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Neuron‑level explainable AI 
for Alzheimer’s Disease assessment 
from fundus images
Nooshin Yousefzadeh 1, Charlie Tran 2, Adolfo Ramirez‑Zamora 3, Jinghua Chen 4, 
Ruogu Fang 2,5,6* & My T. Thai 1*

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease and the leading cause 
of dementia. Early diagnosis is critical for patients to benefit from potential intervention and 
treatment. The retina has emerged as a plausible diagnostic site for AD detection owing to its 
anatomical connection with the brain. However, existing AI models for this purpose have yet to 
provide a rational explanation behind their decisions and have not been able to infer the stage of 
the disease’s progression. Along this direction, we propose a novel model-agnostic explainable-AI 
framework, called Granula r Neuron-lev  el Explainer (LAVA), an interpretation prototype that probes 
into intermediate layers of the Convolutional Neural Network (CNN) models to directly assess the 
continuum of AD from the retinal imaging without the need for longitudinal or clinical evaluations. 
This innovative approach aims to validate retinal vasculature as a biomarker and diagnostic modality 
for evaluating Alzheimer’s Disease. Leveraged UK Biobank cognitive tests and vascular morphological 
features demonstrate significant promise and effectiveness of LAVA in identifying AD stages across 
the progression continuum.
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Alzheimer’s disease is the leading cause of dementia. The number of people aged 65 and older with AD in the 
United States is estimated to be around 6.5 million, which is expected to grow to 13.8 million by 20501. AD is 
a progressive disease that can be broadly characterized into preclinical, prodromal mild cognitive impairment 
(MCI due to AD), mild AD, moderate AD, and severe AD based on the presence of clinical biomarkers and 
cognitive symptoms2,3. Early screening and diagnosis of AD are essential to alter the disease trajectory.

Pathological changes to the retina have been associated with early-stage neurodegenerative diseases4–6. Reti-
nal screening presents a non-invasive, feasible, and economical solution to early AD diagnosis which has been 
hindered by the lack of consistent clinical symptoms and the absence of clinically accessible neuroimaging and 
biological markers7. Among the retinal features, weakening and alterations of the retinal vasculature as an AD 
biomarker have recently emerged8. Clinical studies have focused on the time-consuming manual segmentation of 
the vasculature, propagating subjective error into the quantitative analysis. To counteract this problem, AI-based 
models have been introduced as more objective, repetitive, precise, and automated systems to aid the vasculature 
segmentation and the decision-making of ophthalmologists. Only a few AI-based models have investigated AD 
through the retina9–11 and no work has yet studied the retinal biomarkers for AD across the disease spectrum. 
Furthermore, these AI-based models have been used as black-box models without a clear understanding of why 
the model made such predictions.

Recent advances in Explainable-AI (XAI) have shed interpretability into AI models. Notable explainers are 
feature attributions (e.g., saliency maps12, SHAP13, LIME,14, and integrated gradients15). In particular, these 
explainers are effective at the macro-level (e.g., input-wise or layer-wise) highlighting the features that are most 
effective in decision-making. However, these explainers lack information attained at the micro-level of artificial 
neurons which influences different mechanisms of decision-making. We look to invoke this ideology into the 
perspective of AD, that is, a medical XAI framework to identify sub-types and progression stages of the disease.
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We propose our XAI framework called Granula r Neuron-lev el Explainer (LAVA) for explainable diagnosis 
and assessment of the AD continuum. The intuition behind this approach is that analyzing the behavior of neu-
rons generates rich information reflecting not only the correlation between biomarkers but also the interaction 
among biomarkers, thanks to inductive learning of deep neural network architectures. We thereby introduce 
latent representations of raw pixels reflected in the activation behavior of neurons as a resource to discover and 
reveal hierarchical taxonomies of potential biomarkers. LAVA is a systematic approach that probes into interme-
diate layers of the CNN model, inspects and leverages the activation patterns of neurons as auxiliary information 
to improve model Explainability and Diagnostic power jointly. Subsequently, we show how this new source of 
information during the learning process is used to predict coarse-to-fine class in a downstream classification 
task where only coarse-level target labels are available; such discovered knowledge can be linked to the domain 
of knowledge to gain new insights from experts in the application domain.

There are two core modules so-called Neuron Probing and Granularity Explanation that constitute the LAVA 
architecture, as shown in Fig. 1. The former identifies critical neurons and inspects their activation patterns. 
The latter clusters input sample images into distinctive groups emulated by the activation of critical neurons as 
independent random variables. LAVA is input size invariant, and model-agnostic in the sense that it can adapt 
to a broad class of CNN models and is adjustable to the granularity level of data in the application domain. It 
is notable that the activations of neurons are extracted during the test phase, hence CNN models that do not 
contain any dropout layers in their architectures are preferable in this framework in order to avoid randomized 
and non-reproducible results.
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Figure 1.   Overall architecture of LAVA framework. End-to-end learning process in LAVA framework 
is constituted by four main phases: (1) Data Acquisition where fundus images from the UK Biobank are 
collected along with quality selection and AutoMorph preprocessing to obtain retinal vasculature maps and 
morphological features, (2) Classification where a VGG-16 model is utilized for binary classification between 
AD and NC images supplemented with a feature attribution map, (3) Neuron-level XAI that consists of two 
modules of Neuron Probing to identify and extract critical neurons across the VGG-16 network and Granularity 
Explanation to identify sub-classes of labels hidden in data, and (4) AD Continuum Assessment where the 
diagnostic result of LAVA for an individual subject is summarized.
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In this article, we present the development of a novel XAI framework, Granular Neuron-level Explainer 
(LAVA) to evaluate fundus images as a diagnostic modality of AD continuum assessment. We verify the effective-
ness of LAVA through consistency checks using clinical measures of cognitive function and vascular integrity 
in the UK Biobank16. We employ feature attribution and pixel reconstruction methods to highlight regions of 
interest in the diagnosis of AD. The proposed framework supports the automation of an XAI diagnostic system 
which may be used for clinical intervention and advance the field’s mechanistic understanding of AD.

Results
Study design and participants
LAVA is developed to assess AD classification and to infer the disease continuum utilizing fundus images 
acquired from the UK Biobank16. The UK Biobank contains nearly 170,000 fundus images from over 500,000 
participants. As a critical requirement in this approach, the image samples used in this study should meet several 
quality factors. Quality control is performed to exclude a large number of fundus images with artifacts and clarity 
issues using a pre-trained CNN module on the EyePacs-Q dataset. AD subjects with other additional sub-types of 
dementia (e.g., frontotemporal dementia (FTD) are excluded. We identify a total of 100 images from 61 unique 
AD subjects. To avoid potential confounding factors, we construct our binary-labeled dataset by matching each 
AD image with 80 unique age and gender-matched normal controls (NC) leading to a total number of 200 
fundus images. The AutoMorph deep learning pipeline17 is used for preprocessing, vessel segmentation, and 
morphological vascular feature quantification.

Training and inference
A VGG-1618 binary classifier model is trained and evaluated under a subject-level five-fold stratified cross-
validation setting on the segmented vessel maps where retinal images from each subject only appear in the same 
fold. This procedure is repeated with five repetitions with an optimal 5-fold accuracy of 75% and an average 
accuracy of 71.4% (SD = 0.03). The best-performing cross-validation model is utilized for post-hoc analysis.

Neuron probing
We probe into intermediate layers of the network at the neuron level to assess the AD continuum (see Fig. 1). 
In our setting, we choose Max-Pooling layers and the first two fully connected layers of the VGG-16 for critical 
neuron selection. Although our approach supports critical neuron extraction from early layers, we find our LAVA 
framework works effectively using a combination of Max-Pooling Layers. Owing to the Maximum Likelihood 
Estimation (MLE) algorithm to approximate the joint Mutual Information (MI) objective in the selection of 
critical neurons, the LAVA framework is reproducible, model agnostic, and input size invariant. We use Epsilon-
support vector regression ( ǫ-SVR)19 with a linear kernel as a core algorithm to estimate the contribution coef-
ficient of every single neuron at selected layers and wrap the output by Recursive Feature Elimination (RFE) to 
collectively realize our MLE-based critical feature selection objective.

We set two hyperparameters for the number of selected critical neurons at each layer to be 20 and the number 
of neurons pruned at each iteration to be 1000. This MLE-based feature selection procedure repeats to ensem-
ble five sets of selected neurons at each layer by each of five cross-validation models into approximately 700 
critical neurons, 100 from each layer, concatenated (with repetition) across the network. Supplementary Fig. S1 
shows the Jaccard similarity index computed to compare overlapping between sets of neurons selected by five 
cross-validation models. Higher similarities suggest similar activation behavior at certain layers which can be 
interpreted as similar Region Of Interest (ROIs) used for the feature extraction.

Granularity explanation
Using the results obtained in neuron probing, we can distill the activation values of critical neurons across the 
network over all input samples as a new dataset that will be used for our knowledge discovery. Under a semi-
supervised setting, LAVA employs the Adjacency-constrained Hierarchical Agglomerative Clustering (HAC) 
algorithm20 where an early constructed k nearest-neighbor graph ( k−NNG) imposes connectivity constraints in 
the form of a 97.5% ( k = 5,N = 200 ) sparse connectivity matrix of shape N × N that links each input sample to 
its five nearest neighbors. This algorithm first creates a distance matrix for sample instances using the Euclidean 
metric and then reduces a chunk of distances to the k-nearest neighbors for each sample where the array of dis-
tances for that sample is partitioned by the element index k − 1 in the stable sorted order. k is a hyperparameter 
chosen based on experience and the number of target labels; k = 3 and k = 5 are common choices in the LAVA 
framework. The results show this approach is highly effective in using fundus biomarkers to identify latent sub-
classes of the predicted label interpreted as AD continuum.

In this study, we make use of dendrogram diagram (Fig. 2) for two purposes: (1) Initial evaluation of the hard-
ness of the clustering task, and (2) Decision on the appropriate number of clusters. The imaginary horizontal line 
traversing the dendrogram determines the distance between latent sub-clusters of individuals. The first largest 
breaking branch divides CN subjects from the rest of the subjects where each main branch contains sub-clusters 
of the same category in terms of the total variation. The second largest breaking branch categorizes AD and CN 
subjects into their sub-clusters within the AD continuum with the desired level of detail. The number of clusters 
is a hyperparameter in the LAVA framework normally chosen based on the granularity level of the data and the 
nature of the problem under study, which is set to 7 in this experiment. We use intrinsic metrics e.g., Calinski-
Harabasz (CH) index (also known as the Variance Ratio Criterion)21 and Adjusted Mutual Information (AMI)22 
to choose the appropriate clustering method by comparing their performances. The result of this clustering is 
summarized in Supplementary Table S1 including 3 purely AD groups, 3 purely NC groups, and 1 Mixed group 
of coarsely AD or NC-labeled subjects.
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We further analyze the behavior of critical neurons of the trained network independent from the input data. 
First, we use t-SNE23 to project a high-dimensional space of critical neurons’ activation values at a certain layer 
down to two dimensions. Second, we apply the Kernel Density Estimation (KDE)24 method on top of t-SNE to 
estimate the probability density curve associated with each dimension of t-SNE embedding as shown in Fig. 3. 
Blue and orange curves at each layer can be interpreted as the distinctive behavior of the model in the prediction 
of coarse class labels (AD/NC), while the presence of multiple peaks at each curve reveals a mixture of multiple 
probability distributions corresponding to the different mechanisms of prediction or different activation pat-
terns used in the prediction of each class of label. Our intuition is that each peak can potentially correspond to 
one distinctive sub-cluster of examined samples. This observation is an analogy to the previous dendrogram 
visualization of latent clustering structure within 200 input samples suggested by activation values of critical 
neurons in the network.

The choice of hierarchical clustering over other semi-supervised clustering methods e.g., KMeans25, Mean 
Shift Clustering26, Affinity Propagation19, etc. is made based on the behavior of critical neurons and how well each 
clustering algorithm can scale on our dataset. We use various statistical methods e.g., Variance Ratio Criterion, 
Adjusted Mutual Information, Rand index, V-measure, homogeneity score, and completeness score to evaluate 
and compare the performance of different clustering algorithms. We observe medical assessments reported on 

Figure 2.   The results of the neuron-level hierarchical clustering. The dendrogram plot of agglomerative 
connectivity constraint clustering with ward’s linkage represents the similarity relationship among sub-clusters 
of patients colored by true labels in terms of the behavior of critical neurons. The imaginary horizontal line 
traversing the dendrogram determines the correspondent detail level of latent sub-clusters that characterize 
subjects within the continuum of disease.

Figure 3.   Exploring activation pattern of critical neurons. Kernel density estimate (KDE) applied on top of two-
dimensional embedded space (lower-dimensional representation of the critical neurons’ activation at different 
hidden layers) obtained by t-distributed stochastic neighbor embedding (t-SNE) and unveils multiple Gaussian 
distributions embedded in the activation pattern of critical neurons corresponding to distinctive sub-cluster(s) 
associated with AD or NC target class (blue and orange curves) of the disease.
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UK Biobank cognitive tests27 efficiently scale over a hierarchy and not a flat set of clusters. The primary results 
encourage our further investigation into finding an appropriate clustering algorithm in order to gain more 
insights into learning the connection between AD-related biomarkers in eye fundus images and the activation 
pattern of critical neurons in the network.

Continuum assessment
Next, we showcase our LAVA-based hierarchical clustering is reflective of the AD continuum. Seeing that the 
UKB lacks a detailed assessment of activities of daily living, cognitive profile, or functional scores (e.g., the clinical 
dementia rating and the mini-mental state examination) and neither brain imaging data in our cohort, we use 
cognitive test measures from the UKB as proxy measures of cognitive ability28. These tests include two levels of 
memory from the UKB, the pairs matching and prospective memory, and an intellectual problem-solving meas-
ure, the fluid intelligence. We note that the clusters are extracted from retinal vasculature images, and thus, we 
hypothesize that image-level features should coincide with our continuum. Naturally, such image-level features 
live in an abstract space. To resolve this issue, we evaluate quantifiable morphological features, specifically, the 
fractal dimension and vessel density, that are representative of the image-level features and relate these to the 
cognitive ability of a subject.

We employ our analysis at the group-level (AD/NC) and the sub-group level. First, we verify that the cogni-
tive measures are significantly different across groups, as shown in Supplementary Fig. S2. Next, as each metric 
is on a different scale, all of the scores are normalized on [0,1] for comparison. A normalized comparison across 
groups is illustrated in Fig. 4a through a visual radar plot. We demonstrate that such metrics form an increasing 
sequence of measures across clusters, supporting the idea that such latent clusters are indicative of the AD con-
tinuum. From this observation, we term our sub-groups in order ranging from the healthiest states of cognitive 
normal (CN) to the severity of AD [CN-1, CN-2, CN-3, Mixed, AD-1, AD-2, AD-3]. Notably, the Mixed Group 
contains a sub-cohort of AD and NC subjects suggesting similarities of AD subjects and potentially at-risk NC 
subjects. Furthermore, the reduction in morphological vascular features coincides with a decline in cognitive 
ability, thus supporting the retinal vasculature as indicative of the AD continuum, as shown in Fig. 4b. Last, taking 
from the observation of the sequence of our clusters, we look to assign a simplistic AD score of the continuum 
as illustrated in the gauge plot, Fig. 4c. To accomplish this, we average together the normalized cognitive metrics 
(pairs matching, prospective memory, and fluid intelligence). In this manner, the healthiest subject has a score of 
0 and the severe subject has an upper bound score of 1. Therefore, for any new subject, we may apply our LAVA 
framework and assign a subject’s vessel to map a position in the AD continuum as a manner for assigning their 
risk and potential clinical intervention.

Visual model interpretation for clinical evaluation
We investigate the learning process by use of the guided backpropagation method, wherein we mask crucial 
input features and examine how the essential ROIs effective in the discovery of the AD continuum develop. 
With some modifications to the pruning objective, we use the method introduced in29 to reconstruct critical 

Figure 4.   LAVA evaluation with clinical measures. The cognitive and vascular features are normalized onto 
[0,1] for scalable weighting. (a) The UK Biobank cognitive test measures vascular features between AD and NC 
groups. (b) The cognitive and vascular feature comparison in the continuum identified by the LAVA framework. 
(c) The AD score is defined by averaging the normalized cognitive features. Each sub-group block is not drawn 
to scale.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7710  | https://doi.org/10.1038/s41598-024-58121-8

www.nature.com/scientificreports/

fragments effectively in the prediction of each latent sub-class using a sparse pathway limited to some percentile 
of critical neurons identified and scored in Neuron-level XAI phase. In this technique, the Integrated Gradients 
method15 is combined with Lucent objective30, and as shown in Fig. 5, biomarkers can be decoded at different 
levels of criticality to highlight the most determinant regions in the AD continuum prediction prioritized from 
the most specific to the most general.

Furthermore, we apply the prior technique in conjunction (and in comparison with) traditional attribution 
maps achieved by guided backpropagation31, to develop an effective method for searching relevant biomarkers 
at different scales. The guided backpropagation is repeated using the Noise Tunnel Algorithm32 averaging 10 
times for robustness of relevance. To mimic a clinician’s diagnostic decision-making, we zoom into a 70× 70 
crop of the image of highest feature attribution (see Fig. 6). Nevertheless, while the GBP visualization reveals 
where to place attention for clinical observers, a true understanding of visual biomarkers remains unclear and 
requires future research collaboration with domain experts in neuro-ophthalmology. For this reason, we hope 
that a combination of visual model interpretation and quantifiable morphological features can be used together 
for informed judgment.

Sanity check of the explanation
We evaluate the faithfulness of the LAVA in providing a true explanation of the model’s behaviors. We feed 
LAVA with a VGG-16 binary classifier where the parameters are randomized and examine how much the set of 
critical neurons in this model differs from that of the original model. We observe a significant change in the set 
of critical neurons identified by LAVA at each layer of the model after the weights of the network are replaced by 
random weights (Jaccard similarity index computed as at fc-3 layer is 0.008 and zero at every other layer). This 
suggests LAVA truly extracts neurons critical to the output of the model i.e., extracted neurons are correctly 
explaining the behavior of the network.

Figure 5.   Gaining insights into determinative biomarkers. The original CNN network is masked to include only 
a percentile of important neurons identified by LAVA, while Integrated Gradients computes the gradient of the 
model’s prediction output concerning its input features. The reconstructed pixels reflect the layout of biomarkers 
highly associated with the prediction of AD continuum progression. As the subnetwork becomes sparser for the 
most critical neurons, the reconstructed pixels reveal the most critical biomarkers effective in the diagnosis of 
each sub-cluster of the prediction.
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Discussion
We develop Granular Neuron-Level Explainer (LAVA), a novel explainability framework for AD classification 
from fundus imaging. Specifically, we equip a traditional VGG-16 CNN with a five-fold cross-validation binary 
classification accuracy of 75% with a neuron-level XAI framework to support the retinal vasculature as an efficient 
AD screening modality. Our explanations are generated through a two-phase procedure: (1) neuron probing 
and (2) granularity explanation. Notably, the utilization of a neuron-level-XAI model is valid, as the contribu-
tion of neurons is a better representation of the human imperceptible input features than the contribution of 
the raw input image pixels themselves29. The reason behind this argument is that the hidden (latent) variables 
constructed during the learning process by convolutional deep neural networks play a significant but underrated 
role in characterizing and fully describing the undergoing phenomenon in medical image processing.

Few prior studies using AI models have been approached using retinal fundus images9–11. However, these 
models do not consider the different stages of AD progression and thus do not offer a comprehensive evalua-
tion of the risk severity. One of the primary contributions of this work is the projected inference of binary class 
labels (AD/NC) into latent sub-classes, which we claim to be indicative of the AD continuum. We support this 
argument through several approaches through comparisons of cognitive tests, morphological vascular features, 
and several visualization modules. The value of our findings is applicable in many biomedical applications to 
enhance the interpretation of classifier models, allowing enhanced diagnostic judgment and understanding of 
the underlying biological phenomena.

To demonstrate our claim of continuum assessment and allow various levels of enhanced interpretability, we 
compare the differences across cognitive level features (e.g., the pairs matching test, prospective memory, and 
fluid intelligence), morphological features (fractal dimension and vessel density), and visualization models. All 
designated cognitive and vascular measures are demonstrated to be reduced in the AD group compared to the 
normal controls at statistical significance ( p < 0.01 ). We extend these differences from a group-level to a latent-
sub-group level via visual gauge and radar plots to demonstrate a sequence of clusters, ranging from healthiest 
to strongest severity of AD. In particular, we are capable of arranging the latent-sub-groups identified by our 
LAVA framework into a seven-level continuum and designing a simplistic manner for assigning an AD-score to 
a subject. Guided backpropagation maps and critical neuron reconstruction techniques are used to determine 
diagnostic biomarkers, regions of interest, and differences amongst subgroups as deemed important by the model.

Although our study presents the ability to assess the AD continuum, the framework carries limitations. First, 
the amount of data is lacking, with only 100 images from 61 AD participants total, which hinders our model train-
ing and generalization to the real-world setting. Furthermore, we do not consider the effects of other confound-
ing factors (demographics, genetics, etc.) or similarities in retinal biomarkers amongst other neurodegenerative 
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Figure 6.   Visualization of input features identified relevant to the prediction. The guided back-propagation 
method is employed to identify the region of interest. A sliding window is used to identify a crop of the image 
with the highest feature attribution. The reference fundus image (column 1) and the zoomed-crop (column 4) 
are shown for diagnostic visualisation that may help to explain the vascular biomarkers across the predicted 
continuum of AD progression.
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diseases. While our work supports the reduction in cognitive performance and vessel structures6,33 in the retina, 
large individual variations between subjects could hinder the retina as a diagnostic site and need further valida-
tion. We also acknowledge the limitations of current cognitive variables and limited data assessing cognitive 
domains affected early and late in the disease like episodic memory and language. On the other hand, our XAI 
work supports clinical studies associating retinal degeneration to be linked to Alzheimer’s Disease, rather than 
normal aging, as well as connections with cerebral small vascular disease.

Overall, our study demonstrates an explainable and systematic framework to map subjects into the progres-
sion continuum of Alzheimer’s Disease using retinal vasculature from fundus images. Our method is effective 
in enhancing biological and diagnostic understanding and automating healthcare streamlining and preclinical 
screening. This study will help to examine how retinal pathology is connected to cognitive impairment neurode-
generation, with not only applications to AD but also other types of dementia and neurological/retinal diseases.

Methods
LAVA is a systematic method that leverages neuron-level explanation as auxiliary information during the learning 
process to predict coarse-to-fine class in a downstream classification task where only coarse-level target labels 
are available. In this section, the details of our proposed XAI framework are provided.

Neuron probing
In the first phase of the LAVA framework, we look to find a subset of critical neurons at each layer of the CNN 
model containing the most information concerning the prediction of class labels.

Let’s consider any CNNs classification model � with a sequential structure consisting of L layers, where each 
layer l has Kl neurons and l = {1, . . . , L} . Once any input sample x ∈ R

n is fed into the model � through the for-
warding function y = f (x) where y ∈ R

m is a logit, the activation of neurons at layer l denoted as Zl is a random 
variable and also a function of the input Zl = fl(x) where fl : Rn → R

kl . The forwarding structure of the neural 
networks suggests the activation of neurons at each layer depends only on the activation of the neurons at the 
previous layer i.e., Zl⊥⊥Zi|Zl−1, ∀i = 0, . . . , l − 2 , where ⊥⊥ denotes the independent relationship.

Our goal is to find a subset of critical neurons at each layer l containing the most information on the predic-
tion of interest. Recently, the notion of criticality in neuron-level extraction and the objective of critical neurons 
identification subsequently is formulated with joint mutual-information (MI) function34 from probability and 
information theories35 to measure the mutual dependence between two variables.

Let (Zl ,Zl+1) be two discrete random variables over the space Zl ×Zl+1 to indicate activation of neurons for a 
pair of adjacent layers in CNN model. If P(Zl ,Zl+1) denotes the joint distribution and PZl and PZl+1

 denote margin-
als, then the amount of information shared between those two adjacent layers can be measured by an MI objective 
that searches for the set of critical neurons at each layer on the set of critical neurons solved in the next layer34.

Thus, a sequence of MI objectives, starting from the last layer, can be optimized at any layer with respect to its 
preceding layer to identify the most critical neurons from each layer Ml through the network. This sparse sub-
network of critical neurons conveys the most important information all the way from the input to the output 
of the model.

Directly solving Eq. (2) at each pair of adjacent layers in this sequential optimization formulation is in NP-hard36, 
because as proved in34, MIN-FEATURES37 problem can be reduced to this problem in polynomial time. On the 
other hand, the state of the Markov chain of L layers ( Z0 → Z1 → · · · → ZL)38 suggests ZMl

l  can determine Y, 
and consequently, Ml that contains Ml(Y) . As a consequence, to overcome the the curse of dimensionality, an 
approximation solution can solve MI objective at each pair of a layer with the output (ZMl

l ;Y) instead of solving 
that at each pair of adjacent layers (ZMl

l ;Z
Ml+1

l+1 ) as follows:

The entropic (informational) correlation between a feature and class label in a high-dimensional scheme is a 
useful statistic measurement for feature selection. As the mutual information enlarges, the feature becomes more 
significant and distinguishable. Let z ∈ Zl denote a feature (single neuron at layer l) and y ∈ Y  denote a class of 
label, then the mutual information between them can be defined as follows:

where n = {1, . . . ,N} and m = {0, . . . ,M} are the number of different values for z and y respectively, p(zi) and 
p(yj) are marginals, and p(zi , yj) is the joint probability.

NeuCEPT34 uses Model-X Knockoffs as a statistical tool with false discovery rate control to approximate 
Markov Blanket39 as the smallest subset of neurons at each layer maximizing the MI; however, it imposes 
some limitations in our application: (1) The subtle differences among fundus images result in low variance in 

(1)MI(Zl;Zl+1) =
∑

Zl∈Zl

∑

Zl+1∈Zl+1

P(Zl ,Zl+1) log
P(Zl ,Zl+1)

PZl PZl+1

(2)Ml = argmax
Ml⊆Kl

MI(Z
Ml

l
;Z

Ml+1

l+1 )

(3)Ml ≈ argmax
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MI(Z
Ml

l
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the distribution of neurons’ activation which makes it difficult for any neurons to be selected. (2) Selection of 
critical neurons from large-sized intermediate layers of our network is difficult due to the complexity of the matrix 
inversion operation involved. To overcome the aforementioned limitations, MI can be alternatively approximated 
using density estimates40 based on the Kernel Density Estimator (KDE)24 and thus Model-X Knockoffs can be 
replaced with any Maximum Likelihood Estimation (MLE)-based feature selection technique as an estimation 
of MI.

We adopt the same method used in41 for gene selection from expansive patterns of gene expression data in 
genetic diagnosis (or drug discovery) in LAVA to capture a very small and compact (non-redundant) multiset 
(i.e., an ensemble bag with repeated elements where multiplicity is allowed). of the most critical neurons at 
each selected layer through the network while evaluating the binary target labels (AD/NC) by cross-validation 
models in the different subsets of input images. This approach combines Epsilon Support Vector Regression 
with Recursive Feature Elimination algorithm ( ǫ-SVR+RFE) to satisfy the MLE objective in the selection of the 
critical neurons across all L layers each of Kl-dimensionality. Following the same objective of the Joint Mutual 
Information (MI) function, ǫ-SVR42 maximizes likelihood estimation to identify critical neurons concerning the 
output of the model. More specifically, this feature scoring method constructs a coefficient vector with a logit 
link function and a regularized maximum likelihood score. Thus, as shown in43, this compact feature selection 
technique employed in LAVA assures that the neuron whose MI is larger is more likely to be selected as critical. 
In this technique, RFE is a wrapper-type statistical method that uses ǫ-SVR algorithm in the core. It eliminates 
the least important features iteratively until the desired number of features is reached.

Epsilon-supported Support Vector Regression ( ǫ-SVR) attributes coefficients of contribution to each neuron 
under acceptable maximum error ǫ (epsilon). First the activation value of M critical neurons at a selected layer for 
N sample inputs {Z}N×M maps in feature space U = φ(Z ), and then a hyperplane is constructed using a kernel 
function f (Z,W) = WTZ + b that minimize its deviation from training data by minimizing the L2 norm of 
the coefficient vector ||W || . The setting of hyperparameters for ǫ-SVR includes a kernel parameter (e.g, linear, 
sigmoid, radial basis function, and polynomial) and a regularization parameter. The latter is used to make a 
tradeoff between the complexity of the model and the accuracy of the training. The objective function of ǫ-SVR 
is as follows:

constrained by |yi −
∑M

j=1 wj(zi,j)| ≤ ǫ + |ξi|.
Here wj is the coefficient of the support vector in the decision function assigned to the j-th critical neuron and 

ǫ denotes a margin for absolute distance value between actual and predicted values in the training loss function 
for which no penalty is associated. Penalties can be regularized by C as a measure of tolerance for the output of 
the i-th input sample to fall outside ξi deviation from true output variable yi and still is acceptable within error 
margin ǫ . The implementation of ǫ-SVR is from LIBSVM library44.

The results obtained by ǫ-SVR+RFE feature selection technique at the Neuron Probing phase of the LAVA 
framework can be adjusted to the desired detail level that characterizes subpopulations within the target con-
tinuum. The pseudocode of this algorithm is provided in Supplementary Algorithm S1.

Granularity explanation
In the second phase of the LAVA framework, we search to answer this question“To what extent similarity between 
input samples in terms of the pattern of activation is consistent with that in terms of true labels in the multi-granu-
larity deep local structure of the target domain?” To discern the division of AD subjects, our choice of agglomera-
tive connectivity constraint clustering with ward’s linkage (also known as Minimum Variance) is rational to the 
intrinsic granularity of diagnostic biomarkers associated with the continuum of progressive nature of Alzheimer’s 
disease. We hypothesize that hierarchical representation levels hidden in the input image dataset can interpret 
biomedical features associated with progressive disease in this study. Although such artifacted dynamics bio-
markers mapped to different levels of abstraction representation made by a convolutional deep neural model 
might not be visually descriptive and explicitly perceptible by humans.

We employ the Hierarchical Agglomerative Clustering (HAC) method with connectivity constraints (K-NNG 
graph)20 to partition entire eye fundus image samples into subgroups of data based on similar activation patterns 
of critical neurons during the evaluation of the image by the CNN model. The description and pseudocode of this 
algorithm are provided in Supplementary Algorithm S2 and Adjacency-constrained Hierarchical Agglomerative 
Clustering Supplementary Method S1.

The appropriate number of clusters can be visualized and heuristically determined on a hierarchical ward’s 
tree of the clustering learning process so-called dendrogram. The height of rectangles fit between different levels 
of hierarchy in the dendrogram representing the distinctiveness among clusters at that specific level. The number 
of vertical lines cut by an imaginary horizontal line traversing the dendrogram determines the corresponding 
number of clusters as a configurable parameter in the HAC learning algorithm.

Study population and baseline characteristics
This study is conducted on the UK Biobank. At the time of acquisition (Jun 2019) of our UKB basket, there are a 
total of 1005 AD subjects from approximately 500,000 total subjects. In particular, we investigate the incidence of 
AD, which is defined as subjects who are diagnosed with Alzheimer’s Disease after the baseline visit, in contrast 
to prevalent AD, which consists of subjects with a record of AD diagnosis before the baseline visit (as according 
to the UK public health records, ICD9 and ICD10 codes). From the 1005 AD subjects in the UKB, there are 111 

(5)min
1

2
||W ||2 + C

n∑

i=1

|ξi|
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AD subjects with fundus images. Next, we manually select an overall number of 100 images from 61 unique AD 
subjects images on the following criteria: (1) the incidence of AD, (2) sufficient visibility of the retinal vasculature 
in terms of the level of artifacts and clarity of the image, and (3) no record of other neurodegenerative diseases, 
excluding subjects with mixed dementia and/or forms of Parkinsonism. To prevent external bias in our analysis, 
we perform age and gender matching for each AD subject with one normal control (NC). We note that a normal 
control subject is taken with the understanding of no current label of dementia, regardless of whether a subject 
may be at risk, or develop dementia in the future. We identify 100 images from a total of 80 unique NC subjects, 
wherein an additional NC subject is substituted when the image quality for certain fundus image pairs for a 
matched AD subject is insufficient.

Supplementary Table S2 showcases the summary statistics of the study population including demographics 
(age, gender, and ethnicity), ophthalmic features, and covariates. The ophthalmic features include eye problems 
(e.g., glaucoma, cataratcs, etc.) and visual acuity (LogMAR). The covariates include townsend indices, obesity-
diabetes status, smoking status, alcohol status, and history of stroke. Obesity-diabetes is defined as a BMI greater 
than 30 or a diagnosis of diabetes. All baseline characteristics are selected based on explored risk factors in AD 
studies45,46.

Data‑preprocessing
A manual image quality selection is employed to ensure that each fundus image has sufficient retinal vascular 
visibility. We employ the AutoMorph pipeline for image pre-processing. In particular, the image undergoes 
thresh-holding, morphological image operations, and cropping to effectively remove the background of the fun-
dus images. The images are passed into a Segan47 network for vessel segmentation pre-trained on a collection of 
labeled retinal vasculature datasets. The details of pre-training can be found in17. During the model training and 
evaluation of our classifiers, the vessel maps are resized to 224× 224 by ImageNet. The vascular morphological 
features are computed using the original image size.

Regarding the performance of AutoMorph pipeline, Bland-Altman plots in17 demonstrate an acceptable 
vascular feature agreement between expert annotation and AutoMorph segmentation. More specifically, they 
reported an intraclass-correlation coefficient (ICC) of 0.94 (0.88–0.97) and 0.94 (0.88–0.97) with a 95% confi-
dence interval for the fractal dimension and vessel density respectively on the DR. HAGIS dataset.

Data partitioning, tuning, and evaluation
In the binary classification task, we apply nested subject-level stratified five-fold cross-validation. To avoid 
potential bias, each fold is split such that retinal images from the same subject all belong to the same fold and 
each fold is equivalent in number of images (n = 20 images). To optimize the performance of the model, we 
tune the hyper-parameters during training with a four-fold cross-validation loop and re-train the model over 
all training data with the best hyper-parameters. Our experiments suggest optimization over a small learning 
rate grid of [1e−4, 1e−5] and a maximal number of 50 epochs is sufficient. We use a cross-entropy loss, Adam 
optimizer48, and data augmentations (flipping and rotations) for fine-tuning an ImageNet pre-trained VGG-16 
classifier18. The model is then re-trained over the optimal hyper-parameters using all of the training data and 
tested on the outer cross-validation fold.

Vascular morphological feature measurements
The AutoMorph pipeline is used to extract the vessel density and fractal dimension49 from the retinal vasculature. 
These measures are chosen based on hypothesized mechanisms concerning the reduction of vessel structures 
(e.g., small vessel disease) and structural complexity6,50,51. The vessel density is defined as the proportion of vessel 
pixels to the number of pixels in the image. The fractal dimension is defined here as the Minkowski-Bouligand 
dimension, also known as the box-counting dimension. Let X denote a (square) image, that is, the input vessel 
map. The Minkowski-Bouligand dimension is thus defined as follows:

Discretely, N is the input size of the image where ǫ is taken such that the window size of the box is reduced by a 
factor of 2 until the window attains a box of the chosen size, 16× 16.

Cognitive tests
The UKB administers several cognitive tests for a subset of the UKB cohort27. The Pairs Matching Test (Field 
399; Number of Incorrect Matches) contains a three-card and six-card variant. We select the six-card variant for 
analysis for simplicity, larger variance, as well as being used in other studies52. Moreover, we extract the prospec-
tive memory (Field 20018: Prospective Memory Result), and fluid intelligence (Field 20016: Fluid Intelligence 
Scores). Overall, these tests are chosen based on natural associations of reduction in AD subjects (symptomatic 
of the loss of memory and problem-solving) which have been investigated in prior clinical studies53,54. For the 
few subjects who do not have cognitive test measures, their values are interpolated using the average over their 
diagnostic class.

Participants
Participants with a clinical diagnosis of Alzheimer’s Disease (AD) are selected from the UK Biobank based on 
the availability and quality of the retinal vascular images. This study is approved by the ethics of the UK Biobank 

(6)FDbox(X) = lim
ǫ→0

log(N/ε)

log(1/ε)
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Ethics Advisory Committee (EAC) and the participants’ right to withdraw samples at any time. All patients gave 
written informed consent prior to participation.

Ethical approval
All methods in this study were conducted with the guidelines and regulations set forth by the UK Biobank and 
the associated research institutions.

Data availability
This research has been conducted using the UK Biobank Resource under application number 48388. The data-
sets are available to researchers through an open application via https://​www.​ukbio​bank.​ac.​uk/​regis​ter-​apply/.

Code availability
The code related to the findings of this study is available for download at: https://​github.​com/​NSH20​22/​LAVA..
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