telemedicine services through qualitative evaluation. J. Am. Med. Inform. Assoc. 

10(6), 596–604 (2003).
 7. Sriramakrishnan, P., Kalaiselvi, T., Padmapriya, S., Shanthi, N., Ramkumar, S. & Kalaichelvi, N. An medical image file formats and 

digital image conversion. Int. J. Eng. Adv. Technol. 9(1S4), 74–78.
 8. Dinu, A., Ganesan, R., Kebede, A. A. & Veerasamy, B. Performance analysis and comparison of medical image compression tech-

niques, in 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 
738–745 (IEEE, 2016).

 9. Gonzalez-Urquijo, M., Macias-Rodriguez, Y. & Davila-Rivas, J. A. The role of telemedicine and globalization in medical education, 
in Advancing Health Education With Telemedicine, 288–295 (IGI Global, 2022).

 10. Vincent, R. D. et al. MINC 2.0: A flexible format for multi-modal images. Front. Neuroinform. 10, 35 (2016).
 11. Venugopal, D., Mohan, S. & Raja, S. An efficient block based lossless compression of medical images. Optik 127(2), 754–758 (2016).
 12. Rahman, M. A. & Hamada, M. A prediction-based lossless image compression procedure using dimension reduction and Huffman 

coding. Multimed. Tools Appl. 82(3), 4081–4105 (2023).
 13. Boopathiraja, S., Punitha, V., Kalavathi, P. & Prasath, V. S. Computational 2D and 3D medical image data compression models. 

Arch. Comput. Methods Eng. 29(2), 975–1007 (2022).
 14. Rajna, Z., Keskinarkaus, A., Kiviniemi, V. & Seppänen, T. Speeding up the file access of large compressed nifti neuroimaging data, 

in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 654–657 (IEEE, 2015).
 15. Punitha, V. & Kalavathi, P. Analysis of file formats and lossless compression techniques for medical images. Int. J. Sci. Res. Comput. 

2(1), 1–6 (2020).
 16. Naga Srinivasu, P. et al. Variational autoencoders-basedself-learning model for tumor identification and impact analysis from 2-D 

MRI images. J. Healthc. Eng. 2023, 1566123. https:// doi. org/ 10. 1155/ 2023/ 15661 23 (2023).
 17. Larobina, M. & Murino, L. Medical image file formats. J. Digit. Imaging 27, 200–206 (2014).
 18. Clarke, W. T. et al. NIfTI-MRS: A standard data format for magnetic resonance spectroscopy. Magn. Reson. Med. 88(6), 2358–2370 

(2022).
 19. Kim, D.-W., Choi, J.-Y., Han, K.-H. & Making, D. Risk management-based security evaluation model for telemedicine systems. 

BMC Med. Inform. 20(1), 1–14 (2020).
 20. Zuev, M. & Enyagina, I. System for storing and analyzing experimental MRI/fMRI data on the hybrilit heterogeneous platform, 

in Proceedings of the Information System for the Tasks of Radiation Biology Workshop (2020).
 21. Larobina, M. & Murino, L. Medical image file formats. J. Digit. Imaging 27(2), 200–206 (2014).
 22. Fink, A. et al. A two-week running intervention reduces symptoms related to depression and increases hippocampal volume in 

young adults. Cortex 144, 70–81 (2021).
 23. Andreas Fink, K. K., Zussner, T. & Perchtold-Stefan, C. M., Rominger, C., Benedek, M, Papousek, I. A Two-Week Running Interven-

tion Reduces Symptoms Related to Depression and Increases Hippocampal Volume in Young Adults. Cortex 144, 70-81. https:// 
doi. org/ 10. 1016/j. cortex. 2021. 08. 010 (2021)

 24. Keune, P. M., Bostanov, V., Kotchoubey, B. & Hautzinger, M. Mindfulness versus rumination and behavioral inhibition: A perspec-
tive from research on frontal brain asymmetry. Personal. Individ. Differ. 53(3), 323–328 (2012).

 25. Whitcher, B., Schmid, V. J. & Thorton, A. Working with the DICOM and NIfTI Data Standards in R. J. Stat. Softw. 44(1), 1–29 
(2011).

 26. Li, X., Morgan, P. S., Ashburner, J., Smith, J. & Rorden, C. The first step for neuroimaging data analysis: DICOM to NIfTI conver-
sion. J. Neurosci. Methods 264, 47–56 (2016).

 27. Clarke, W. T. et al. NIfTI-MRS: A standard format for magnetic resonance spectroscopic data. bioRxiv, (2021).
 28. Huynh-Thu, Q. & Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 

(2008).
 29. Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: From error visibility to structural similarity. 

IEEE Trans. Image Process. 13(4), 600–612 (2004).
 30. Elhadad, A., Ghareeb, A. & Abbas, S. A blind and high-capacity data hiding of DICOM medical images based on fuzzification 

concepts. Alex. Eng. J. 60(2), 2471–2482 (2021).
 31. Wang, Z. & Bovik, A. C. A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002).
 32. Gonzalez, R. C. & Woods, R. E. Digital image processing: Pearson prentice hall. Upper Saddle River NJ 1(376–376), 97 (2008).
 33. Gonzalez, R., Woods, R. & Eddins, S. 11 Representation and description, in Digital Image Processing Using MATLAB (Prentice-Hall 

Englewood Cliffs, 2003)
 34. Williamson, D. F., Parker, R. A. & Kendrick, J. S. The box plot: A simple visual method to interpret data. Ann. Intern. Med. 110(11), 

916–921 (1989).
 35. Potter, K., Hagen, H., Kerren, A. & Dannenmann, P. Methods for presenting statistical information: The box plot. Vis. Large 

Unstruct. Data Sets 4, 97–106 (2006).
 36. Anelli, V. W., Deldjoo, Y., Di Noia, T. & Malitesta, D. Deep learning-based adaptive image compression system for a real-world 

scenario, in 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS) 1–8 (IEEE, 2020).
 37. Li, Z. et al. Nearly-lossless-to-lossy medical image compression by the optimized JPEGXT and JPEG algorithms through the 

anatomical regions of interest. Biomed. Signal Process. Control 83, 104711 (2023).

https://doi.org/10.1155/2023/1566123
https://doi.org/10.1016/j.cortex.2021.08.010
https://doi.org/10.1016/j.cortex.2021.08.010


15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5168  | https://doi.org/10.1038/s41598-024-54820-4

www.nature.com/scientificreports/

Acknowledgements
The authors acknowledge Princess Nourah bint Abdulrahman University Researchers Supporting Project number 
(PNURSP2024R104), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author contributions
A.E. designed the scheme. A.E. and H.A. conducted the experiments and analyzed the results. All authors con-
tributed to the writing and discussion of the paper.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Reduction of NIFTI files storage and compression to facilitate telemedicine services based on quantization hiding of downsampling approach
	Related work
	Materials and methods
	A. OpenNeuro dataset ds003799
	B. NII (or NIfTI) files

	The proposed downsampling and upsampling approach
	The quantization hiding and extraction technique

	Experimental results and discussion
	Conclusion
	References
	Acknowledgements


