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Prediction of lncRNA and disease 
associations based on residual 
graph convolutional networks 
with attention mechanism
Shengchang Wang 1,3, Jiaqing Qiao 1,3 & Shou Feng 2*

LncRNAs are non-coding RNAs with a length of more than 200 nucleotides. More and more evidence 
shows that lncRNAs are inextricably linked with diseases. To make up for the shortcomings of 
traditional methods, researchers began to collect relevant biological data in the database and used 
bioinformatics prediction tools to predict the associations between lncRNAs and diseases, which 
greatly improved the efficiency of the study. To improve the prediction accuracy of current methods, 
we propose a new lncRNA-disease associations prediction method with attention mechanism, called 
ResGCN-A. Firstly, we integrated lncRNA functional similarity, lncRNA Gaussian interaction profile 
kernel similarity, disease semantic similarity, and disease Gaussian interaction profile kernel similarity 
to obtain lncRNA comprehensive similarity and disease comprehensive similarity. Secondly, the 
residual graph convolutional network was used to extract the local features of lncRNAs and diseases. 
Thirdly, the new attention mechanism was used to assign the weight of the above features to further 
obtain the potential features of lncRNAs and diseases. Finally, the training set required by the Extra-
Trees classifier was obtained by concatenating potential features, and the potential associations 
between lncRNAs and diseases were obtained by the trained Extra-Trees classifier. ResGCN-A 
combines the residual graph convolutional network with the attention mechanism to realize the 
local and global features fusion of lncRNA and diseases, which is beneficial to obtain more accurate 
features and improve the prediction accuracy. In the experiment, ResGCN-A was compared with 
five other methods through 5-fold cross-validation. The results show that the AUC value and AUPR 
value obtained by ResGCN-A are 0.9916 and 0.9951, which are superior to the other five methods. In 
addition, case studies and robustness evaluation have shown that ResGCN-A is an effective method 
for predicting lncRNA-disease associations. The source code for ResGCN-A will be available at https:// 
github. com/ Wangx iuxiun/ ResGCN-A.

Keywords LncRNA-disease associations, Similarity, Graph convolutional networks, Residual network, 
Attention mechanism

Long non-coding RNA (lncRNA) is a class of non-coding RNA with more than 200 nucleotides. LncRNAs were 
originally thought to be the “noise” of the body’s metabolic activity, which has no biological  function1. However, 
more and more evidence shows that lncRNAs are closely related to many life activities in the human body, and 
they can participate in dosage compensation, epigenetic regulation, transcription regulation, post-transcription 
regulation, cell cycle regulation, cell differentiation regulation, and other life  activities2. In addition, changes in 
many lncRNAs have been linked to complex diseases, including cancer and neurological diseases. The abnormal 
expression of lncRNA, such as mutation, up-regulation, or down-regulation, leads to the generation of  diseases3,4. 
If the diseases associated with abnormal lncRNAs can be known, the treatment plan for the diseases can be 
proposed in advance, and the cure level of the diseases will also be improved. Therefore, it is necessary to study 
the relationship between lncRNAs and diseases. However, at present, traditional experimental methods such as 
in situ hybridization and over-expression techniques are mainly used to study lncRNAs. Although the results of 
such traditional methods are accurate, their efficiency is too low. The use of computational methods to predict 
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the lncRNA-disease associations helps save the time and cost of traditional research methods, which can greatly 
improve the efficiency of research. Currently, existing computational methods for predicting lncRNA-disease 
associations can be roughly divided into three categories: biological network-based methods, machine learning-
based methods, and other methods.

Biological network-based methods are based on the hypothesis that lncRNAs with similar functions may be 
associated with diseases with similar phenotypes. Sun et al.5 proposed a computational model of global networks, 
RWRlncD, based on functionally similar networks of lncRNAs. In this method, lncRNA-disease associations 
networks, disease similarity networks, and functional similarity networks of lncRNAs were first constructed, 
and then random walk restarts were used to predict potential lncRNA-disease associations on functional simi-
larity networks of lncRNAs. Xi et al.6 proposed a collaborative matrix decomposition method LDCMFC based 
on correlation coefficients. This method replaces the traditional minimization of Euclidean distance with the 
maximization of entropy, which improves the robustness of the algorithm. Wang et al.7 proposed LDAP-WMPS 
based on weight matrix and projection scoring. It obtained the predicted association matrix by proportion-
ally merging the projected disease score and the projected lncRNA score. Xie et al.8 proposed a prediction 
method SSMF-BLNP that combined selective similarity matrix fusion with bidirectional linear neighborhood 
label propagation, proposed new lncRNA similarity and disease similarity, and better solved the problems of 
noise and self-similarity loss in existing similarity integration methods. Lin et al.9 proposed a method based on 
probabilistic matrix decomposition, SCCPMD. In this method, the microbe-disease association information 
is added, and the matrix decomposition is constrained by the similarity matrix. In addition, the noise effect in 
the similarity matrix is eliminated by the logistic correction method, which improves the prediction accuracy.

The machine learning-based methods train the classifier based on the features of lncRNAs associated with 
known diseases and unknown lncRNAs, and rank candidate lncRNAs based on the differences in biological 
features between the sets. Wu et al.10 proposed GAMCLDA, a prediction method based on graph autoencoder 
matrix completion. In this method, the graph convolutional network was first used to obtain the potential factor 
vectors of lncRNA and disease from the local graph structure and features of nodes, and then the inner product 
of the two was used to reconstruct the lncRNA-disease association matrix to achieve prediction. Wu et al.11 
proposed an Extra-Trees prediction method MLGCNET based on multi-layer graph embedding aggregation. 
This method adopted the top-k method to reconstruct the similarity, used the multi-layer graph convolutional 
network for feature extraction and fusion, and finally used the Extra-Trees classifier for prediction. Lan et al.12 
proposed a method based on graph attention network, GANLDA. GANLDA obtained biological node features 
of lncRNAs from the lncRNA-miRNA associations, the lncRNA-GO associations, and the lncRNA-Gene asso-
ciations, and disease node features from the disease-miRNA associations and disease-gene associations. Firstly, 
the principal component analysis method was used to denoise the features of the two biological nodes, then the 
graph attention network was used to learn the potential feature representation of the lncRNA and the disease, 
and finally, the multilayer perceptron was used to predict the associations between the lncRNA and the disease. 
However, the network depth of this method is low and the feature information of the neighbor node is not fully 
utilized. Liang et al.13 proposed MAGCNSE. MAGCNSE used graph convolutional networks to obtain multiple 
feature matrices from multi-view similarity graphs of lncRNAs and diseases. However, this method only used 
lncRNAs and diseases information and did not use other biological information, such as miRNAs, proteins and 
drugs. Zhao et al.14 proposed HGATLDA, a meta-path-based heterogeneous graph attention network, which 
has improved its ability to fuse node features, heterogeneous topological structures and semantic information. 
In this method, the K-nearest neighbor graph method is used to integrate the similarity information, and node 
embedding of graph attention network learning features is used, then subgraph attention network based on 
meta-path is used to aggregate the embedding of each subgraph. Finally, neural inductive matrix completion 
is used to reconstruct the lncRNA-disease associations. Zhang et al.15 proposed CapsNet-LDA, A prediction 
method of attention mechanism and capsule network based on multi-perspective data. In this method, stacking 
autoencoders and attention mechanisms were used to integrate similarity networks to obtain lncRNA-disease 
associations network A. The capsule network with BiLSTM was used to process the associations network A and 
get the prediction result. Zhang et al.16 proposed a method based on graph representation learning, LDAGRL, 
which integrated multiple data associations into a bridge-like heterogeneous information network, used struc-
tural deep network embedding to learn node embedding, and finally used XGBoost classifier to predict the 
potential associations between lncRNAs and diseases.

In addition to these two categories of methods, some methods based on other theories or strategies have 
been proposed. Due to the limited number of experimentally validated lncRNA-disease associations, research-
ers have turned to predicting lncRNA-disease associations based on known disease-related genes, miRNAs, and 
lncRNAs in relation to genes or miRNAs. Liu et al.17 developed a prediction method that did not rely on known 
lncRNA-disease associations, but instead predicted potential human lncRNA-disease associations by integrating 
known human disease genes and human lncRNAs with gene expression profiles. The method divided lncRNAs 
into tissue-specific and non-tissue-specific components. First, a tissue-specific score was calculated based on 
the expression levels of all lncRNAs in different tissues, and then possible associations between tissue-specific 
lncRNAs and human diseases were predicted. However, the method could not predict disease-associated lncRNAs 
without relevant gene records. Chen et al.18 proposed the HGLDA model based on the hypergeometric distribu-
tion in statistical methods. This model integrates disease semantic similarity, miRNA-disease associations, and 
miRNA-lncRNA interactions to obtain functional similarity of lncRNAs. Finally, the model tested the hyper-
geometric distribution of each lncRNA-disease pair by testing whether the lncRNA-disease pair significantly 
shared miRNA interacting with the two.

Therefore, although most of the existing methods can successfully predict the potential lncRNA-disease 
associations, there is still room for improvement. Firstly, the known lncRNA-disease associations number is 
too small, resulting in the obtained lncRNA-disease associations matrix being very sparse, which leads to the 
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imbalance of positive and negative samples, and limits the prediction performance of the methods. Secondly, 
the lack of global information on lncRNA and disease features extracted by most methods leads to inaccurate 
features, which limits the prediction accuracy of the methods. Moreover, the long-running time also limits the 
prediction efficiency of the methods. To ameliorate these problems, we applied the computational framework 
of the method  GAERF25 and imported the residual method and attention mechanism in feature extraction, to 
propose a new lncRNA-disease associations prediction method based on residual graph convolutional network 
with attention mechanism (ResGCN-A).

In this method, the residual graph convolutional network combined with the attention mechanism is used to 
obtain the deep features of lncRNA and disease. The obtained deep features not only pay attention to the local 
information of the original features, but also include the global information of the original features. The experi-
mental results show that our prediction method is superior to the other five methods. The main contributions 
of this paper are given as follows:

• A novel lncRNA-disease associations prediction method is proposed, namely, the residual graph convolu-
tional network based on attention mechanism ResGCN-A. The residual graph convolutional network is a 
combination of the residual network block and the graph convolutional network, which can extract the local 
features of lncRNAs and diseases. The attention mechanism module is used to obtain the global information 
of lncRNAs and diseases. Then, the combination of residual graph convolutional network block and attention 
mechanism was adopted to realize the fusion of local and global features of lncRNAs and diseases, which 
made the potential features of the two obtained more accurate and improved the prediction efficiency.

• A feature extraction module based on residual network and graph convolutional network is designed, that 
is, residual graph convolutional network block. The block consists of two graph convolutional networks. The 
local features extracted by the two graph convolutional networks are combined in the form of residuals, which 
preserves the intermediate features between the layers of the graph network, enriches the feature hierarchy, 
and helps to obtain more accurate local information. At the same time, the import of residual network can 
prevent the problem of gradient explosion in the learning process of the model and improve the model stabil-
ity.

• An attention mechanism based on the two-dimensional matrix is designed to assign different attention 
weights to features. Specifically, the attention mechanism consists of three fully connected layers and a row 
summation module. The full-connection layer maps the features, and the row summation module summa-
rizes the mapped features horizontally. The sum of each row is the attention weight coefficient of each row’s 
feature. This attention mechanism can avoid the operation of matrix dimension transformation and reduce 
the computational cost of the model. Moreover, the attention mechanism verification shows that the attention 
mechanism can improve prediction accuracy.

Based on these contributions, ResGCN-A obtained an AUC value of 0.9916 and an AUPR value of 0.9951 in the 
5-fold cross-validation. In addition, case studies of prostate cancer and colon cancer have shown that ResGCN-A 
has a good predictive performance.

Methods
Method overview
The flowchart of the ResGCN-A is shown in Fig. 1, which can be divided into five steps. The first step is to 
construct the similarity feature matrices, which include the lncRNA similarity feature matrix and the disease 
similarity feature matrix. The lncRNA similarity feature matrix is a combination of the lncRNA Gaussian interac-
tion profile kernel similarity matrix and the lncRNA functional similarity matrix. The disease similarity feature 
matrix is composed of the disease Gaussian interaction profile kernel similarity matrix and the disease semantic 
similarity matrix. The second step is to use the graph convolutional network in the residual form to extract the 
local features of lncRNA and disease. The third step is to use the attention mechanism to obtain global informa-
tion of lncRNA features and disease features. After batch normalization, the potential features of the two will be 
obtained. The fourth step is to concatenate the potential features of lncRNA and the potential features of disease 
together to form the features of association pairs for training the Extra-Trees classifier. In the last step, the trained 
classifier is used to predict potential lncRNA-disease associations.

Data collection
LncRNA-disease associations are collected from  LncRNADisease19,  Lnc2Cancer20 and  GeneRIF21. After preproc-
essing the collected data, 2588 associations of 228 lncRNAs and 403 diseases were obtained, which constituted 
the lncRNA-disease associations matrix A with a size of 228 × 403. In matrix A, if a lncRNA has been confirmed 
to be associated with a disease, the cross position of the two is filled with 1. On the contrary, If there is no con-
firmed association between the two, the cross position of the two is filled with 0.

Computing lncRNA similarity and disease similarity
This part first introduces the calculation methods of four similarity matrices, including the lncRNA Gauss-
ian interaction profile kernel similarity matrix, the lncRNA functional similarity matrix, the disease Gaussian 
interaction profile kernel similarity matrix and the disease semantic similarity matrix, and then introduces the 
integration method of lncRNA similarity feature matrix and disease similarity feature matrix.
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LncRNA Gaussian interaction profile kernel similarity
Based on the previous  method22, the lncRNA Gaussian interaction profile kernel similarity matrix (lncG) is 
calculated as:

where A represents the lncRNA-disease associations matrix of size M × N , M is the number of lncRNAs, and N 
is the number of diseases. γ is a hyperparameter in the Gaussian kernel.

Disease Gaussian interaction profile kernel similarity
Similarly, the disease Gaussian interaction profile kernel similarity matrix (disG) is calculated as:

where A represents the lncRNA-disease associations matrix of size M × N , M is the number of lncRNAs, and N 
is the number of diseases. γ is a hyperparameter in the Gaussian kernel.

Disease semantic similarity
Referring to previous  work23, the disease semantic similarity (disS) is calculated according to the disease DAG. 
The disease DAG is constructed by mapping the disease DOIDs into the MeSH. Taking disease dn for example, 
DAG(dn) = {Vdn ,Edn } . Vdn represents the set of disease dn and its ancestor diseases, and Edn represents the set 
of edges between the diseases in Vdn . For any disease n in the set Vdn , the contribution of n to the disease dn can 
be calculated as:

where, α is the semantic contribution factor of the edge between n and n′ in set Edn , which is set to 0.5. Cn rep-
resents the set of children with disease n.

The semantic value (disV) of disease dn is defined as:

(1)lncG(li , lj) =exp(−γl||A(i, :)− A(j, :)||2)

(2)γl =1/

(

1

M

M
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Figure 1.  The flowchart of ResGCN-A.
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Finally, the semantic similarity of the two diseases, di and dj , is defined as:

where Ddi (n) is the semantic value of n related to disease di , Ddj (n) is the semantic value of n related to disease 
dj , disV(di) is the semantic value of disease di , disV(dj) is the semantic value of disease dj . In this way, we can 
obtain the disease semantic similarity matrix.

For convenience, the function doSim in the DOSE  package24 is used to process the DOIDs of the input 
diseases, and the disease semantic similarity matrix disS can be obtained by using the measurement method of 
“Wang” in function doSim.

LncRNA functional similarity
Based on existing calculation  methods5, given lncRNA li associated with n1 diseases and lncRNA lj associated 
with n2 diseases, their functional similarity value is defined as:

where D(li) represents the set of n1 diseases related to lncRNA li , and D(lj) represents the set of n2 diseases related 
to lncRNA lj.

In this way, we can obtain the lncRNA functional similarity matrix lncF.

Integration of similarity matrix
lncG and lncF are integrated into the lncRNA similarity matrix, which is referred to as lncSM for short. Firstly, 
the preliminary lncRNA similarity matrix is defined as:

Then, by referring to the data processing method in GAERF  method25, we sorted the similarity values between 
any lncRNA and all lncRNAs in the matrix, and modified the value of the first kl similarity values in the matrix 
to 1, and the remaining positions to 0. In this way, we can obtain the integrated lncRNA similarity matrix lncSM.

Similarly, parameter kd, corresponding to parameter kl, was used to integrate disG and disS, and the integrated 
disease similarity matrix (disSM for short) was obtained.

Residual graph convolutional networks
Graph convolutional network is mainly used for feature extraction. It combines the features of the node itself 
with those of its adjacent nodes to obtain the deep features of the original node. As shown in Fig. 2, for a node, 
GCN first obtains the features of the node itself and the features of adjacent nodes. Then the obtained features 
are normalized and aggregated. After aggregation, a new node feature is obtained, which includes not only the 
original node features, but also the original node’s adjacent node features.

Assuming that the input feature is X(0) , the feature X(1)after one layer of GCN processing is:

(7)disS(di , dj) =

∑

n∈Vdi
∩Vdj

(Ddi (n)+ Ddj (n))
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∑

d∈D(lj)
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∑
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Figure 2.  The flowchart of GCN.
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where relu is the relu activation function, B̂ is the matrix after adding the loop to B, B is the adjacency matrix 
representing the relationship between each node, D̂ is the degree matrix of B̂ , X is the feature matrix, � is the 
weight matrix in the training process.

The residual network can effectively reduce the training error. The residual block network in general form is 
shown in Fig. 3. The residual block network is composed of convolution layer, normalization layer, activation 
layer and summation layer. Assuming that the input feature is x, in the residual network, it passes through the 
convolutional layer, the normalization layer, the activation layer, the convolutional layer and the normalization 
layer in turn, and finally the feature x′ will be obtained. After summing x and x′ and passing through the activa-
tion layer, the feature y is obtained.

In the model proposed in this paper, the convolutional layer in the residual-block network is replaced by the 
graph convolutional network, and the input of the summation layer is replaced by the output of the first layer 
GCN and the output of the second layer GCN, to obtain the residual GCN in Fig. 1.

Given the integrated similarity lncSM of lncRNA, we can use the residual graph convolutional network to 
obtain the local features of lncRNA:

where relu is the relu activation function, norm is the normalization of features, lncSM(1) is the features of lncSM 
after one graph convolutional network and lncSM(2) is the features of lncSM after two graph convolutional net-
works. In the same way, we can also obtain the local features of the disease disSM_local.

Attention mechanism
The attention mechanism in neural networks is a method to allocate computing resources to more important 
tasks and solve the problem of information overload in the case of limited computing power. Since the features 
extracted by the residual graph convolutional network only contain local information, to realize the fusion of 
global information and local information, we can use the attention mechanism to extract the global information 
of features. An important step in the attention mechanism is the calculation of attention value. The calculation 
steps of attention value are as follows: firstly, the attention distribution is calculated on all the input informa-
tion; Then, input information is weighted according to the distribution of attention. Models with attentional 
mechanisms can pay more attention to key input features when attention resources are limited, thus improving 
the efficiency of neural networks.

In this paper, an attention mechanism for processing the two-dimensional matrix is proposed to obtain global 
information of lncRNA features and disease features. The flowchart of the attention mechanism is shown in 
Fig. 4. For the input deep feature Y with the size of H × C , it is firstly passed through two fully connected layers 
to obtain feature Q′ with the size of H × C and feature V with the size of H × C respectively. Then, feature Q′ 
is summed over each row to obtain the attention weight distribution matrix Q of size H × 1 . Furthermore, the 
attention weight distribution matrix Q is multiplied by feature V, and the result is passed through a fully con-
nected layer to obtain the feature Y ′ after attention allocation. For the input feature Y of size H × C , the formula 
for the whole process is:

(11)X(1) = relu(D̂− 1
2 B̂D̂− 1

2X(0)�)

(12)lncSM_local = relu(relu(norm(lncSM(1)))+ norm(lncSM(2)))

(13)Q =rs(Y ·Wq + bq)
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Figure 3.  The flowchart of the residual block.
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where Wq , Wv and W all represent the weight matrix with the size of C × C ; bq , bv , and b all represent bias matrices 
of size H × C ; and rs(·) represents row summation operations.

Given the local feature lncSM_local of lncRNA, we use the attention mechanism to process it globally and 
obtain the potential feature Lp of lncRNA:

In this way, we can obtain the potential feature Lp of lncRNA. Similarly, the potential feature of the disease 
Dp , can also be obtained.

Loss function
We used the binary cross-entropy loss function during the calculation of lncRNA potential features and disease 
potential features:

where S is the size of data A and Â , with a value equal to M × N , i ranges from 0 to M − 1 , and j ranges from 0 
to N − 1 , sigmoid(·) is the activation function, Lp is the potential features of lncRNA with size M × C , Dp is the 
potential features of disease with size N × C , temp is the trainable parameter matrix with size C × C.

Extra-Trees
Extra-Trees, full name extremely randomized trees, is a tree-based integration method commonly used to solve 
supervised classification and regression problems in deep  learning26. LncRNA-disease associations prediction 
problem is actually a classification problem. LncRNAs associated with diseases are classified as positive pairs, 
while those not associated with diseases are classified as negative pairs. So we chose an Extra-Trees classifier to 
predict lncRNA-disease associations.

We firstly concatenated the features Lp and Dp to get the features of each lncRNA-disease pair. For example, 
the feature of the lncRNA-disease pair ( li,dj ) is:

where lp(i, 1) represents the 1st element of row i in the matrix Lp, and so on. Then, the known associations matrix 
A is used as labels and used together with the pair features to train the Extra-Trees classifier. Finally, the trained 
Extra-Trees classifier was used to predict the unknown lncRNA-disease pairs. The higher the prediction score, 
the more possible the lncRNA in the pair is to be associated with the disease.

Results
Evaluation criteria
The method evaluation criteria used in this experiment include the ROC curve (receiver operating character-
istic curve), AUC value (the area under curve) and PR curve (precision-recall curve), AUPR (the area under 
precision-recall curve).

Prediction of lncRNA-disease associations is essentially a binary classification. LncRNAs associated with the 
disease are classified as positive, while those without are classified as negative. In the prediction model, a score 
matrix of the associations between each lncRNA and each disease can be obtained. We can select a threshold value 
according to this score value. If the score exceeds this threshold, it will be judged as a positive sample, while if 
the score is lower than this threshold, it will be judged as a negative sample. By comparing the predicted results 
of the model with the known sample associations before the prediction, four types of samples can be obtained, 
namely, positive samples predicted by the model as positive(TP), negative samples predicted by the model as 
positive(FP), positive samples predicted by the model as negative(FN), and negative samples predicted by the 
model as negative(TN).

By selecting different thresholds, the quantity of TP, FP, FN and TN under different thresholds can be obtained, 
thus the true positive rate (TPR) and the false positive rate(FPR) can be calculated. With FPR as the horizontal 
axis and TPR as the vertical axis, we can obtain an ROC curve. The calculation of TPR and FPR is shown as:

(14)V =Y ·Wv + bv

(15)Y ′ =(Q · V) ·W + b

(16)Ql =rs(lncSM_local ·Wql + bql)

(17)Vl =lncSM_local ·Wvl + bvl

(18)Lp =(Ql · Vl) ·Wl + bl

(19)ℓoss =
1

S

∑

i,j

(Aijlog(Âij)+ (1− Aij)log(1− Âij))

(20)Â =sigmoid(Lp · temp · DpT )

(21)
Feature(li , dj) = [Lp(li);Dp(dj)]

= [lp(i, 1), lp(i, 2), ..., lp(i,C); dp(j, 1), dp(j, 2), ..., dp(j,C)]
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The AUC value is the area under the ROC curve. Usually, the AUC value is greater than 0 and less than 1. The 
closer the ROC curve is to the upper left, the closer the AUC value is to 1, and the better the model performance 
will be. Therefore, the performance of the model can be judged by comparing the AUC value of each model. The 
larger the AUC value is, the better the performance of the model is.

Similar to the above TPR and FPR, the corresponding recall and precision can be calculated by selecting dif-
ferent thresholds. A PR curve can be obtained by taking recall as the horizontal axis and precision as the vertical 
axis. The calculation of recall and precision is shown as:

The AUPR value is the area under the PR curve, and the AUPR value is between 0 and 1. The larger the AUPR 
value is, the better the model performance is.

Based on the evaluation criteria, the performance of the method is evaluated by using 5-fold cross-validation. 
In the process of validation, to reduce the impact of raw data imbalance on model evaluation, we randomly 
selected unlabeled samples with the same number of positive samples as negative samples. Then the positive 
and negative samples are divided into five parts, one of which is used as a test set, and the other four parts are 
used as a training set to train the classifier and finally obtain the validation result. To reduce the randomness of 
the experiment, we repeated the experiment 20 times for each validation and took the average of the results of 
these 20 experiments as the final validation result.

Parameter setting
Many parameters need to be set in advance in the deep learning model. The optimization algorithm adopted by 
ResGCN-A is Adam. The random number seed n of the generated weight matrix is set to 1 and the train epoch is 
set to 1000. The control variable method is used to select the learning rate lr, the feature dimension C of lncRNA 
and disease, and the parameter kl when integrating the similarity matrix of lncRNA and kd when integrating 
the similarity matrix of disease. The effect of the model is referred to as the AUC obtained by the 5-fold cross-
validation method. The learning rate lr is selected from [0.000001, 0.000005, 0.00001, 0.00005, 0.0001, 0.0005] 
and the result is shown in Fig. 5a. The parameter C is selected from [8, 16, 32, 64, 128, 256], and the result is 
shown in Fig. 5b. It can be observed in Fig. 5a that ResGCN-A works best when the learning rate is set to 0.00005. 
Figure 5b shows that when the feature dimension C of lncRNA and disease is set to 128, ResGCN-A works best. 
The parameter kl and parameter kd are selected in [1, 10, 20, 30, 40, 50], and the result is shown in Table 1. It 
can be observed that when kl is 20 and kd is 10, ResGCN-A has the best performance. After all parameters are 
adjusted, we calculated the 95% confidence interval of the model AUC values, which is (0.99124, 0.99164).

The experiment was carried out in the pytorch environment. The hardware environment is NVIDIA Quadro 
P620, with 5.8 G memory, and the CPU is Intel Core i7-9700. The time of training the ResGCN-A 1000 epoch 
is about 76 s.

(22)TPR =
TP

TP + FN

(23)FPR =
FP

FP + TN

(24)Recall =
TP

TP + FN

(25)Precision =
TP

FP + TP

Figure 5.  The AUC value of different learn rate and different feature channels.
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Selection of the number of GCN layers
In our model, the number of layers of GCN has a large impact on its performance. To achieve the best perfor-
mance for our model, we set the number of layers of GCN to 0 to 5 respectively, and then performed 5-fold 
validation. The validation results are shown in Fig. 6. It can be observed that our model performs best when the 
number of layers of GCN is set to 2.

The choice of classifiers
We comprehensively evaluated the performance of six classifiers: Extra-Trees (extremely randomized trees)26, 
AdaBoost (adaptive Boosting)27, logistic  regression28, random  forest29, XGBoost (eXtreme Gradient Boosting)30 
and GBDT (gradient boosting decision tree)31. Based on their AUC values and AUPR values obtained in the 
5-fold cross-validation, the best-performing classifier is selected. The results are shown in Fig. 7a,b, with Extra-
Trees having the highest AUC value and AUPR value. So we chose Extra-Trees as the classifier for ResGCN-A 
to predict potential lncRNA-disease associations.

Attention mechanism verification
To verify the effectiveness of our proposed attention mechanism, we deleted the attention mechanism and 
adjusted the parameters of the model. Finally, when the learning rate is 0.001, the parameter C is 128, the kl is 20, 
and the kd is 10, we got the best result under the 5-fold cross-validation of the model. We compared the results 
with those of the original model. The comparison results are shown in Fig. 8a,b. By comparison, the AUC and 
AUPR values of the model are increased by 0.31% and 0.44% respectively by the attention mechanism, which 
indicates that the proposed attention mechanism can improve the prediction accuracy of the model.

Robustness evaluation
To evaluate the robustness of ResGCN-A, we kept the model parameters unchanged and evaluated it using 5-fold 
cross-validation on different data sets. Different data sets are from  RFLDA32,  BRWMC33, and  TPGLDA34. The 
RFLDA dataset contains 240 lncRNAs, 495 miRNAs, 412 diseases, and 2697 experimentally validated lncRNA-
disease associations. The BRWMC dataset contains 828 lncRNAs, 314 diseases, and 1695 lncRNA-disease 
associations. The TPGLDA dataset contains 115 lncRNAs, 178 diseases, 1415 genes, and 540 lncRNA-disease 

Table 1.  The AUC value corresponds to different kl and kd.

AUC 

kd

kl

1 10 20 30 40 50

1 0.9821 0.9849 0.9852 0.9855 0.9850 0.9840

10 0.9897 0.9908 0.9916 0.9908 0.9904 0.9905

20 0.9905 0.9909 0.9912 0.9907 0.9903 0.9909

30 0.9902 0.9906 0.9904 0.9906 0.9906 0.9905

40 0.9887 0.9903 0.9903 0.9899 0.9900 0.9905

50 0.9892 0.9904 0.9902 0.9902 0.9899 0.9899

Figure 6.  Different numbers of GCN layers.
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associations. We carried out 5-fold cross-validation of ResGCN-A under the data set in this paper, RFLDA data 
set, BRWMC data set and TPGLDA data set respectively. The experimental results are shown in Fig. 9a,b.

It can be seen that the AUC values and AUPR values of the model change slightly on RFLDA and BRWMC 
data sets, but the AUC values and AUPR values on TPGLDA data sets are lower. The reason is that the number 
of lncRNA-disease associations in the TPGLDA dataset is too small, and the data features cannot be fully utilized 
when training the model, resulting in low results. Therefore, we can conclude that increasing the number of 
known lncRNA-disease associations can improve the predictive performance of the model. Moreover, ResGCN-A 
has better robustness on data sets with a large number of associations.

Comparison with other methods
In order to evaluate the performance of ResGCN-A, we compare it with  GANLDA12,  GAMCLDA10,  GCRFLDA35, 
LDA-LNSUBRW36 and  LDICDL37 using 5-fold cross-validation.

As shown in Fig. 10a, the AUC value of ResGCN-A is 0.9916, which is higher than that of other methods 
(GANLDA 0.9248, GAMCLDA 0.8917, GCRFLDA 0.9636, LDA-LNSUBRW 0.9780 and LDICDL 0.9298). As 
shown in Fig. 10b, the AUPR value of ResGCN-A is 0.9951, which is better than that of other methods (GAN-
LDA 0.9286, GAMCLDA 0.8871, GCRFLDA 0.8669, LDA-LNSUBRW 0.9760 and LDICDL 0.9392). The AUC 
and AUPR values of ResGCN-A are higher than those of other methods. The possible reason is that ResGCN-A 
adopts the method of combining residual graph convolutional network with attention mechanism to extract 
both local information and global information of original features, realizing the fusion of the two pieces of 
information and thus improving the prediction accuracy. However, there are some limitations to our approach. 
First, the method requires positive and negative samples to train the classifier, but it is still difficult to obtain 
reliable negative samples. The method of randomly selecting negative samples will affect the performance of 

Figure 7.  ROC curves and PR curves of different classifiers under 5-fold cross-validation.

Figure 8.  ROC curves and PR curves of ResGCN-A with and without attention mechanism under 5-fold cross-
validation.
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the prediction method. In addition, compared with GANLDA and GAMCLDA, our method only collects the 
information of two biological entities, lncRNA and disease, and the features obtained are relatively one-sided. 
If more information of biological entities, such as miRNA and genes, can be added in the future, the features 
obtained will be more complete, which will also be of great help to the performance of the prediction method.

Association prediction of diseases without associated lncRNA
It is important for prediction methods to have the ability to predict the associated lncRNAs for a given disease 
without any association. To evaluate the performance of our method for predicting diseases without associ-
ated lncRNA, we randomly selected ten diseases in the dataset. They are colon cancer, prostate cancer, gastric 
adenocarcinoma, lung cancer, liver cancer, breast cancer, HIV, kidney cancer, ovarian cancer and pancreatic 
cancer. For disease d, the number of associations it has is k. We firstly removed all lncRNAs associated with d 
and then used our model to predict lncRNAs associated with disease d. We counted the top k lncRNAs and the 
top k + 10 lncRNAs predicted by the model under the two datasets respectively, and finally used Pubmed to 
search relevant literature to count the number of associations successfully predicted by our model. The statisti-
cal results are shown in Table 2. It can be observed that for liver cancer, there are 40 known associations, 40 of 
the top 40 lncRNAs predicted by the model are correct, and 45 of the top 50 lncRNAs predicted by the model 
are correct. The number of correct associations predicted by our model catches up with or even exceeds the 
number of original associations in the dataset, which indicates that our model has good predictive performance 
for diseases without associated lncRNA.

Figure 9.  ROC curves and PR curves of ResGCN-A on different datasets under 5-fold cross-validation.

Figure 10.  ROC curves and PR curves of ResGCN-A, GANLDA, GAMCLDA, GCRFLDA, LDA-LNSUBRW 
and LDICDL under 5-fold cross-validation.
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Case study
To further demonstrate the predictive ability of ResGCN-A for potential lncRNA-disease associations, case stud-
ies were conducted using prostate cancer and colon cancer as examples. In the case study, all known lncRNA-
disease associations were taken as positive samples, unlabeled samples with the same number of positive samples 
were randomly selected as negative samples, and all positive and negative samples were taken as training sets. 
Unlabeled samples were taken as test sets and new lncRNA-disease associations were predicted by trained 
ResGCN-A. We selected the top 10 lncRNAs predicted by ResGCN-A to be associated with these two diseases, 
and the ten lncRNA associations with each disease were not confirmed in the original dataset. We used Pubmed 
to search for relevant literature to verify the associations predicted by our model.

Prostate cancer is an epithelial malignancy of the prostate gland, second only to lung cancer in male incidence. 
If the cancer can be detected at an early stage, the success rate of treatment is high. Table 3 shows the top 10 lncR-
NAs predicted by ResGCN-A to be associated with prostate cancer. Of those, 7 associations have been confirmed. 
It has been proven that high expression levels of the top-ranked XIST can lead to enhanced carcinogenicity of 
prostate  cancer38. It has been shown that the third-ranked CCAT1 is promoted to overexpression in prostate 
cancer tumors that can lead to drug  resistance39. It has been demonstrated that the fourth-ranked MIR17HG is 
a host gene of the miR-17-92a-1 cluster, and that when celastrol down-regulates androgen receptor and its target 
miR-17-92a, autophagy induction in prostate cancer cells is  caused40. It has been confirmed that AFAP1-AS1, 
ranked 5th, can promote the metastasis of prostate cancer  cells41. It has been shown that downregulation of the 
seventh-ranked ZFAS1 reduces the metastasis of prostate cancer  cells42. It has been indicated that the 8th-ranked 
CCAT2 can downregulate miR-424 expression in prostate  cancer43. It has been found that the 9th-ranked SOX2-
OT can accelerate the proliferation and migration of prostate cancer cells via the miR-369-3p/CFL2  axis44.

Colon cancer is a common gastrointestinal malignant tumor occurring in the colon, which occupies the 
third place in the incidence rate of gastrointestinal tumors. Studying the lncRNA associated with colon cancer 
may be helpful for the prevention and treatment of colon cancer. Table 4 shows the top 10 lncRNAs predicted 
by ResGCN-A associated with colon cancer. Of these, 8 associations have been confirmed. It has been reported 
that NEAT1, which ranks first, can be involved in the occurrence and development of colon  cancer45. It has 
been demonstrated that PVT1, which ranks second, was highly expressed in colon cancer  tissue46. It has been 
confirmed that CDKN2B-AS1, ranked third, is an aberrant expression in human colorectal  cancer47. It has been 
shown that the fourth-ranked GAS5 is down-regulated in colon cancer cell lines that are resistant to 5-fluoro-
uracil48. It has been indicated that UCA1, ranked fifth, is a potential target for the treatment of colon  cancer49. It 
has been confirmed that AFAP1-AS1, ranked sixth, can be used as a biomarker for the diagnosis and prognosis 

Table 2.  Statistical results for diseases not associated with lncRNA.

Disease name The number of confirmed associations(k) Top k Top k + 10

Colon cancer 7 7 15

Prostate cancer 27 27 31

Gastric adenocarcinoma 3 3 8

Lung cancer 28 28 33

Liver cancer 40 40 45

Breast cancer 29 22 28

HIV 2 2 7

Kidney cancer 13 13 20

Ovarian cancer 16 14 16

Pancreatic cancer 12 11 17

Table 3.  The top 10 lncRNAs associated with prostate cancer predicted by ResGCN-A that were not 
confirmed in the dataset.

Rank LncRNA Evidence

1 XIST PMID: 16261845, 29212233, 36038831

2 TDRG1 Unknown

3 CCAT1 PMID: 29863242, 30221381, 31387890, 32089062, 34319909, 35773731

4 MIR17HG PMID: 26891588, 27501757

5 AFAP1-AS1 PMID: 31081081, 31669642, 33138677, 33464230, 34126893

6 LSINCT5 Unknown

7 ZFAS1 PMID: 29416676, 31321444, 32104094, 36514044

8 CCAT2 PMID: 27558961, 31966650, 32218194, 32831916, 35178357, 37178445

9 SOX2-OT PMID: 31623830, 32407168

10 MIR503HG Unknown
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of patients with colorectal  cancer50. It has been discovered that high expression of the seventh-ranked XIST is 
associated with reduced colorectal tumor  growth51. It has been described that knockdown of HOTTIP, ranked 
eighth, inhibits the proliferation and migration of colorectal cancer  cells52.

Discussion
There is increasing evidence that lncRNA plays an important role in disease progression, and identifying disease-
associated lncRNAs will contribute to a deeper understanding of disease mechanisms at the genetic level, which 
is of great significance for the prognosis, diagnosis and treatment of diseases. However, due to the complex 
associations between lncRNA and disease, and the long research time of traditional biological experiments, the 
cost of studying lncRNA-disease associations is still relatively high. To reduce the research cost of traditional 
biological experiments and improve the prediction accuracy of current computational methods, we proposed a 
lncRNA-disease associations prediction method with attention mechanism, ResGCN-A. It overcomes the prob-
lem that the previous methods can not make full use of the local and global information of the original features. 
ResGCN-A firstly integrated the two lncRNA similarity matrices and two disease similarity matrices respectively, 
and obtained the integrated lncRNA similarity matrix lncSM and the integrated disease similarity matrix disSM. 
Then, residual GCN was used to obtain the local feature information of lncSM and disSM. Then, the attention 
mechanism was used to obtain the global feature information of both. After batch normalization, the lncRNA 
potential feature Lp and the disease potential feature Dp were obtained. Finally, by concatenating the potential 
features, the training set of the Extra-Trees classifier was obtained, and the predicted lncRNA-disease associa-
tions were obtained by the trained Extra-Trees classifier. The performance of ResGCN-A was compared with the 
other five methods by 5-fold cross-validation. The results show that the AUC and AUPR values of ResGCN-A are 
higher than the corresponding values of the other five methods, so ResGCN-A is superior to the other five meth-
ods. Case studies showed that ResGCN-A was an effective method for predicting lncRNA-disease associations.

Although ResGCN-A has achieved good performances in the experiment, there are still some shortcomings 
that can be improved. There are three main points :(1) increasing the number of similarities in the original data. 
In this experiment, only four types of lncRNA Gaussian interaction profile kernel similarity, lncRNA functional 
similarity, disease Gaussian interaction profile kernel similarity and disease semantic similarity were used. In the 
future, more data similarity can be added to improve the prediction accuracy of this method, such as lncRNA 
sequence similarity. (2) Increasing the number of known lncRNA-disease associations. The robustness evalu-
ation in this paper shows that increasing the number of known lncRNA-disease associations can improve the 
predictive performance of the model. In the future, more and more lncRNA-disease associations can be collected 
to improve the dataset. (3) Obtaining more reliable negative samples. Random selection of negative samples 
will affect the classification ability of the classifier. In the future, we hope to propose a more reliable negative 
sample selection method, which can improve the capability of the classifier and thus improve the accuracy of 
the prediction method.

Data availibility
The datasets generated and/or analysed during the current study are available from the corresponding author 
upon reasonable request.
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