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Novel antimicrobial peptides 
against Cutibacterium acnes 
designed by deep learning
Qichang Dong 1,4, Shaohua Wang 1,4, Ying Miao 3,4, Heng Luo 1, Zuquan Weng 3 & Lun Yu 2*

The increasing prevalence of antibiotic resistance in Cutibacterium acnes (C. acnes) requires the search 
for alternative therapeutic strategies. Antimicrobial peptides (AMPs) offer a promising avenue for 
the development of new treatments targeting C. acnes. In this study, to design peptides with the 
specific inhibitory activity against C. acnes, we employed a deep learning pipeline with generators and 
classifiers, using transfer learning and pretrained protein embeddings, trained on publicly available 
data. To enhance the training data specific to C. acnes inhibition, we constructed a phylogenetic tree. 
A panel of 42 novel generated linear peptides was then synthesized and experimentally evaluated 
for their antimicrobial selectivity and activity. Five of them demonstrated their high potency and 
selectivity against C. acnes with MIC of 2–4 µg/mL. Our findings highlight the potential of these 
designed peptides as promising candidates for anti-acne therapeutics and demonstrate the power of 
computational approaches for the rational design of targeted antimicrobial peptides.

Keywords  Antimicrobial peptides, Deep learning, Transfer learning, Cutibacterium acnes, Pretrained protein 
language embedding

Natural AMPs are a set of small proteins synthesized by microorganisms, plants, and animals as part of their 
host innate immune response to infection. They often show good activities against multi-drug resistant bacteria, 
thereby offering an opportunity to address this global public health threat1,2. Most reported AMPs are cationic 
and amphiphilic in nature and possess properties that are thought to be crucial for insertion into and disruption 
of the bacterial membrane3,4.

In this paper, we are concerned with C. acnes, formerly known as Propionibacterium acnes5, a gram-positive 
(GP) bacterium that colonizes human skin. This lipophilic anaerobic bacterium resides mainly in the sebum-
rich pilosebaceous units but is also detected in non-sebaceous areas6. C. acnes play an important role in the 
pathophysiology of acne vulgaris7. Acne vulgaris is a chronic inflammatory skin disorder affecting more than 
80% of all adolescents and young adults worldwide8. Topical antibiotics, such as clindamycin, are effective acne 
treatments, but their widespread and often permissive use has led to the generation of resistant strains9. Owing 
to their bioactivities and low tendency to induce resistance, new antimicrobial agents, specifically targeting 
biofilm-forming C. acnes, may represent potential treatments to modulate the skin microbiota in acne10.

Previous designs of peptides against C. acnes were mostly template-based, relying on natural peptide screen-
ing, derivation, and sequence modifications7,11,12. The success of these template-based designs is highly dependent 
on prior knowledge and predefined rules discovered from existing AMPs. However, identifying and experimen-
tally validating these rules can be challenging, time-consuming and costly13.

With the progress of artificial intelligence, model-based methods have been applied to design AMPs. For 
the model-based de novo peptides design, two kinds of models are used: (1) generative models that generate 
novel peptide sequences; (2) predictive models that predict the bioactivities and properties of peptides by tak-
ing the peptide sequences as input. Various model-based methods have been used to design new AMPs with 
high antimicrobial activity, resistance to proteolysis, and low toxicity14–24, but only a limited of them have been 
validated by experiments.

Here, we presented a pipeline based on a series of deep learning (DL) models for AMPs design selectively 
targeting C. acnes, while guaranteeing non-hemolysis and novelty. Our training dataset is mostly constructed 
from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP)25. To augment the data for 
targeted C. acnes inhibition, we constructed a phylogenetic tree to select bacteria species closely related to C. 
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acnes. The deep learning models start with a basic generative model trained on all active AMPs sequences. Fol-
lowing that, the basic generative model was fine-tuned on the augmented C. acnes-specific data. Further, we 
trained two classifiers, one for predicting the antimicrobial activity and the other for predicting hemolysis. Then, 
we applied length filtering and clustering to prioritize the selections of peptides for in vitro experiments. At last, 
we synthesized 42 peptides to conduct in vitro tests and verified their antimicrobial potencies, along with no 
hemolysis and cytotoxicity.

In brief, our contributions are three-folds as follows:

•	 We proposed a data curation process, specially constructed a C. acnes-associated AMPs dataset by phyloge-
netic analysis.

•	 We designed a series of AI models including two generative models and two classification models to generate 
and classify unique and potent peptides in an efficient way.

•	 We selected 42 designed peptides to synthesize, and conducted in vitro tests to verify their antimicrobial 
potencies, hemolysis and cytotoxicity.

Results
Our design pipeline is shown in Fig. 1 and summarized as follows:

1.	 Basic generator training: we trained a basic initial DL generator with all known active AMPs sequences.
2.	 Fine-tuning for C. acnes: we fine-tuned the basic DL generator with C. acnes-related sequences, resulting in 

an anti-C. acnes generator model.
3.	 Activity and hemolysis classifiers training: we separately trained the activity and hemolysis DL classifiers.
4.	 Novel sequence generation: the anti-C. acnes generator was used to generate 660,000 novel sequences.
5.	 Classifier filter: the activity and hemolysis classifiers were used to filter the generated novel sequences, yield-

ing 24,579 sequences.
6.	 Length filtering and clustering: we applied a length filter and sequence clustering algorithm to select 42 

peptides for in vitro experiments.
7.	 In vitro validation: five of the 42 tested peptides demonstrated high selectivity and potency with minimum 

inhibitory concentration (MIC) values as low as 2–4 µg/mL against C. acnes.

Datasets
We constructed our training set based on DBAASP26, which is a manually-curated database that contains over 
19,000 peptides annotated with antimicrobial activity values and hemolytic values25. We selected peptides with 
lengths from 4 to 50 amino acid residues inclusive and with specified target species, leading to the creation of 
multiple datasets. The data curation methods are described in the Supplementary Materials.

Figure 1.   The pipeline overview.
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Antimicrobial activity classification dataset
This dataset compasses 8884 active and 4009 inactive peptides from DBAASP, supplemented with 4875 additional 
pseudo-inactive sequences.

Hemolysis Classification Dataset. We curated 2217 hemolytic and 2013 non-hemolytic peptides from 
DBAASP.

Peptide generation dataset
To train the initial generator, we utilized all active AMPs sequences, irrespective of the target species. To fine-tune 
the initial generator with C. acnes-related AMPs, we constructed a phylogenetic tree and identified 28 species 
related to C. acnes.

Figure 2a,b show the length distribution of AMPs and non-AMPs. It is clear that most AMPs and non-AMPs 
gravitate towards the 9–21 amino acid span. Notably, the most prevalent lengths for AMPs peptides are 12, 13, 
and 14 amino acids. This prevalence might be attributed to cost constraints, given that over 80% of peptides in 
DBAASP are synthetically produced26.

Generators
We first trained a basic generative model with recurrent neural network (RNN) networks with the known active 
peptides from DBAASP. Subsequently, we employed transfer learning techniques, fine-tuning this model using 
C. acnes-related sequences, resulting in the specialized anti-C. acnes AMPs generator (Fig. 1). This refined gen-
erator produced 660,000 sequences with a uniqueness ratio of 99.16% and a novelty ratio of 99.97%. Here, the 
novelty is defined as the absence of a sequence in the curated known active and inactive training sequences in 
DBAASP, to check the generator performance.

Comparing key physicochemical attributes of both known and generated AMPs offers insights into our 
generative model’s efficacy. In the comparisons below, we defined three groups of data: “Known general AMPs” 
representing the 8884 known active AMPs in DBAASP with documented antimicrobial activity against at least 
one bacterial species; “Known anti-C. acnes AMPs”, a subset of “Known general AMPs”, representing the 653 
active and non-hemolytic AMPs against C. acnes or related species; “Generated anti-C. acnes AMPs” representing 
the 660,000 sequences generated in this study.

Visual inspection of amino acid composition (AAC) distributions (Fig. 3a) indicates a closer resemblance 
between “Generated anti-C. acnes AMPs” and “Known anti-C. acnes AMPs” compared to “Known general AMPs”. 
Statistical testing also supports such observations. At the significance level of 0.05, the differences of each amino 
acid proportions show that for all amino acids, the distributions between “Generated anti-C. acnes AMPs” and 
“Known anti-C. acnes AMPs” do not significantly differ, whereas 13 out of 20 amino acids show significant differ-
ences when comparing “Generated anti-C. acnes AMPs” to “Known general AMPs”. The AAC statistical analysis 
data are in Supplementary Table 2. These results validate the closer AAC resemblance between the generated and 
known anti-C. acnes AMPs and demonstrate our transfer learning strategy’s effectiveness.

Although charge distribution across the datasets was largely consistent, distinct variations appeared at spe-
cific charge levels (Fig. 3b). Kernel distribution estimations (KDE) for anticipated α-helix amino acids fraction27 
showcased consistent dual peaks at the value 0.00 and 0.85 across the datasets (Fig. 3c). This pattern suggests 
that the generated anti-C. acnes AMPs predominantly feature positive charges and are inclined to assume an 
amphipathic α-helix structure, aligning more with known anti-C. acnes than known general AMPs. The Boman 
index28 and hydrophobic moment29 values distributions for generated anti-C. acnes AMPs aligned closely with 
both known anti-C. acnes and known general AMPs (Supplementary Fig. 1a,b). Such observations spotlight the 
distinct physicochemical profiles across the known general, known anti-C. acnes, and generated anti-C. acnes 

Figure 2.   Sequences length distribution of (a) known active (AMP), and (b) known inactive (non-AMP).
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AMPs, offering crucial insights for targeted therapeutic implementations. We used modlAMP30 to calculate the 
physicochemical attributes of peptides.

Classifiers
In our assessment of gated recurrent unit (GRU)31 and long short-term memory (LSTM)32 architectures, we also 
benchmarked various pre-trained protein language model embeddings. The experimental outcomes are illustrated 
in Fig. 4a,b. Comparing GRU and LSTM using random initial embeddings, LSTM marginally outperformed 

Figure 3.   Comparison of physicochemical properties. (a) comparison of amino acid composition, (b) charge of 
sequences at pH 7.4, (c) predicted alpha-helical amino acids fraction.

Figure 4.   Classifiers’ performances. (a) The activity classifier ROC AUC, (b) the hemolysis classifier ROC AUC. 
The probabilistic prediction values were converted into binary classification values using a threshold of 0.5.
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GRU. Subsequently, we compared random initial embeddings against two popular pre-trained protein language 
model embeddings: Evolutionary Scale Modeling (ESM)33 and ProtTrans34, deploying them with LSTM. Among 
the configurations tested, LSTM paired with ProtTrans performed best for the activity classification across all 
computed metrics (ROC AUC = 0.872, AUPRC = 0.854, accuracy = 0.792, precision = 0.785, recall = 0.803, F1 
score = 0.794). As shown in Fig. 4a, ROC AUC was used as comparison metrics for different classifiers. In con-
trast, for hemolysis classification, LSTM using random initial embeddings outshone other configurations across 
most computed metrics (ROC AUC = 0.888, AUPRC = 0.879, accuracy = 0.814, precision = 0.807, recall = 0.805, 
F1 score = 0.806), shown in Fig. 4b. Interestingly, activity classifiers exhibited subdued performance relative to 
hemolysis classifiers, insinuating a higher sequence diversity and intricacy in activity than in hemolysis.

In the larger activity dataset of 17,768 sequences, both ESM and ProtTrans pre-trained protein embed-
dings boosted the classifier performances by roughly 2%. Conversely, for the hemolysis dataset, encompassing 
4230 sequences, these pre-trained embeddings decreased performance. We speculate that pre-trained protein, 
predominantly trained on longer protein sequences, may not consistently excel with AMPs datasets. This is 
attributed to AMPs sequences often being shorter, spanning from 4 to 50 amino acids, which is a stark contrast 
to the typical protein sequences. Such insights suggest that leveraging pre-trained protein embeddings in AMPs 
models might hinge on the specific AMPs dataset’s size and characteristics.

To ensure a minimized false positive rate, we set threshold values above 0.99 to transform the final two clas-
sifiers’ probabilistic outputs to binary classifications. Consequently, the activity and hemolysis classifiers dem-
onstrated precisions of 0.906 and 0.917, respectively. Sequentially applying both yielded a collective precision of 
0.828, filtering down to 24,579 sequences.

We emphasized that the goal of this paper is not to provide AMP prediction models that outperform exist-
ing ones. Rather, the goal is to build a pipeline with comparable accuracies and selection strategies to design 
novel and potent peptides anti specific strains, such as C. acnes. We believe the performances of our models 
are sufficient for the intended task. They are also able to identify potential AMPs that might be overlooked by 
conventional methods (as detailed in Table 1 of the Supplementary Materials).

Length and novelty filters
We chose peptide sequences with lengths ranging from 10 to 15. To guarantee the novelty of these peptides, 
they were mandated to have a minimum of five mutations distinct from known AMPs in the DBAASP database, 
avoiding trivial analogs of known AMPs. For added diversity, we clustered the peptides based on their Leven-
shtein sequence distances. This rigorous process yielded 42 peptides for further in vitro experiments, and their 
sequences and physicochemical properties are in Supplementary Table 3. This length and novelty filter flowchart 
is shown in Supplementary Fig. 2.

In vitro experiments
In vitro antimicrobial activity of designed peptides
We synthesized a set of 42 peptides and evaluated in vitro inhibitory activity against C. acnes at concentrations of 
100/50/25/12.5 µg/mL. A peptide was deemed to have antimicrobial activity if C. acnes growth was inhibited by 
more than 50% at a given concentration. The results yielded 14 high activity, 16 medium activity, 4 low activity, 
and 8 non activity peptides (Table 1). Remarkably, our design’s success rate for effective antimicrobial peptides 
was 71.4% (considering only medium and high activity peptides), showcasing exceptional efficacy.

To pinpoint the MIC of the most potent AMPs, we assessed their inhibitory effects against C. acnes at even 
lower concentrations: 8/4/2/1 µg/mL. As depicted in Fig. 5, AMP-29,12 displayed the lowest MIC, registering at 
just 2 µg/mL. This was closely followed by AMP-25,31,33 and the positive controls (HPA3NT3 and FK13), all 
recording MICs of 4 µg/mL. AMP-5,9,38 marked their MICs at 8 µg/mL (Table 2). These impressively low MICs 
highlight the robust inhibitory prowess of AMPs against C. acnes.

To ascertain the broad-spectrum efficacy of these peptides, we evaluated their activity against E. coli and 
S. aureus, representative of Gram-negative and Gram-positive bacteria, respectively. As illustrated in Fig. 6, 
every peptide we assessed effectively inhibited both E. coli and S. aureus, confirming their broad-spectrum 
antimicrobial activity, in line with previously studied AMPs7,36–38. It’s noteworthy that the MIC values for E. coli 
and S. aureus were higher than those for C. acnes (Table 2). This aligns with our design, as these peptides were 
specifically engineered to target C. acnes.

Furthermore, we assessed the antimicrobial efficacy of the AMPs against C. albicans, a typical fungus. As 
demonstrated in Fig. 7, all evaluated peptides effectively inhibited C. albicans, indicating their capability to 

Table 1.   Summary and classification of antimicrobial activity of tested peptides against C. acnes.

Category

Concentration with antimicrobial 
activity > 50% (µg/mL)

Peptides ID100 50 25 12.5

High activity Inhibit Inhibit Inhibit Inhibit AMP-5,8,9,10,11,12, 14,21,25,27,29,31,33,38

Medium activity Inhibit Inhibit Inhibit No AMP-2,13,15,16,17, 18,19,20,23,39,41

Medium activity Inhibit Inhibit No No AMP-1,4,7,22,32

Low activity Inhibit No No No AMP-3,6,26,30

No activity No No No No AMP-24,28,34,35, 36,37,40,42



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4529  | https://doi.org/10.1038/s41598-024-55205-3

www.nature.com/scientificreports/

combat both bacterial and fungal pathogens. However, it’s worth noting that the MIC values for C. albicans were 
also higher than those for C. acnes as detailed in Table 2. In essence, these comprehensive antimicrobial tests 
underscore the potent and broad-spectrum activity of our designed AMPs.

Hemolytic activities of designed peptides
The hemolytic activity, a pivotal metric in therapeutic AMPs development, gauges potential toxicity to eryth-
rocytes. Figure 8a shows the hemolytic behavior of the examined peptides relative to the 0.01% Triton X-100 
control, which yields a 100% erythrocyte lysis. It’s demonstrated that the hemolytic concentrations (EC90) of all 
tested peptides are significantly higher than their respective MICs against C. acnes, which means these peptides 
are very safe. Among them, AMP-5,9,25 showcased the greatest erythrocyte tolerance, tolerating concentra-
tions exceeding 240 µg/mL. This was followed closely by AMP-27,38, and HPA3NT3. However, the most potent 
antimicrobial peptides, namely AMP-12,29,31,33, and FK13, exhibited lower tolerance, possibly due to their 
distinct structural properties. Overall, these findings affirm that our custom-designed AMPs present minimal 
erythrocyte toxicity.

In vitro cytotoxic activities of designed peptides
For anti-acne applications, it’s vital to assess peptide cytotoxicity on human skin cells. Hence, we evaluated our 
designed peptides against human keratinocytes (HaCaT) using the CCK-8 assay. Untreated cells served as the 
baseline, representing 100% viability. As depicted in Fig. 8b, at lower concentrations, peptides tended to enhance 
HaCaT cell viability. However, at elevated concentrations, they inhibited cellular activity. Notably, AMP-27 stood 
out, demonstrating the highest cell tolerance up to 320 µg/mL. This was followed by AMP-9 at 160 µg/mL and 

Figure 5.   C. acnes viability with peptides at different concentrations. MIC of AMP-29,12, 25, 31, 33 are 2–4 µg/
mL.

Table 2.   MIC and toxicity of tested peptides. MIC is determined as the lowest test concentration of peptides 
for microbial viability less than 10%. EC90 is the highest test concentration of peptides for rabbit red blood cell 
or HaCaT cell viability higher than 90%. Index is the ratio of EC90 to MIC of C. acnes.

MIC (µg/mL) Cytotoxic Hemolysis

C. acnes E. coli S. aureus C. albicans EC90 (µg/mL) Index EC90 (µg/mL) Index

AMP-5 8 12.5 100 12.5 80 10 240 30

AMP-9 8 25 > 100 25 160 20 240 30

AMP-12 2 8 8 25 32 16 80 40

AMP-25 4 50 > 100 25 80 20 240 60

AMP-27 25 100 > 100 50 > 320 12.8 160 6.4

AMP-29 2 8 8 25 32 16 64 32

AMP-31 4 8 8 25 32 8 80 20

AMP-33 4 25 50 12.5 80 20 80 20

AMP-38 8 8 12.5 50 80 10 128 16

HPA3NT3 4 50 100 25 32 8 128 32

FK13 4 8 25 – 80 20 64 16
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a cohort of peptides, including AMP-5,14,21,25,33,38, all showing tolerance up to 80 µg/mL. When combined 
all the data from cytotoxic, antimicrobial, and hemolytic activities (refer to Table 2), a pattern seems to emerge: 
peptides with heightened antimicrobial prowess often exhibited increased cytotoxicity.

Figure 6.   Viability of E. coli (a) and S. aureus (b) with peptides at different concentrations.

Figure 7.   C. albicans viability with peptides at different concentrations.
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Conclusion
In this study, we introduce a sophisticated pipeline tailored for the design of AMPs, specifically targeting C. acnes, 
while ensuring their novelty and minimizing hemolytic activity. Our primary data, consisting of both active 
and inactive peptides as well as hemolytic and non-hemolytic variants, was derived from DBAASP. Through a 
constructed phylogenetic tree, we pinpointed species closely related to C. acnes, which allowed us to curate a 
dataset of C. acnes-associated AMPs. Leveraging this dataset, we crafted models for AMPs generation, activity 
classification, and hemolysis prediction. Notably, our exploration into pretrained protein embeddings revealed 
differential performance: while ProtTrans excelled in large activity datasets, random initial embeddings shined 
in smaller hemolysis datasets.

From our C. acnes-focused generator, we extracted 660,000 sequences. Subsequent stringent filtration through 
classifiers, along with considerations of peptide length and novelty, culminated in 42 shortlisted peptides primed 
for synthesis, predominantly 14–15 residues long. Laboratory validations were overwhelmingly positive: 30 
unique peptides exhibited inhibition against C. acnes growth, yielding a 71% success rate. Standout peptides 
like AMP-12/29/31/33 showcasing incredibly low MIC values of 2/4 µg/mL, yielding a 10% success rate. Impres-
sively, several designed AMPs, including AMP-5/9/12/25/27/29/31/33/38, also inhibited E. coli, S. aureus, and C. 
albicans, albeit at higher MICs. This underlines the broad-spectrum yet selective antimicrobial prowess of our 
designed AMPs. Further bolstering their therapeutic potential, all evaluated AMPs showcased minimal hemolytic 
and cytotoxic activities. As C. acnes are the most important causes of acne vulgaris which affect more than 80% 
of all adolescents and young adults worldwide, these AMPs could provide promising anti-C. acnes therapies in 
both pharmaceutical and cosmetic fields.

The selectivity of the designed AMPs, as observed, aligns well with our design intention: showcasing robust 
inhibitory activity against C. acnes while presenting diminished effects on other microbes. We think the under-
pinning mechanism behind this selectivity is mostly caused by the transfer learning with C. acnes-centric AMPs 
sequences.

Figure 8.   Toxicity of peptides. (a) Hemolysis of erythrocytes (2% v/v) with peptides at different concentrations, 
(b) cell viability of HaCaT with peptides at different concentrations.
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In summary, the AI-driven pipeline presented here is efficient and scalable, and can be tuned to not only for 
anti-C. acnes peptides, but also for generating and filtering other unique anti-microbial functional peptides for 
diverse applications from healthcare to cosmetics.

Methods
Generators
The methodology employed hinges on the power of deep learning, specifically using the PyTorch39. The peptide 
sequences were broken down into individual amino acids for tokenization, with each amino acid represented 
by a unique identifier. This method of representation transforms biological sequences into a computationally 
manageable format.

For training, the dataset, which is made up of 8884 active AMPs, was divided using the standard 75% training 
and 25% testing split. This basic generator was subjected to 300 training epochs, guided by the cross-entropy loss 
function. The weight adjustments during training were managed by the Stochastic Gradient Descent (SGD)40 
optimizer, with momentum incorporated to enhance the convergence speed, with a momentum of 0.9 and a 
learning rate of 0.005. When it came to generating new sequences, the process started with an initiating ‘start’ 
token. The subsequent tokens were iteratively generated based on the hidden state of the previously generated 
token, a procedure that continued until an ‘end’ or a ‘padding’ token was produced. Interestingly, while both the 
GRU and LSTM architectures were tested, they delivered almost identical performances for the generative task 
when dealing with short peptide datasets. Given that GRUs offer a computational speed advantage over LSTMs, 
the choice was made to utilize GRUs for the generative model. This model is structured with an embedding 
layer (for token-to-weight matrix transformations), a GRU layer (for temporal feature extraction), a dropout 
layer (to deter overfitting), and a dense output layer for the prediction of probabilities. The entire architecture 
is illustrated in Supplementary Fig. 3a.

For fine-tuning toward C. acnes-specific AMPs, a subset of 653 C. acnes-related AMPs was used. The fine-
tuning process lasted 300 epochs and was optimized using SGD. It’s noteworthy that the learning rate used for 
fine-tuning was a mere tenth of what was used for the initial basic generator training. This transfer learning 
approach was harnessed to capitalize on the foundational learnings of the basic generator, subsequently refining 
it for the specific task of anti-C. acnes AMPs design.

Classifiers
The classifiers for both activity and hemolysis utilized the same model architecture. This included an embedding 
layer to transform the input sequence of token IDs (each representing an amino acid) into a dense representation. 
This was followed by an LSTM layer, which is well-suited to handle sequential data, to extract and recognize pat-
terns within the peptide sequences. A dropout layer was incorporated next as a regularization method to reduce 
overfitting, by randomly setting a fraction of input units to 0 at each update during training time. Following this, 
a hidden dense layer was introduced, followed by a ReLU41 activation layer, which helped in introducing non-
linearity to the model. The architecture concluded with a dense layer that outputted the predicted probabilities. 
Within the context of the hemolysis classifier, non-hemolytic sequences were labeled as positive while hemolytic 
sequences were labeled negative. The entire architecture is illustrated in Supplementary Fig. 3b.

From the ProtTrans suite, we chose the ProtT5-XL-UniRef50 model, notable for its expansive embedding size 
of 1024. From the ESM suite, our choice was the esm2_t33_650M_UR50D model, which offers an even larger 
embedding dimensionality of 1280. To ensure a level playing field during comparisons, we fixed the embedding 
size of our random initial embeddings at 1280, which matches the highest dimensionality of our selected pre-
trained embeddings.

Our empirical evaluations, as depicted in Fig. 4, illuminated our decision to adopt the LSTM architecture 
in tandem with the ProtTrans pre-trained protein embeddings for our activity classifier. In contrast, for the 
hemolysis classifier, the LSTM model combined with the randomly initialized embeddings demonstrated supe-
rior performance.

The training regimen for the classifiers was consistent across both activity and hemolysis tasks. We employed 
a training duration of 150 epochs, guided by the cross-entropy loss function. Optimization was achieved via SGD 
equipped with a momentum parameter set at 0.9 and a learning rate initialized at 0.01. To enhance the learning 
process, we implemented the cosine annealing learning rate schedule.

Length and novelty filters
In our pursuit of optimal AMPs, several guiding principles informed our selection of peptide lengths. Initially, 
our focus on shorter peptides was driven by practical considerations. Shorter sequences are less costly to produce, 
a critical factor when contemplating their future commercial viability.

Delving deeper, our analysis of the DBAASP database offered further insights. It revealed that the predomi-
nant lengths for effective AMPs were 12, 13, and 14 amino acids. Remarkably, there was a stark paucity of active 
AMPs shorter than 9 amino acids as shown in Fig. 2. With these findings, our choice to encompass peptide 
lengths ranging from 10 to 15 was strategic, aiming to encompass the bulk of active peptides while also expand-
ing the scope slightly to capture any overlooked potential.

A significant consideration was the potential structure these peptides might adopt. We theorized that 
extremely truncated peptides might struggle to form the alpha-helical structures typical of many AMPs. Such 
structures are pivotal for AMPs functionality. As a result, we delineated 10 amino acids as the minimal peptide 
length, ensuring each peptide maintained the structural integrity vital for efficacy.

Variability and uniqueness in AMPs were other aspects we were keen to emphasize. To uphold this diver-
sity, we applied clustering based on sequence Levenshtein distances, establishing a threshold distance of 8 for 
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this purpose. From each formed cluster, we chose its center. Moreover, for those clusters teeming with over 
10 sequences, an extra sequence was arbitrarily picked. The calculating Levenshtein distances was handled by 
RapidFuzz 3.3.0. For clustering, we used RDKit 2023.09.2.

Peptide synthesis
The peptides were synthesized by GL Biochem Ltd. (Shanghai, China) using Fmoc solid phase technology. The 
purity of the peptides determined by high-performance liquid chromatography (HPLC) was > 95%. HPA3NT3 
and FK13 are used as positive control peptides, and N1/N2 are used as negative control peptides35,42. All peptides 
were soluble in water or Phosphate buffered saline (PBS). In total, 44 peptides are synthesized and conducted 
in vitro tests, and their sequences are given in Supplementary Table 4.

Microbial preparation and culture
Strains of E. coli (ATCC 25922) and S. aureus (ATCC 25913) were grown in Luria Bertani (LB, Sangon Biotech, 
A507002) medium at 37 °C at 180 rpm under aerobic conditions.

The strain of C. acnes (BNCC 336649) was cultured in Wilkins-Chalgren Anaerobe Broth (QingDao RiShui 
Bio-technologies, 11071) at 37 °C under an anaerobic atmosphere performed by a Labiophy HL-B automatic 
hypoxic workstation (Dalian, Liaoning Province, Labiophy HL-B), inflated with a gas mix of 15% carbon dioxide, 
83% nitrogen, and 2% hydrogen.

Strains of C. albicans (ATCC 14053) were grown in Nodule Bacteria Medium YM broth (Beijing Solarbio 
Science and Technology, LA6970) at 28 °C at 180 rpm under aerobic conditions.

Logarithmic phase growth bacteria were used for antimicrobial testing.

In vitro experiments
In vitro antimicrobial testing
To determine the MIC values, the broth microdilution method was used. MIC values of peptides were determined 
as the lowest concentrations of test samples that inhibit 90% bacterial growth, which was measured by optical 
density7. Briefly, peptide samples were prepared as a stock solution in water and then diluted. 180 μL of the 
bacterial suspension (107 CFU/mL) and 20 μL of the tested sample were added together into 96-Well Deep Well 
Plates and incubated 24 h for E. coli and S. aureus or 48 h for C. acnes and C. albicans. For each test, two columns 
of the plate were kept for sterility control (broth only) and growth control (broth with bacterial inoculums, no 
antibiotics). The optical density of cultures was measured at 630 nm by a microplate reader (SYNERGY-H1, 
BioTek, USA) to estimate bacterial growth. All experiments were conducted in triplicate. We used ciprofloxacin 
(CPFX) as the antibiotic control for antimicrobial testing.

Hemolytic activity assay
The hemolytic activity of peptides was assayed on rabbit red blood cells (rRBCs)43. Briefly, 2% rRBCs (150 μL) 
were incubated in the presence of various peptide concentrations (50 μL) at 37 °C for 2 h. After centrifugation, 
the supernatants were collected for measuring absorbance at 545 nm. PBS and 0.01% Triton X-100 were used as 
the negative (no hemolysis) and positive (100% hemolysis) control, respectively. Triplicate tests were performed.

Cell culture and viability assay
HaCaT (IM-H225) cells from Xiamen Immocell Biotechnology Co., Ltd were cultured in DMEM high glucose 
medium (4.5 g/L, Gibco, USA), supplemented with 10% fetal bovine serum (Gibco, USA), 100 U/mL of penicillin 
and 100 μg/mL of streptomycin in a 5% CO2 fully humidified environment at 37 °C.

Cell Counting Kit-8 (CCK-8; Biosharp, China) was used to assess the rate of cellular proliferation and quan-
tify cell viability44. In brief, HaCaT cells were seeded in 96-well plates with 100 μL of medium at a density of 
1 × 104 cells per well. After incubation of cells overnight, peptides were added into the medium for another 24 h 
incubation. Then, 10 μL of CCK8 solution was applied to each well and incubated for 1 h at 37 °C. Finally, the 
absorbance values at 450 nm were determined using a microplate reader (SYNERGY-H1, BioTek, USA). Two 
columns of the plate were kept for negative control (medium only) and growth control (medium with HaCaT 
cell). All experiments were conducted in triplicate.

Data availability
The datasets generated during the current study and supplementary materials are available in the Zenodo reposi-
tory, https://​zenodo.​org/​recor​ds/​10471​900?​token=​eyJhb​GciOi​JIUzU​xMiJ9.​eyJpZ​CI6Im​Y5NGJ​lMDFk​LTlhY​
jItNG​ZhYS0​5MTAy​LTYzN​GNlZD​UzMDY​3MCIs​ImRhd​GEiOn​t9LCJ​yYW5k​b20iO​iI2MD​A3NDc​0MWZl​
M2YyZ​TgzY2​MzYTk​0YTEz​ODZiY​mIwYy​J9.​Bt2UH​etiACr-​D4ixl​NyAOR​BllFu​93MVS​ieoDu​u8WkB​vTkbO​
SWtBJ​BvZJj​bDKR-​wEUCF​0hyoY​YMVNh​VDeEX​cN-A.
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