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Machine learning reveals 
differential effects of depression 
and anxiety on reward 
and punishment processing
Anna Grabowska 1,2*, Jakub Zabielski 2 & Magdalena Senderecka 2*

Recent studies suggest that depression and anxiety are associated with unique aspects of EEG 
responses to reward and punishment, respectively; also, abnormal responses to punishment in 
depressed individuals are related to anxiety, the symptoms of which are comorbid with depression. 
In a non-clinical sample, we aimed to investigate the relationships between reward processing and 
anxiety, between punishment processing and anxiety, between reward processing and depression, 
and between punishment processing and depression. Towards this aim, we separated feedback-
related brain activity into delta and theta bands to isolate activity that indexes functionally distinct 
processes. Based on the delta/theta frequency and feedback valence, we then used machine learning 
(ML) to classify individuals with high severity of depressive symptoms and individuals with high 
severity of anxiety symptoms versus controls. The significant difference between the depression and 
control groups was driven mainly by delta activity; there were no differences between reward- and 
punishment-theta activities. The high severity of anxiety symptoms was marginally more strongly 
associated with the punishment- than the reward-theta feedback processing. The findings provide 
new insights into the differences in the impacts of anxiety and depression on reward and punishment 
processing; our study shows the utility of ML in testing brain-behavior hypotheses and emphasizes the 
joint effect of theta-RewP/FRN and delta frequency on feedback-related brain activity.
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Rewards and punishments powerfully shape human behavior. Impaired reward-seeking and avoidance of pun-
ishment have been systematically linked to various psychiatric disorders, especially depression. Multiple studies 
have reported that depressed individuals respond less strongly to rewarding stimuli than healthy individuals and 
are less likely to avoid punishments1–3.

The evidence for abnormalities in neural responses to rewards and punishments comes from reward positiv-
ity (RewP) and feedback-related negativity (FRN) in event-related potential (ERP) studies. RewP is a positive 
fronto-central wave that occurs approximately 250–350 ms after reward/positive feedback and is considered a 
neurophysiological marker of reward sensitivity4. Source localization and functional magnetic resonance studies 
link RewP amplitude with dopamine circuits5,6. Dopamine neurons play a key role in reward processing: when a 
reward is greater or worse than expected, the activation of these neurons increases or decreases, respectively7,8. 
Numerous studies have shown that RewP amplitude is attenuated in adults with depressive symptoms com-
pared to non-depressed controls9–12. Proudfit and colleagues13 linked this amplitude attenuation with emotional 
disengagement, and thus blunted motivation and reward sensitivity in depressed individuals. A similar image 
emerges from a recent review conducted by Weinberg14. Based on a wide cross-section of works, Weinberg sug-
gests that RewP might be a neural marker of deficits in attention and reactivity towards motivational content. 
Indeed, diminished RewP amplitudes were observed not only in clinically depressed individuals, but also in 
individuals with high self-reported anhedonia levels1,10. In turn, FRN is an ERP component that reaches its peak 
approximately 300 ms after punishment/negative feedback; it is usually observed as a larger negative deflection 
to loss trials relative to win trials. Larger magnitudes of FRN have been observed in both current and remitted 
depression15,16. Reward-related brain activity is often conceptualized as the difference between loss and win trials; 
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in such cases terms FRN and RewP stand for difference waves and are often used interchangeably4,17. For a broader 
discussion of feedback-related ERPs, see18. Studies using this negative versus positive feedback conceptualiza-
tion have reported blunted FRN/RewP amplitudes (i.e., a smaller negative minus positive feedback difference 
wave) in depressed versus control people9,19. However, abnormalities in reward and punishment sensitivity are 
not unique to clinical samples and have also been reported in general non-clinical populations with elevated 
depression-related symptoms20–22. Further, Umemoto et al.23 reported that healthy individuals who scored high 
in reward sensitivity and low in depression produced a larger RewP/FRN. These results suggest that changes 
in RewP and FRN amplitudes are likely to be expressed as a function of depressive symptoms, not simply as a 
binary change within formal diagnostic categories.

Although changes in the processing of both reward and punishment are observable in individuals with clinical 
depression and non-clinical elevated depression symptoms, in a recent study Cavanagh and colleagues proposed 
a more sophisticated dimensional hypotheses: depression is more associated than anxiety with reward/positive 
feedback processing (indexed with RewP), and anxiety is more associated than depression with punishment/
negative feedback processing (indexed with FRN); thus, depressed individuals’ abnormal response to punish-
ment may be related not to depression-specific symptoms but to anxiety symptoms24. Although symptoms of 
depression and anxiety often co-occur, there are actually some reasons to believe that they may be related to 
different circuits at the level of neuronal systems25. Reduced RewP has been found to be uniquely associated 
with depressive symptoms; no such relationship was found with anxiety symptoms26,27. Meanwhile, anxiety has 
been found to be associated with ERPs that share a common signature in the theta band: N228 and error-related 
negativity (ERN)29–31. Although the FRN is also a theta-related ERP, no study reported an association between 
ERP FRN (understood as a response to negative feedback) and anxiety, as typically feedback-related ERPs have 
been quantified as negative versus positive feedback difference waves.

The aforementioned evidence for the associations between depression, anxiety, and feedback processing comes 
from ERP studies. However, time-frequency (TF) approaches to ERP activity have provided evidence that many 
ERP components contain a mix of overlapping TF components that index separable underlying processes. Theta 
(4-8 Hz) and delta (0-3 Hz) TF activity has been shown to underlie common ERP components, such as P332,33, 
ERN34,35 and FRN36–39. Although closely related, feedback-P3 and FRN index different cognitive processes: FRN, 
which is usually linked with theta activity, represents reward sensitivity, while feedback-P3, which is linked with 
delta activity, represents the salience of reward40. For time-domain FRN and feedback-P3, Bernat and colleagues38 
have shown that theta contributes to both increased negative amplitude of FRN and increased positive amplitude 
of P3. A slower delta contributes to a more positive amplitude of both the FRN and feedback-P3 components. 
Thus, the absolute amplitude of FRN (and RewP) is a combination of the ascending delta wave (most probably 
linked with the rising feedback-P3 component) and the descending theta wave. This complicates the estima-
tion of the relative change in RewP/FRN magnitude since more negative RewP or FRN amplitudes could be the 
result of increased theta activity, blunted delta activity, or both. Further, although some studies link RewP to 
delta activity24,36, we believe this complicates the distinction between RewP and P3 components. Thus, we refer 
to RewP and FRN as to theta-related activities after positive and negative feedback, respectively, to highlight the 
separateness of these constructs from feedback-related brain activity in delta band18.

Indeed, not only ERPs but also time-frequency EEG activity are associated with reward processing. Multi-
ple studies reported an increase in the high-beta/low-gamma oscillatory activity after rewarding feedback in 
gambling and learning tasks41. Specifically, the high-beta/low-gamma power activity in reward tasks was more 
pronounced for larger than smaller rewards but was not observed for worse-than-expected outcomes, which 
suggests the specific link between high-beta/low-gamma oscillatory and reward learning and attention42–44. 
Increased theta power in the frontal-medial brain area (FMθ ) has been observed for conflict, error processing35, 
and unexpected or negative outcomes45–47. Feedback-related FMθ has been linked to reward magnitude, with 
increased FMθ power for high compared to low reward magnitude48. This effect, however, has not been found to 
occur for participants with induced positive mood49,50, thus suggesting that optimistic bias leads to overestimation 
of the likelihood of positive events. Further, Cavanagh and colleagues30 linked increased FMθ with enhanced 
levels of anxiety. These results indicate that the affective or motivational state of participants influences reward 
processing, as indexed with FMθ.

In the present study, we used a machine learning (ML) framework to address questions that emerged from 
Cavanagh and colleagues’24 research. As previously mentioned, they observed that depression predicts a sig-
nificant reduction in RewP amplitude under the reward condition, while anxiety predicts an increased theta 
activity in the punishment condition. Based on these findings, we formulated the following questions: would 
high vs low depression groups be better differentiated by reward than punishment brain activity and would 
high vs low anxiety groups be better differentiated by punishment-theta than reward-theta brain activity? If the 
associations between anxiety, depression and neurophysiological measures are strong enough to translate into 
classification results, it would provide support for the Cavanagh and colleagues’ dimensional hypothesis. Such 
results would also be practically and clinically relevant. ML has repeatedly proven its usefulness and shown very 
good predictive performance51 in differentiating groups or conditions based on single-trial ERPs in various 
Brain-Computer Interface (BCI) tasks. It has also been used in various depression classification tasks and mod-
els for the diagnosis of major depressive disorder52–55. The strength of the ML approach lies in the data-driven 
extraction of the most discriminative brain signal features. Firstly, ML enhances the sensitivity of analysis. If 
groups actually differ in some brain signal characteristics, the ML model is likely to detect this difference. This 
sensitivity to differences decreases when only predefined features (e.g., the mean RewP amplitude recorded at one 
electrode within a selected time window) are taken into account. Secondly, ML identifies significant differences 
in brain signal activity between groups in a data-driven way. This provides a way to validate hypothesis-driven 
results by verifying whether the groups indeed differ as suggested by previous studies, and to discover new brain 
characteristics that are specific to some conditions and groups (e.g.56). The latter advantage falls within one of 
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ML’s roles in neuroscience that was defined by Glaser and colleagues57: identification of predictive variables, i.e., 
identifying how informative one set of variables (e.g., neurophysiological) is about another (e.g., behavioral). 
This approach is still very rarely employed. The presented study aims to use ML in the aforementioned way to 
identify frequency-related brain signal features that discriminate between depression and control groups, as 
well as between anxiety and control groups; and to determine whether the features that differentiate depression 
from control groups are the same or different from those that differentiate anxiety from control groups. Further, 
the ML framework offers increased generalizability of the results compared to classical statistical approaches in 
between-group studies58. For a discussion on the utility of ML models in neuroscience, see57.

To take full advantage of the benefits of ML, we used the Common Spatial Pattern (CSP) algorithm for brain 
signal feature extraction59. Classic ERP approaches are based on the signal from single electrodes or pre-defined 
regions of interest. Single-electrode EEG signals are characterized by a low signal-to-noise ratio, thus predictive 
analyses based on these signals entail a high risk of overfitting and low model sensitivity59. Feature extraction 
methods increase the signal-to-noise ratio and extract information on the brain spatial dynamics, which is rarely 
analyzed60. In recent decades several methods have been proposed for EEG signal features extraction. Some of 
the most popular methods are: the wavelet transform method61, independent component analysis62, and principal 
component analysis63. These methods, categorized as unsupervised, extract features based on data variance, i.e., 
the distribution of information within the data, which may lead to the loss of valuable information64. The CSP 
algorithm, as a supervised ML method, follows a very different strategy. The goal of CSP is to find a set of spatial 
filters that can effectively differentiate between two classes of signals based on their covariance matrices; thus, 
CSP is specifically designed for classification. Before the deep learning era, CSP was the most popular and most 
successful method in the classification of EEG signals65. CSP was originally used to detect abnormal EEG signals, 
but it has also been successfully used in BCI tasks65–68. An additional advantage of CSP is the reduction of the 
signal-to-noise ratio; which in turn diminishes the sensitivity of the model to non-task-related changes in the 
measured signals59. Thus, CSP-based classification models show considerably higher accuracy, generalizability 
and reliability than classification based on classic ERP features69,70.

Based on the aforementioned literature, we hypothesized that it would be possible to predict depression vs. 
control group membership based on feedback-related brain activity, as the literature suggests that depression 
alters feedback processing. To broaden the knowledge on the relationships between depression, anxiety, and 
feedback processing, we additionally aimed to test three more specific hypotheses: (1) due to impairment of 
the motivational approach system (linked with the dopamine system) and the consequently altered positive 
feedback processing, classification of individuals with high severity of depression symptoms vs controls will be 
more accurate when it is based on the reward-theta than when based on punishment-theta activity; (2) as theta 
activity has been found to be enhanced in loss trials in individuals with high severity of anxiety symptoms vs 
controls in both clinical and nonclinical populations31, classification of individuals with high severity of anxiety 
symptoms will be more accurate when it is based on the punishment-theta than when based on reward-theta 
activity; (3) as some of the variability in the classical RewP/FRN ERP components is induced by the positive 
delta-P3 wave, it will be possible to predict depression vs. control group membership based on reward-delta or/
and punishment-delta activity. Particularly, we were interested in whether the delta changes in the RewP/FRN 
(200-300 ms) time window are already so significant as to distinguish experimental and control group member-
ship. If so, this would be further evidence of an overlap between various TF components and the confounding 
effect of this overlap on study results.

To emphasize the utility of ML and supervised brain signal feature extraction, we conducted additional clas-
sic ERP analyses. We expected that depressed vs control individuals should be better differentiated when based 
on reward-related Rew-P rather than punishment-related FRN; anxious vs control individuals should be better 
differentiated based on punishment-related FRN rather than reward-related Rew-P. However, considering RewP/
FRN (theta) and P300 (delta) brain signal entanglement, we assumed that these relationships may not be robust 
enough to yield statistically significant results.

Methods
Participants
Two hundred and twenty-five volunteers (113 females, 111 males, one non-binary gender) aged 18-39 (M = 
23.64, SD = 4.18) took part in the study. Participants were recruited from the general population via internet 
advertisements. All participants were healthy, free of medications, declared no history of neurological or psy-
chiatric diseases, and had normal or corrected-to-normal vision. The participants’ average number of years of 
education was 15.41 (SD = 2.40). To ensure the highest quality of EEG data, each segment containing artifacts 
on any of the set of 64 electrodes was discarded. As a result, three participants who performed less than five 
artifact-free trials that contained positive feedback and less than five artifact-free trials that contained negative 
feedback were excluded prior to analysis.

Participants were assigned to the groups based on their scores in the Beck Depression Inventory-II (BDI-
II)71,72 and the State-Trait Anxiety Inventory, trait subscale (STAI-T)73,74. The BDI-II is administered to both 
clinical and non-clinical populations, with a clinical cut-off of 13. The STAI-T has no defined clinical cut-off, but 
a cut-off of 40 or 41 is most commonly used to determine the probable clinical level of anxiety75. Based on these 
cut-offs, participants were divided into four groups: high BDI-II and high STAI-T (DEP; BDI-II > 13; STAI > 41); 
low BDI-II and high STAI-T (CTR DEP; BDI-II ≤ 13; STAI > 41); low BDI-II and high STAI-T (ANX; BDI-II 
<= 13; STAI > 42); low BDI-II and low STAI-T (CTR ANX; BDI-II ≤ 13; STAI < 41). The mean BDI-II score in 
the depressive (high BDI-II and high STAI-T; M = 23.47) and control (low BDI-II and high STAI-T; M = 7.07) 
groups corresponded to the results of a psychometric study of the Polish adaptation of the BDI-II (control group: 
M = 9.89; mild depression group: M = 22.94; severe depression group: M = 31.29). Due to the significant overlap 
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between anxiety and depressive symptoms, it was impossible to isolate a purely depressive group; therefore, to 
minimize the impact of anxiety symptoms, we chose to keep anxiety high in both the depressive and control 
groups. There were no behavioral differences between groups associated with the number of positive and negative 
feedback received or performance (p > 0.09 for all group comparisons). Table 1 summarizes the characteristics 
of the participants within groups.

Procedure and task
While the EEG signal was recorded, participants performed a speeded version of the Go/NoGo task that has 
previously been validated in several studies76–78. The task included a training block (15 trials), four experimental 
sessions of 84 trials each, and two calibration blocks of 14 trials, which preceded the first and third experimental 
blocks. Participants had to press the response key as quickly as possible if the black geometric figure (square 
or diamond) turned green and kept the same spatial orientation (two-thirds of the trials, all corresponding to 
Go trials). By contrast, they were asked to withhold their response if the black figure turned green but changed 
orientation, or if it turned orange irrespective of orientation (one-third of the trials, all corresponding to NoGo 
trials). On each go trial, the RT was compared against an arbitrary cut-off. If the RT speed was above the cut-off 
limits (slow-Go trials), then negative feedback (a sad face) was provided 1,000 ms after target onset. In turn, if the 
RT speed was below the cut-off limits (fast-Go trials), positive feedback (a smiling face) was presented. To receive 
positive feedback during the first two experimental blocks, participants had to be 10% faster than the mean RT 
calculated during the first calibration block; during the third and fourth experimental blocks, participants had 
to be respectively 10% and 20% faster than the mean RT calculated during the second calibration block. The RT 
cut-off was determined for each participant separately, without his/her knowledge, and was adjusted during the 
experimental session to overcome the interindividual variability in the speed of motor responses and to deal 
with the effects of time and learning. No feedback was provided after inhibitory errors and successful response 
inhibition in NoGo trials to enhance internal monitoring in these cases. Figure 1 presents an outline of the task.

The study followed the Declaration of Helsinki79, and the protocol was approved by the Research Ethics 
Committee of the Philosophical Faculty of Jagiellonian University in Kraków, Poland. All participants received 
verbal and written information about the study’s purpose and procedure; they also provided written informed 
consent and were monetarily compensated for their time.

Electrophysiological recording and data pre‑processing
The experiment was conducted by trained researchers in a sound-attenuated room. The EEG signal was continu-
ously recorded at 256 Hz from 64 silver/silver-chloride (Ag/AgCl) active electrodes (with preamplifiers) using the 
BioSemi Active-Two system and referenced online to the CMS-DRL ground, which drives the average potential 
across all electrodes as closely as possible to amplifier zero. The horizontal and vertical electro-oculograms 
(EOGs) were monitored using four additional electrodes placed above and below the left eye and in the external 
canthi of both eyes after adequate skin preparation. The EEG signal was pre-processed with BrainVision Analyser 
Software80. The signal was re-referenced off-line to the average of the left and right mastoid electrodes; it was ini-
tially filtered with a Butterworth fourth-order filter with a high pass of 0.05 Hz, and a Butterworth second-order 

Table 1.   Demographic, symptom and behavioral characteristics by group.  M mean, SD standard deviation, 
F/M/NB female/male/non binary gender, DEP depression group, CTR DEP control for depression group, ANX 
anxiety group, CTR ANX control for anxiety group.

DEP CTR DEP ANX CTR ANX

Depression (BDI-II)
M (SD) 23.47 (8.86) 07.07 (3.68) 07.02 (3.68) 04.44 (3.31)

Min/Max 14/48 0/13 0/13 0/12

Anxiety (STAI-T)
M (SD) 54.11 (6.24) 47.19 (3.55) 47.75 (3.27) 34.89 (4.21)

Min/Max 42/70 42/55 43/55 25/40

Age (years)
M (SD) 23.08 (3.45) 23.36 (4.28) 23.43 (4.26) 24.39 (4.64)

Min/Max 18/38 18/39 18/39 19/39

Education (years)
M (SD) 15.47 (2.37) 15.06 (2.08) 15.05 (2.14) 15.88 (2.79)

Min/Max 11/25 9/20 9/20 12/24

Number of positive feedback
M (SD) 86.45 (28.71) 94.35 (27.41) 94.06 (28.28) 88.95 (29.69)

Min/Max 31/139 20/169 20/169 22/150

Number of negative feedback
M (SD) 135.13 (27.64) 128.35 (27.52) 128.70 (28.45) 134.17 (29.82)

Min/Max 83/192 54/204 54/204 70/202

Number of error trials
M (SD) 32.88 (14.16) 31.42 (14.86) 30.17 (14.31) 29.33 (13.93)

Min/Max 2/72 7/77 7/77 3/70

Number of inhibited trials
M (SD) 79.12 (14.16) 80.58 (14.86) 81.83 (14.31) 82.67 (13.93)

Min/Max 40/110 35/105 35/105 42/109

Gender F/M/NB 44/31/0 40/31/1 36/28/1 24/42/0

N 75 72 65 66
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filter with a low pass of 30 Hz. Power-line noise was removed with a notch filter at 50 Hz. Data were further 
epoched around the feedback onset (-1,000 to 2,400 ms) and baseline corrected to the average activity from 
-250 to 0 ms pre-feedback. The ocular artifact correction was performed with Gratton, Coles, and Donchin’s 
algorithm81. Noise epochs were rejected via an automatic procedure with the AutoReject MNE package82. The 
average number of artifact-free positive-feedback epochs included in the analysis per participant was 83.30 (SD 
= 27.56); for negative-feedback epochs, it was 121.34 (SD = 30.41). Further, epochs were averaged by condition 
to yield positive-feedback and negative-feedback ERPs for each participant. Figure 2 shows condition ERPs along 
with the positive minus negative feedback difference waves per group.

Data reduction and analysis
Time‑domain components: RewP and FRN
 The classic reward-locked Rew-P and punishment-locked FRN ERP components were quantified as the mean 
activity from 200 to 300 ms at electrode FCz in the positive-feedback and negative-feedback ERPs, respectively. 
It should be noted that, unlike previous studies that analyzed RewP/FRN as the difference wave between positive 
and negative feedback ERPs9, in the current study RewP and FRN were calculated separately.

Time‑frequency components: theta and delta
 Following the methodology outlined in36 that has been shown to be effective in separating delta and theta bands 
in feedback-related ERPs, the feedback-locked ERPs were filtered using a separate high-pass FIR filter at 3 Hz 
(non-causal FIR low-pass filter with windowed time-domain design, upper transition bandwidth: 2.00 Hz (-6 dB 
cutoff frequency: 4.00 Hz), hamming window with 0.0194 passband ripple and 53 dB stopband attenuation) to 
isolate delta frequency, and a bandpass FIR filter at 4 to 7.5 Hz (non-causal FIR bandpass filter with windowed 
time-domain design, lower transition bandwidth: 2.00 Hz (− 6 dB cutoff frequency: 3.00 Hz), upper transition 
bandwidth: 2.00 Hz (− 6 dB cutoff frequency: 8.50 Hz), hamming window with 0.0194 passband ripple and 53 
dB stopband attenuation) to isolate the theta frequency. The theta and delta filter cutoffs were chosen based on 
visual inspection of the averaged TF energy representation across all subjects and feedback (Fig. 3b), filtered with 

Figure 1.   Scheme of the Go/NoGo task used and its conditions: Go trials (A); successful NoGo trials (B); 
unsuccessful NoGo trials, i.e., erroneous response (C).

Figure 2.   Positive-feedback, negative-feedback, and positive minus negative feedback ERP waveforms for 
depression and control groups (a) and anxiety and control groups (panel B). The visible difference between 
depression and control groups in condition waves is no longer present in the conditions difference wave. This 
suggests that the difference between depression and control groups in RewP/FRN amplitudes in condition 
waves is not driven by RewP/FRN (panel A). The visible difference between anxiety and control groups in 
the conditions difference wave suggests that the difference between anxiety and control groups in RewP/FRN 
amplitudes in condition waves is driven by RewP/FRN (b).
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0.05–30 Hz Butterworth band-pass filter. Theta and delta components were further narrowed to a time window 
of 200-300 ms and filtered with CSP. The aim of CSP is to maximize the variance of the spatially filtered signal 

Figure 3.   Time-domain and time-frequency (TF) decomposition of feedback-locked ERPs. All ERPs and 
TF representations are plotted on the FCz channel. Row (a), waveform plot: averaged unfiltered reward and 
punishment feedback-locked ERPs across all trials, filtered with 0.05–30 Hz band-pass. The headmap shows 
the RewP-FRN difference topography at 250 ms. Row (b), TF-representation plot: averaged TF representation 
of the ERP across all trials and conditions. Row (c) and (d), waveform plots: averaged reward and punishment 
feedback-locked ERP activity across all trials, frequency-filtered using FIR filters to isolate lower-frequency 
(3 Hz lowpass) and higher-frequency (4–7.5 Hz bandpass) activity for the depression and control groups (c); 
anxiety and control groups (d).
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under one condition while minimizing it for the other condition; thus, it is widely used in classification tasks 
for data dimensionality reduction in the spatial domain. The result of CSP is a set of spatial patterns that most 
differentiate the defined groups. Extracting these patterns allowed us to determine what type of activity (delta, 
theta) in which brain areas most differentiated the experimental group from the control groups.

Evaluation
 We conducted separate classifications for each unique combination of (1) EEG components: delta, theta, ERP; 
(2) feedback valence: positive, negative; (3) the anxiety and depression groups. The classification task was per-
formed using the Support Vector Classifier (SVC). The hyperparameters of the models included the number of 
CSP components (1–4) and the CSP regularization parameter � ( 10e−3–10e−1 ) when applicable; the SVC kernel 
(linear, radial); and the SVC regularization parameter C ( 10e−5–10e1 ). The models were trained using threefold 
cross-validation (CV). Cross-validation is a resampling procedure used to estimate the efficiency of an ML model 
on unseen data. It facilitates the estimation of the expected general performance of the model when used to 
make predictions on data not used during the training of the model. Application of cross-validation results in a 
less biased and/or less optimistic estimate of the model efficiency in comparison to a simple train/test split. Due 
to the small amount of data, no external test set was used; the best hyperparameters of SVC were chosen based 
on the mean of cross-validated scores; fitted models were compared in terms of 10-repeated tenfold (10 × 10) 
CV scores83. The statistical significance of the results was assessed with permutation tests84. Model comparison 
was performed with Nadeau and Bengio’s corrected paired t-test, which is recommended for comparison of ML 
models83.

Results
EEG features
There were significant effects of feedback type on ERP, delta and of theta mean amplitude at FCz in the selected 
time window (200–300 ms) for all groups (all p < 0.001). The grand averages of the time-domain RewP and 
FRN waveforms are shown in Fig. 3a. Grand averages of the theta and delta waveforms for all four groups are 
shown in Fig. 3c,d.

The use of CSP provides insight into the spatial areas that best differentiate experimental and control groups. 
In the classification of depression, our theta-based models highlighted frontal brain areas. This is consistent with 
the expectation that predominantly frontal theta would be associated with the severity of depressive symptoms. 
In the delta-based models, CSP distinguished and highlighted the central and parietal areas of the brain. For the 
anxiety classification task, the theta-based models did not reveal specific strong spatial clusters that are consistent 
for both reward and punishment brain activity: a weak focus on the frontal area is visible for the reward-theta 
model, while the punishment-theta model primarily accounted for the signal at the Cz electrode. In the delta-
based models, CSP highlighted a strong centro-parietal cluster in the punishment-related brain activity; in the 
reward-related brain activity, there is no visible focus on any specific brain area. The CSP spatial patterns for the 
delta- and theta-based depression and anxiety classifications are shown in Supplementary Fig. S1. Visualizations 
of the differences between the experimental DEP/ANX and control groups in delta/theta activity for reward and 
punishment feedback along with group differences in CSP spatial patterns are shown in Supplementary Figs. S2 
and S3 for depression and anxiety classification, respectively.

Classification results: Time‑frequency components
It was possible to predict membership of the depressed versus control group based on feedback-related 
brain activity. The reward-delta, punishment-delta, and reward-theta classifiers yielded significant results 
(pACC < 0.050 ), with the mean cross-validated balanced accuracy ranging from .56 to .64. The punishment-theta 
classifier did not achieve the significance threshold (pACC = .100). Post hoc direct comparison of the reward- and 
punishment-based models with Nadeau and Bengio’s corrected paired t-test revealed that the mean performance 
of the reward-delta model (ACC = 0.61; ROC AUC = 0.65) was significantly better than the mean performance 
of the punishment-delta model (ACC = 0.52; ROC AUC = 0.52; p ACC = 0.042; p RAUC = 0.021). There was no 
difference in accuracy scores between the reward- and punishment-theta-based models (pACC = .464; p RAUC = 
.302). Density plots of the balanced accuracy scores, tested for differences with Nadeau and Bengio’s corrected 
paired t-test, are shown in Fig. 4a. For anxiety versus control classification, all but the punishment-theta classifiers 
yielded significant results (pACC < 0.050; p ACC = 0.108 for the punishment-theta model), with the mean cross-val-
idated balanced accuracy ranging from 0.57 to 0.61. Post hoc comparison of the reward- and punishment-based 
models revealed that they did not differ from each other in terms of balanced accuracy scores (pACC = 0.405; p ACC 
= 0.141 for delta and theta respectively). However, the mean ROC AUC of the punishment-theta model (ROC 
AUC = 0.61) was significantly greater than the mean ROC AUC of the reward-theta model (ROC AUC = 0.47; 
p RAUC = 0.054). This difference, although it is insignificant, is also visible in the histograms of balanced accuracy 
scores for the anxiety models (Fig. 4b; the difference between FN and FP theta). A summary of the depression 
and anxiety models’ performance is shown in Table 2. The results of the post hoc comparison of reward- and 
punishment-based models for ROC AUC, precision, and recall metrics can be found in Supplementary Fig. S4.

We visualized CSP delta/theta activity differences between groups after reward and punishment feedback. 
Participants with high severity of depressive symptoms exhibited increased reward-theta activity compared to 
the control group. They also displayed increased reward and punishment delta activity compared to the control 
group. The anxiety group showed diminished reward-related theta activity compared to the control group; it also 
displayed diminished reward- and punishment-related delta activity compared to controls.
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Classification results: time‑domain ERP components
It was not possible to predict membership of the depressed or the anxiety group based on the RewP or FRN. 
Similar to the main analyses, classification was conducted using the SVC classifier and threefold cross-validation 
to improve the generalizability of results. None of the created depression and anxiety models yielded significant 
results. The mean balanced accuracies of the RewP-depression model and the FRN-depression model were 0.53 
(pACC = 0.319) and 0.54 (pACC = 0.221), respectively. Direct comparison of the RewP-based and FRN-based 
models for depression classification revealed that neither RewP nor FRN showed a significant advantage in the 
classification of depression (pACC = 0.238; p RAUC = 0.319). For the anxiety classification, the mean balanced 
accuracy of the RewP model was 0.48 (pACC = 0.795), while for the FRN model it was .51 (pACC = 0.340). There 
was no significant difference in performance between the FRN-based and RewP-based models (pACC = 0.459; 
p RAUC = 0.383). We performed additional exploratory analyses with P3 amplitude control, due to the problem 
of mixing RewP/FRN and P3 signals. None of the models created were significant, but the quality of the models 
for depression slightly improved. The results of the exploratory analysis can be found in Supplementary Table S1.

In summary, the results of the analysis indicate the limited ability of the models to accurately identify and 
classify depression or anxiety versus controls. Further research and model improvements are needed to increase 
classification performance in the ERP area.

Discussion
The aim of the present study was to use ML predictive modeling to test the possibility of predicting depression 
vs. control group membership based on feedback-related brain activity. Additionally, we aimed to test the dimen-
sional hypothesis that depression is associated with impaired processing of positive feedback; anxiety, which 
is comorbid with depression, is associated with impaired processing of negative feedback. Toward this aim, we 
separated feedback-related brain activity into delta activity driven by the P3 wave (later called P3-delta) and theta 
activity related to FRN/RewP. Additionally, we were interested in whether the difference between the depression/
anxiety and control groups was driven more by P3-delta, or by FRN/RewP-theta punishment/reward activity.

It was possible to predict membership to the group with high severity of depressive symptoms versus the 
control group based on feedback-related brain activity; this is consistent with previous non-ML works which 

Table 2.   Detailed results of depression and anxiety models based on delta, theta, and ERPs. Findings with 
p-value below 0.05 are shown in bold. FP = positive/reward feedback; FN = negative/punishment feedback; 
RewP = reward positivity; FRN = feedback-related negativity; ACC = balanced accuracy; R-ACC = ROC AUC. 
With the exception of Train ACC, all scores reported are the average of threefold cross-validation. Train ACC 
stands for balanced accuracy score estimated on the entire dataset, without cross-validation.

Depression Anxiety

Train ACC​ ACC​ p-value R-AUC​ Recall Precision Train ACC​ ACC​ p-value R-AUC​ Recall Precision

FP delta 0.67 0.64 0.003 0.65 0.63 0.66 0.69 0.58 0.032 0.54 0.72 0.56

FN delta 0.80 0.60 0.011 0.56 0.64 0.61 0.57 0.60 0.015 0.63 0.68 0.60

FP theta 0.62 0.60 0.006 0.58 0.75 0.59 0.68 0.61 0.006 0.57 0.67 0.59

FN theta 0.72 0.56 0.101 0.51 0.53 0.57 0.63 0.57 0.109 0.58 0.58 0.57

RewP 0.55 0.53 0.319 0.51 0.53 0.55 0.50 0.48 0.795 0.42 0.03 0.11

FRN 0.56 0.54 0.221 0.57 0.53 0.55 0.50 0.51 0.340 0.49 0.14 0.17

Figure 4.   Post hoc analysis of differences between the reward and punishment models. Distribution of 
10 × 10 CV balanced accuracy scores for depression vs control classification models (a) and anxiety vs control 
classification models (b). FP = positive/reward feedback; FN = negative/punishment feedback. Significant 
differences between distributions are marked. Significance levels: * p < 0.05.
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reported that altered feedback processing is associated with high severity of depressive symptoms10,19,22,24. Our 
study is the first to show not only that there is a statistically significant difference in feedback-related brain 
activity between the depression and control groups, but also that it is possible to successfully predict group 
membership based on feedback-related brain activity. Importantly, successful prediction was only possible with 
the CSP spatial filter, as depression vs control classification was not possible based on the classic ERP RewP and 
FRN components. In the classic ERP analysis, dimensionality reduction is usually based on the selection of a 
single electrode that greatly reduces the variability of the brain signal; this may limit the level of generalizability 
of brain-behavior models. Thus, CSP-based classification is a powerful tool for testing whether there are indeed 
differences between two or more groups.

We observed that participants with high severity of depressive symptoms exhibited enhanced reward-theta 
activity that attenuated ERP RewP amplitude; this finding is consistent with the existing literature15,16. Participants 
also showed enhanced reward- and punishment-delta activity that made the ERP RewP and FRN amplitudes 
more positive. Since the influence of delta activity was much stronger than theta activity, without delta and 
theta separation one could conclude that depression is linked with enhanced ERP RewP amplitude. Our results 
clearly showed that although the overall RewP amplitude in depressed participants was greater than in controls, 
this difference was driven by the P3-delta wave; the theta-related differences between the groups indicated 
reduced ERP RewP amplitude in depressed participants. Participants with high levels of anxiety symptoms were 
characterized by reduced reward-theta activity that enhanced ERP RewP amplitude. Similar results have been 
reported in studies on social anxiety85; this suggests that specific symptoms of anxiety may affect the processing 
of positive feedback and alter the motivational system. Compared to controls, participants with high levels of 
anxiety exhibited slightly reduced punishment-theta activity that attenuated the negative amplitude of FRN and 
thus enhanced overall ERP FRN amplitude. However, this effect was marginally significant. Anxiety was also 
associated with modestly blunted reward- and punishment-delta activity that made the overall ERP RewP and 
FRN amplitudes more negative. The FRN ERP amplitudes were products of two activities acting in opposite 
directions: theta activity, which made ERP FRN amplitude more negative; and delta activity, which made ERP 
FRN amplitude more positive. Thus, differences between reward-related RewP and punishment-related FRN 
amplitudes in anxiety may be driven by changes not only in RewP/FRN-theta activity but also in P3-delta activity.

Based on the results of the classification and post hoc tests, we cannot confirm the dimensional hypothesis 
on the differential effects of depression and anxiety on reward and punishment processing as indexed with RewP 
and FRN24. In our study, the visible and significant difference between the depression and control groups was 
driven mainly by P3-delta activity; there were no differences between reward- and punishment-theta activities. 
The high severity of anxiety symptoms was marginally more strongly associated with punishment feedback pro-
cessing than with reward feedback processing; this may suggest a dissociative effect of anxiety on the processing 
of rewards and punishments that is consistent with our expectations but is only mildly detectable in our groups. 
The absence of a conclusive result does not necessarily indicate that the dimensional hypothesis is false: it should 
be noted that our groups differed not only in terms of relevant symptoms (BDI-II for depression; STAI-T for 
anxiety) but also in terms of comorbid symptoms, and the analyses were performed on a non-clinical sample. 
However, the differences in comorbid symptoms were much smaller than the differences in relevant symptoms, 
therefore we expected them to also be smaller at the models’ performance level. It should be noted that when 
testing the dimensional hypothesis we limited our frequency of interest to theta activity as we consider reward-
theta and punishment-theta to be representations of the RewP and FRN components, respectively. In the study 
by Cavanagh and colleagues24, reward-related RewP was defined as reward-delta activity. Under this framework, 
we would confirm Cavanagh’s hypothesis of an association between reward-delta and depression, as we found a 
significant difference between the depression and control groups in reward-delta but not in punishment-delta 
activity. Nonetheless, we are inclined to attribute delta activity to the P3 wave, which is associated with sensitiv-
ity to the amount of reward, not with the degree to which an individual’s behavior is motivated by rewarding/
punishing stimuli, which is indexed by theta-related RewP/FRN18.

Our results showed a joint effect of the RewP/FRN and P3 components on brain activity after receiving 
feedback in the early 200-300 ms time window. This highlights the importance of theta and delta separation to 
reliably test hypotheses related to feedback processing. In our study, the visible difference between the group 
with high levels of depressive symptoms and the control group was primarily driven by P3-delta activity. This 
emphasizes the need to precisely define the RewP and FRN components and take into account the effect of P3 on 
the waveform of feedback-related brain activity in order to improve the reliability and comparability of results.

At least four issues limit the results and conclusions of the presented study. The most important caveat of 
the presented study is the limited variability of the analyzed anxiety and depressive symptoms as participants 
with any mental disorder were excluded. Our dataset certainly did not cover the entire spectrum of severity of 
anxiety and depressive symptoms, therefore the study’s conclusions are inherently limited. It is possible that the 
associations between feedback processing, anxiety, and depression change their pattern in the clinical population, 
or maybe our analysis did not capture some of the important clinical relationships due to the healthy volunteer 
population’s generally low levels of symptoms. In addition, our experimental and control groups differed in 
more than one symptom. Since the differences in relevant symptoms were much larger than in non-relevant 
ones, we assumed that it was the difference in relevant symptoms that led to the difference between the models’ 
performance. However, we cannot exclude the possibility that the results of our analysis were distorted by dif-
ferences in the severity of comorbid symptoms. The dimensional hypothesis needs to be further tested on pure 
groups. Further, categorical depressed/anxious versus control contrasts are dependent on an arbitrary cut-off 
point. Splitting groups based on BDI-II and STAI measures is associated with a reduced power to detect effects 
as it removes information about the full range of severity within the sample. It also gives a special significance 
to the cut-off value which may or may not reflect a valid, non-linear category, especially in our population of 
healthy individuals. Although we ensured that our depression and control groups were representative of symptom 
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severity levels as established within the Polish adaptation of the BDI-II questionnaire, it should be noted that 
participants did not receive a diagnosis of depression or anxiety. Thus, the results of our categorical approach 
should be interpreted with caution in the clinical context. Finally, due to an insufficient amount of data, we did 
not separate the external test set, therefore our models were compared only in terms of 10 × 10 CV scores. This 
limits the level of generalizability of our models. It would be beneficial to conduct similar analyses on a larger 
dataset and test the level of generalizability of models on a separate testing set. Future studies would benefit from 
adopting a continuous approach that models the full range of severity and controls for confounding variables. In 
addition, since several oscillatory components in the theta, alpha, and high-beta/low-gamma bands have been 
shown to be associated with rewards and losses, future studies may assess the effects of depression and anxiety 
not only on delta and theta but also on higher brain frequencies.

In summary, our study shows the utility of ML in testing brain-behavior hypotheses. Using the CSP spatial 
filter, we revealed patterns of brain activity that differed between the depression/anxiety and control groups. 
We also demonstrated that on the basis of these patterns it was possible to create models that achieved higher 
accuracy than models based on classic ERP features. Finally, we showed the joint effect of theta-RewP/FRN and 
delta-P3 on feedback-related brain activity, which can distort results.

Data availability
The additional online resources and the dataset containing the EEG recordings and questionnaire data are 
available in the BluishO repository, https://​osf.​io/​f2a86/. The detailed results and the code for reproducing the 
analyses from the presented study are available at https://​github.​com/​abelo​wska/​bluis​hO under the MIT License.
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