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Speeding up the classical 
simulation of Gaussian boson 
sampling with limited connectivity
Tian‑Yu Yang 1 & Xiang‑Bin Wang 1,2,3,4,5*

Gaussian boson sampling (GBS) plays a crucially important role in demonstrating quantum advantage. 
As a major imperfection, the limited connectivity of the linear optical network weakens the quantum 
advantage result in recent experiments. In this work, we introduce an enhanced classical algorithm 
for simulating GBS processes with limited connectivity. It computes the loop Hafnian of an n× n 
symmetric matrix with bandwidth w in O(nw2

w ) time. It is better than the previous fastest algorithm 
which runs in O(nw2

2
w ) time. This classical algorithm is helpful on clarifying how limited connectivity 

affects the computational complexity of GBS and tightening the boundary for achieving quantum 
advantage in the GBS problem.

Gaussian boson sampling (GBS) is a variant of boson sampling (BS) that was originally proposed to demonstrate 
the quantum advantage1–4. In recent years, great progress has been made in experiments on GBS5–11. Both the 
total number of optical modes and detected photons in GBS experiments have surpassed several hundred7,8. 
Moreover, it is experimentally verified that GBS devices can enhance the classical stochastic algorithms in 
searching some graph features10,11.

The central issue in GBS experiments is to verify the quantum advantage of the result. The time cost of the 
best known classical algorithm for simulating an ideal GBS process grows exponentially with the system size12. 
Therefore a quantum advantage result might be achieved when the system size is large enough13–15.

However, there are always imperfections in real quantum setups, and hence the time cost of corresponding 
classical simulation will be reduced. When the quantum imperfection is too large, the corresponding classical 
simulation methods can work efficiently16–18. In this situation, a quantum advantage result won’t exist even if 
the system size of a GBS experiments is very large. Therefore, finding better methods to classically simulate the 
imperfect GBS process is rather useful in exploring the tight criteria for quantum advantage of a GBS experiment.

Recent GBS experiments have been implemented using optical circuits with relatively shallow depths5,7,17,18. 
A shallow optical circuit might have limited connectivity and its transform matrix will deviate from the global 
Haar-random unitary18,19. However, the original GBS protocol2,3 claims that the unitary transform matrix U of 
the passive linear optical network should be randomly chosen from Haar measure. Classical algorithms can 
take advantage of the limited connectivity and the deviation from the global Haar-random unitary to realize 
a speed-up in simulating the whole sampling process17,18. Actually, with limited connectivity in the quantum 
device, the speed-up of corresponding classical simulation can be exponential18.

The most time-consuming part of simulating the GBS process with limited connectivity is to calculate the loop 
Hafnian of banded matrices. A classical algorithm to calculate the loop Hafnian of a banded n× n symmetric 
matrix with bandwidth w in time O(nw4w) is given in Ref.17. Later, an algorithm that takes time O

(

nw22w
)

 is 
given in Ref.18. Here we present a classical algorithm to calculate the loop Hafnian of a banded n× n matrix 
with bandwidth w in time O(nw2w) . We also show that this algorithm can be used to calculate the loop Hafnian 
of sparse matrices.

Our algorithm reduces the time needed for classically simulating the GBS process with limited connectivity. 
This is helpful in clarifying how limited connectivity affects the computational complexity of GBS and tightening 
the boundary of quantum advantage in the GBS problem.
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This article is organized as follows. In “Overview of Gaussian boson sampling and limited connectivity” 
section, we give an overview of the background knowledge which will be used later. In “Simulate the sampling 
process with limited connectivity” section, we give our improved classical algorithm for calculating the loop 
Hafnian of banded matrices. Finally, we make a summary in “Summary” section.

Overview of Gaussian boson sampling and limited connectivity
Gaussian boson sampling protocol
In the GBS protocol, K single-mode squeezed states (SMSSs) are injected into an M-mode passive linear optical 
network and detected in each output mode by a photon number resolving detector. The detected photon number 
of each photon number resolving detector forms an output sample which can be denoted as n̄ = n1n2 . . . nM . 
The schematic setup of Gaussian boson sampling is shown in Fig. 1.

Before detection, the output quantum state of the passive linear optical network is a Gaussian quantum 
state20–23. A Gaussian state is fully determined by its covariance matrix and displacement vector. Denote operator 
vector ξ̂ = (â†1, . . . , â

†
M , â1, . . . , âM)T , where â†i  and âi are the creation and annihilation operators in the ith 

( i ∈ {1, 2, . . . ,M} ) optical mode, respectively. The covariance matrix σ and displacement vector r̄ of the Gaussian 
state ρ̂ is defined as

where

Notice that (ξ̂ − r̄)(ξ̂ − r̄)† is the outer product of column vector (ξ̂ − r̄) and row vector (ξ̂ − r̄)† and 
(ξ̂ − r̄)(ξ̂ − r̄)† �= ((ξ̂ − r̄)(ξ̂ − r̄)†)† as the operators in the vector ξ̂ might not commute with each other. As an 
example, assume M = 1 so that ξ̂ = (â†1, â1)

T , we have

But,

Usually, a matrix (say matrix A) is used to calculate the output probability distribution of a GBS process2,3,14. 

Denote that X2M =

(

0 IM
IM 0

)

 , and I2M (or IM ) as identity matrix with rank 2M (or M). The matrix A is fully 

determined by the output Gaussian sate as follows:

(1)
r̄ = Tr[ρ̂ξ̂ ],

σ =
1

2
Tr
[

ρ̂

{

(ξ̂ − r̄), (ξ̂ − r̄)†
}]

,

(2)

{

(ξ̂ − r̄), (ξ̂ − r̄)†
}

= (ξ̂ − r̄)(ξ̂ − r̄)†

+ ((ξ̂ − r̄)(ξ̂ − r̄)†)†.

(3)(ξ̂ − r̄)(ξ̂ − r̄)† =

(

â†1â1 â†1â
†
1

â1â1 â1â
†
1

)

.

(4)((ξ̂ − r̄)(ξ̂ − r̄)†)† =

(

â1â
†
1 â†1â

†
1

â1â1 â†1â1

)

�= (ξ̂ − r̄)(ξ̂ − r̄)†.

Figure 1.   A schematic setup of Gaussian boson sampling. In this example, K = 8 single-mode squeezed states 
are injected into a passive linear optical network with M = 10 optical modes. Then photon number resolving 
detectors detect the photon number in each output mode. An output pattern n̄ = n1n2 . . . nM is generated 
according to the detected results.
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where

The probability of generating an output sample n̄ is

where lhaf(A) =
∑

M∈SPM(n)

∏

(i,j)∈M Ai,j is the loop Hafnian function of matrix A, and SPM(n) is the set of 
single-pair matchings12 which is the set of perfect matchings of complete graph with loops on n vertices. The 
matrix An̄ is obtained from A as follows n̄14,24: for ∀i = 1, . . . ,M , if ni = 0 , the rows and columns i and i +M are 
deleted from the matrix A; if ni  = 0 , rows and columns i and i +M are repeated ni times.

Continuous‑variables quantum systems
If a Gaussian state is input into a linear optical network, the output quantum state is also a Gaussian state. Denote 
the unitary operator corresponding to the passive linear optical network as Û  . A property of the passive linear 
optical network is:

where

The output Gaussian state and the input Gaussian state is related by

where σin and r̄in are the covariance matrix and displacement vector of the input Gaussian state. The SMSS in 
input mode i has squeezing strength si and phase φi . For simplicity and without loss of generality, assume that 
φi = 0 for i = 1, . . . ,M . The covariance matrix of the input Gaussian state is

The matrix Ã is thus Ã = B̃
⊕

B̃∗ , where

If a part of the optical modes in the Gaussian state are measured with photon number resolving detectors and 
the outcome is not all-zero, the remaining quantum state will be a non-Gaussian state25,26. An M-mode coher-
ent state20–22,27 is denoted as |�α� (or | �β� ), where �α = (α1, . . . ,αM)T (or �β = (β1, . . . ,βM)T ) and αi (or βi ) for 
i = 1, . . . ,M are complex variables.

A Gaussian state can be represented in the following form:

where

(5)Ai,j =

{

(Ã)i,j if i �= j
ỹi if i = j

,

(6)

σQ = σ + I2M/2,

Ã = X2M

(

I2M − σ−1
Q

)

,

ỹ = X2Mσ−1
Q r̄.

(7)p(n̄) =
exp

(

− 1
2 r̄

†σ−1
Q r̄

)

√

det(σQ)

lhaf(An̄)

n1! · · · nM !
,

(8)Û†ξ̂ Û = T ξ̂ ,

(9)T =

(

U 0
0 U∗

)

.

(10)
σ = TσinT

†,

r̄ = Tr̄in,

(11)σin =
1

2









M
�

i=1
cosh 2si

M
�

i=1
sinh 2si

M
�

i=1
sinh 2si

M
�

i=1
cosh 2si









.

(12)B̃ = U

(

M
⊕

i=1

tanh si

)

UT .

(13)

ρ̂ =
1

π2M

∫

d2 �α

∫

d2 �β| �β���α|� �β|ρ̂|�α�

=
P0

π2M

∫

d2 �α

∫

d2 �β| �β���α|exp

(

−
|�̃|2

2
+

1

2
�̃
TÃ�̃+ �̃

Tỹ

)
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For our convenience, define the permutation matrix P, such that γ̃ = P�̃ =
(

β∗
1 ,α1,β

∗
2 ,α2, . . . ,β

∗
M ,αM

)T . Let 
R̃ = PTÃP , l̃ = Pỹ . We then have

Suppose the first N modes of an M-mode Gaussian state are measured and a sample pattern n̄ = n1n2 . . . nN is 
observed. Denote that

where R̃dd is a 2N × 2N matrix corresponding to modes 1 to N, R̃hh is a 2(M − N)× 2(M − N) matrix corre-
sponding to modes N + 1 to M, R̃dh is a 2N × 2(M − N) matrix represents the correlation between modes 1 to 
N and modes N + 1 to M. The remaining non-Gaussian state is26

where

| �β(N)� = |βN+1,βN+2 . . . ,βM� and |�α(N)� = |αN+1,αN+2 . . . ,αM� are coherent states, and

If all optical modes of the Gaussian state are measured (N = M), then Eq. (17) gives the probability of obtaining 
the output sample n̄ . In this case, the result of Eq. (17) coincides with that of Eq. (7).

Limited connectivity
As specified in the Gaussian boson sampling protocol2,3, the transform matrix U of the passive linear optical 
network should be randomly chosen from the Haar measure. The circuit depth needed to realize an arbitrary 
unitary transform in a passive linear optical network is O(M), where M is the number of optical modes19,28–30. 
However, due to the photon loss, the circuit depth of the optical network might not be deep enough to meet the 
requirements of the full connectivity and the global Haar-random unitary19. This is because photon loss rate ε 
will increase exponentially with the depth of the optical network, i.e., ε = εD0  , where ε0 is the photon loss of each 
layer of the optical network. If the photon loss rate is too high, the quantum advantage result of GBS experiments 
will be destroyed16,31,32.

The shallow circuit depth leads to a limited connected interferometer17–19. As an example, consider the case 
where the beam splitters in the optical network is local, which means they act on neighbouring modes, assuming 
a 2D structure. This is shown in Fig. 1. If D < M , the transform matrix U of the passive linear optical network 
will have a banded structure17, i.e.,

and

(14)

�̃ =
(

β∗
1 , . . . ,β

∗
M ,α1, . . . ,αM

)T
,

P0 =
exp

(

− 1
2 r̄

†σ−1
Q r̄

)

√

det(σQ)
.

(15)ρ̂ =
P0

π2M

∫

d2 �α

∫

d2 �β| �β���α|exp

(

−
|γ̃ |2

2
+

1

2
γ̃ TR̃γ̃ + γ̃ T l̃

)

.

(16)

γ̃h =
(

γ̃ ∗
2N+1, γ̃2N , . . . , γ̃2M

)T
,

γ̃d = (γ̃1, γ̃2, . . . , γ̃2N )
T,

l̃h =
(

l̃2N+1, l̃2N . . . , ỹ2M

)T
,

l̃d =
(

l̃1, l̃2 . . . , l̃2N

)T
,

R̃ =

(

R̃dd R̃dh
R̃hd R̃hh

)

,

(17)ρ̂(n̄) =
P0

π2(M−N)

∫

d2 �α(N)

∫

d2 �β(N)| �β(N)���α(N)|F(γ̃h),

(18)
d2 �β(N) = d2βN+1d

2βN+2 . . . d
2βM ,

d2�α(N) = d2αN+1d
2αN+2 . . . d

2αM ,

(19)

F(γ̃h) =
P0

n̄!
exp (L2)

M
∏

k=N+1
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∂2

∂αk∂β
∗
k

)nk

exp (L3)

∣

∣

∣

∣
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1

2
γ̃ T
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d l̃d + γ̃ T
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∣Ui,j

∣

∣ = 0 for
∣

∣i − j
∣
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(21)
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∣Ui,j
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where wU = D is the bandwidth of the transform matrix U. An example of a matrix with banded structure is 
shown in Fig. 2. According to Eqs (10) and (11), the covariance matrix σ of the output Gaussian state will have a 
banded structure. Thus, if beam splitters are local, the circuit depth D must be no less than M/2 to reach the full 
connectivity. Note that, according to Eq. (12), matrix B̃ [and A in Eq. (7)] has bandwidth

Recently, a scheme known as “high-dimensional GBS” has been proposed4. This scheme suggests that by inter-
fering non-adjacent optical modes, the connectivity can be improved while maintaining a relatively shallow circuit 
depth. However, due to the limited circuit depth, the transformation matrix in this scheme cannot represent an 
arbitrary unitary matrix. Consequently, the transformation matrix deviates from the global Haar-random unitary. 
To address this, the scheme introduces a local Haar-random unitary assumption, which says that the transforma-
tion matrix corresponding to each individual beam splitter is randomly selected from the Haar measure. Under 
this local Haar-random unitary assumption, Ref.18 demonstrates that when the circuit depth is too shallow, the 
high dimensional GBS process can be approximate by a limited connected GBS process with a small error.

As a result of the limited connectivity and the deviation from the Haar measure, a speed-up can be realized in 
simulating the corresponding GBS process17,18. The speed-up is attributed to the faster computation of the loop 
Hafnian for matrices with bandwidth as compared to the computation of general matrices.

Classical simulation of GBS
To date, the most efficient classical simulation method for simulating a general GBS process has been presented 
in Ref.14. This classical algorithm, which samples from an M-mode Gaussian state ρ̂ , operates as follows. 

1.	 If ρ̂ is a mixed state, it can be decomposed as a classical mixture of pure Gaussian states. We randomly select 
a pure displaced Gaussian state based on this classical mixture. This can be done in polynomial time14,21. Its 
covariance matrix and displacement vector are denoted as σ and r̄ , respectively.

2.	 If ρ̂ is a pure state, denote its covariance matrix and displacement vector as σ and r̄ , respectively.

For k = 1, . . . ,M : 

3.	 If k = 1, drawn a sample ᾱ1 = (a2+1, . . . ,αM) from the probability distribution: 

 where ρ̂d = Tr1
[

ρ̂
]

 , and Tr1 [·] is the partial trace of mode 1. This process is equivalent to measure the modes 
2 to M by heterodyne measurements.

4.	 Let ᾱk =
(

αk+1, . . . ,αM
)

 . Provided that the heterodyne measurements in modes k + 1 toMgives ᾱk, compute 
the conditional covariance matrix σ (ᾱk)

1−k  and displacement r̄(ᾱ
k)

1−k of the remaining Gaussian state. If k = M , 
let σ (ᾱk)

1−k = σ and r̄(ᾱ
k)

1−k = r̄ . Notice that the conditional quantum state in modes 1, . . . , k is still Gaussian if 
modes k + 1, . . . ,M is measured by heterodyne measurements21.

5.	 Given a cutoff Nmax , use Eq. (7) with σ (ᾱk)
1−k  and r̄(ᾱ

k)
1−k to calculate p(n1, . . . , nk) for nk = 0, 1, . . . ,Nmax.

6.	 Sample nk from: 

The most time-consuming part for the above classical simulation method is to calculate the probability 
p(n1, . . . , nk) of an output sample pattern n1, . . . , nM . According to Eq. (7), we have

(22)w =

{

2wD − 1 for wD < M/2
M − 1 for wD ≥ M/2

.

(23)p(ᾱ) =
1

πM−1

〈

ᾱ1
∣

∣ρ̂d
∣

∣ᾱ1
〉

,

(24)p(nk) =
p(n1, . . . , nk)

p
(

n1, . . . , nk−1

) .

Figure 2.   A symmetric matrix with a banded structure. X represents an arbitrary non-zero entry in the matrix. 
The bandwidth in this example is w = 3.
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where the r̄(B )

A
 , (σQ)

(B )

A
 and A(B )

A
 are the corresponding conditional matrices for subsystem contains modes 1 

to k (denoted as A ) when modes k + 1 to M are measured by heterodyne measurements with outcome denoted 
as B . A(B )

A
 can be computed by the following equation:

Note that if the Gaussian state ρ̂ is a pure state, the conditional Gaussian state is still a pure state. So, we have 
Ã
(B )

A
= B̃A

⊕

B̃∗
A

 . As pointed in Ref.18, we have B̃A = [U(
⊕

i tanh si)U
T ]A . This shows that B̃A has the same 

banded structure as B̃ . A classical algorithm to calculate the loop Hafnian of a banded matrix is thus needed for 
the classical simulation of GBS with limited connectivity.

Simulate the sampling process with limited connectivity
Loop Hafnian algorithm for banded matrices
An algorithm to calculate the loop Hafnian of an n× n symmetric matrix with bandwidth w in time O(nw4w) is 
given in Ref.17. Then, a faster algorithm with time complexity O

(

nw2
t 2

wt
)

 to calculate the loop Hafnian of an n× n 
symmetric matrix is proposed in Ref.18, where wt is the treewidth of the graph corresponding to the matrix33. For 
a banded matrix, the smallest treewidth wt is equal to the bandwidth w, i.e., w = wt . So the time complexity for 
this algorithm to calculate the loop Hafnian of an n× n symmetric matrix with bandwidth w is O

(

nw22w
)

 . Here 
we show that the loop Hafnian of an n× n symmetric matrix with bandwidth w can be calculated in O(nw2w).

Our algorithm to calculate the loop Hafnian for banded matrices is outlined as follows.
Algorithm. To calculate the loop Hafnian of an n× n symmetric matrix B with bandwidth w: 

1.	 Let C0
∅ = 1.

For t = 1, . . . , n : 

2.	 Let tw = min (t + w, n) , and P({t + 1, . . . , tw}) be the set of all subsets of {t + 1, . . . , tw}.
3.	 For every Zt ∈ P({t + 1, . . . , tw}) satisfying Zt  = ∅ and 

∣

∣Zt
∣

∣ ≤ min (t,w) , let 

 and if tw ∈ Zt , then 

 During the above iterations, if Ct−1
{... } is not given in the previous steps, it is treated as 0.

4.	 Let 

The loop Hafnian of matrix B is obtained in the final step t = N by

An example of calculating the loop Hafnian of a 4× 4 matrix with bandwidth w = 1 using our algorithm can be 
found in Appendix A. Note that, our algorithm for calculating loop Hafnian function of matrices with banded 
structure can be easily extended to cases where the matrices is sparse (but not banded). A description of this 
can be found in Appendix B. The time complexity of the above algorithm is O(nw2w) as shown in Theorem 1.

Theorem 1  Let B be an n× n symmetric matrix with bandwidth w. Then its loop Hafnian can be calculated in 
O(nw2w).

Proof  As shown in our algorithm, the number of coefficients ( Ct
Zt

 , Ct
∅ and Ct

{t} ) needed to be calculated for each 
t ∈ {1, . . . , n} is at most 2w . As shown in Eqs. (27)–(30), in each iteration, we need O(w) steps to calculate each 
coefficient Ct

Zt . So, for each t, the algorithm takes O(w2w) steps. The overall cost is thus O(nw2w) . 	�  �

(25)

p(n1, . . . , nk) =
exp

(

− 1
2 r̄

(B )†
A

(σQ)
(B )−1
A

r̄
(B )

A

)

√

det
(

(σQ)
(B )

A

)

×
lHaf

((

A
(B )

A

)

n̄

)

n1! · · · nM !
,

(26)A
(B )

A
=







�

Ã
(B )

A

�

i,j
if i �= j

�

ỹ
(B )

A

�

i
if i = j

.

(27)Ct
Zt =

∑

x∈Zt

Bt,xC
t−1
Zt\{x} + Ct−1

Zt∪{t} + Bt,tC
t−1
Zt ,

(28)Ct
Zt = Bt,twC

t−1
Zt\{tw}

.

(29)Ct
∅ = Bt,tC

t−1
∅ + Ct−1

{t} .

(30)lhaf(B) = Cn
∅ .
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Combining our algorithm with the classical sampling techniques described in Ref.14, as summarized in 
“Classical simulation of GBS” section, we get the time complexity for classically simulating a limited connected 
GBS process as stated in the following Theorem 2.

Theorem 2  A limited connected GBS process with a bandwidth w can be simulated in O(Mnw2w) time, where M 
represents the number of optical modes and n denotes the maximum total photon number of the output samples.

Proof  The classical simulation process is similar to that in Ref.14, as summarized in “Classical simulation of 
GBS” section. In this process, we sequentially sample nk for k = 1, . . . ,M according to Eq. (24). As we shown in 
Theorem 1, the computation of Eq. (24) takes at most O(nw2w) steps, assuming that B has a bandwidth w, where 
n =

∑M
i=1 ni . This is scaled up by at most the total number of modes M. Thus the time complexity for simulating 

such a GBS process is O(Mnw2w) . 	�  �

Validity of the algorithm
By sequentially computing the states (usually non-Gaussian) of the remaining M − k modes with the measure-
ment outcome of modes 1 to k ( k = 1, . . . ,M ) in photon number basis, we can demonstrate the validity of the 
algorithm introduced in “Loop Hafnian algorithm for banded matrices” section. Recalling matrix R̃ defined in 
Eq. (15), we denote the bandwidth of matrix R̃ by w. According to the definition of R̃ and l̃  , we know that

where

Assuming that the measurement results are ni = 1 for every i = 1, . . . ,M , we obtain

Although we make the assumption that R corresponds to a Gaussian state, the subsequent proof remains valid 
in the more general case as discussed in Appendix C.

For convenience, define γ̃di = (β∗
i ,αi)

T , γ̃hi = (β∗
i+1,αi+1, . . . ,β

∗
M ,αM)T , R̃i

dd as a 2× 2 matrix corresponding 
to mode i, R̃i

hh as a 2(M − i)× 2(M − i) matrix corresponding to modes i + 1 to M, R̃i
dh as a 2× 2(M − i) matrix 

represents the correlation between mode i and modes i + 1 to M.
According to Eq. (17), after measuring the mode 1 in photon number basis, the remaining non-Gaussian 

quantum state is:

We then have

where D2
x is the coefficient for γ̃ 2

x .
Next, measuring mode 2. The remaining non-Gaussian quantum state is:

(31)lhaf (R) = lhaf (A),

(32)Ri,j =

{

(R̃)i,j if i �= j

l̃i if i = j
.

(33)p(11 . . . 1) = P0lhaf (R).

(34)

ρ̂(n1) =
P0

π2(M−1)

∫

d2 �α(1)

∫

d2 �β(1)| �β(1)���α(1)|

×
∂2

∂α1∂β
∗
1

exp

(

1

2
γ̃ T
d1
R̃1
dd γ̃d1 + γ̃ T

d1
R̃1
dhγ̃h1 + γ̃ T

d1
l̃d1

)∣

∣

∣

∣

γd1=0

× exp

(

−
1

2
|γ̃h1 |

2 +
1

2
γ̃ T
h1
R̃1
hhγ̃h1 + γ̃ T

h1
l̃h1

)

.

(35)

∂2

∂α1∂β
∗
1

exp

(

1

2
γ̃ T
d1
R̃1
dd γ̃d1 + γ̃ T

d1
R̃1
dhγ̃h1 + γ̃ T

d1
l̃d1

)∣

∣

∣

∣

γd1=0

=
(

R̃1
dd

)

1,2
+

(

l̃d1

)

1

(

l̃d1

)

2
+

M
∑

j,k=1

(

R̃1
dh

)

1,j

(

R̃1
dh

)

2,k

(

γ̃h1
)

j

(

γ̃h1
)

l

= R̃12 + l̃1 l̃2 ++

M
∑

j,k=1

R̃1,j+2R̃2,k+2γ̃j+2γ̃k+2

= C2
∅ +

∑

Z2

C2
Z2

∏

x∈Z2

γ̃x +
∑

x∈{3,...,M}

D2
x γ̃

2
x ,
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We have

where D4
x1,x2,x3

 is the coefficient for γ̃ 2
x1
γ̃x2 γ̃x3.

Repeating this procedure to measure mode 1 to mode M, we eventually find that

Thus we prove

This demonstrates the validity of the algorithm given in “Loop Hafnian algorithm for banded matrices” section.
Intuitively, as shown in the previous derivation, after measuring the first t modes of the output Gaussian state, 

the state of the remaining modes is:

where Polyt
(

R, γ̃ht
)

 represents the sum of polynomial terms formed by complex variables in γ̃ht . Specifically, 
we have

First we consider the case where t < M . It is easy to find that terms {
∏

x∈Z2t γ̃x} of different Z2t influence the 
constant term C2M

∅  in the subsequent computing. On the other hand, high-order terms containing γ k
x  with k ≥ 2 

do not affect the final result. As those term vanishes after performing the partial derivation. Consequently, the 
iteration of Ct

Zt appearing in step 3 of our algorithm is required from t = 1 to t = 2M to eventually determine the 
value of lhaf (R) = C2M

∅  . When all modes of the output state are measured, we have t = M for Eq. (41), and hence 
PolyM(R, γ̃hM ) will not contain any complex variables, ensuring that the constant term C2M

∅  equals to lhaf (R).

Summary
To verify quantum advantage, it is vital to evaluate the concrete cost of classically simulating the corresponding 
quantum process. Here we present an algorithm to speed up the classical simulation of GBS with limited con-
nectivity. The speed-up is arising from the faster calculation for the loop Hafnian of banded (or sparse) matrices. 
This algorithm runs in O(nw2w) for n× n symmetric matrices with bandwidth w. This result is better than the 
prior state-of-the-art result of O

(

nw22w
)

18.
This classical algorithm is helpful on clarifying how limited connectivity reduces the computational resources 

required for classically simulating GBS processes, thereby tightening the boundary for achieving quantum advan-
tage in GBS problem.

(36)

ρ̂(n1n2) =
P0

π2(M−2)

�

d2 �α(2)

�

d2 �β(2)| �β(2)���α(2)|

× exp

�

−
1

2
|γ̃h2 |

2 +
1

2
γ̃ T
h2
R̃2
hhγ̃h2 + γ̃ T

h2
l̃h2

�

×
∂2

∂α2∂β
∗
2

�

exp

�

1

2
γ̃ T
d2
R̃2
dd γ̃d2 + γ̃ T

d2
R̃2
dhγ̃h2 + γ̃ T

d2
l̃d2

�

×



C2
∅ +

�

Z2

C2
Z2

�

x∈Z2

γ̃x +
�

x∈{3,...,M}

D2
x γ̃

2
x









�

�

�

�

�

�

γd2=0

.

(37)

∂2

∂α2∂β
∗
2

�

exp

�

1

2
γ̃ T
d2
R̃2
hhγ̃d2 + γ̃ T

d2
R̃2
dhγ̃h2 + γ̃ T

d2
l̃d2

�

×



C2
∅ +

�

Z2

C2
Z2

�

x∈Z2

γ̃x +
�

x∈{3,...,M}

D2
x γ̃

2
x









�

�

�

�

�

�

γd2=0

= C4
∅ +

�

Z4

C4
Z4

�

x∈Z4

γ̃x +
�

x1,x2,x3∈{5,...,M}

D4
x1,x2,x3

γ̃ 2
x1
γ̃x2 γ̃x3 ,

(38)ρ̂(n̄=11...1) = P0C
2M
∅ = p(n̄ = 11 . . . 1) = P0lhaf (R).

(39)C2M
∅ = lhaf(R).

(40)

ρ̂(n1...nt ) =
P0

π2(M−t)

∫

d2�α(t)

∫

d2 �β(t)| �β(t)���α(t)|

× exp

(

−
1

2
|γ̃ht |

2 +
1

2
γ̃ T
ht
R̃t
hhγ̃ht + γ̃ T

ht
l̃ht

)

× Polyt
(

R, γ̃ht
)

,

(41)

Polyt(R, γ̃ht ) = C2t
∅ +

∑

Z2t

C2t
Z2t

∏

x∈Z2t

γ̃x

+
∑

x1,...,x2t−1∈{2t+1,...,M}

D2t
x1,...,x2t−1

× γ̃ 2
x1
γ̃x2 . . . γ̃x2t−1 .
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