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The COVID‑19 pandemic caused by the novel SARS‑COV‑2 virus poses a great risk to the world. During 
the COVID‑19 pandemic, observing and forecasting several important indicators of the epidemic 
(like new confirmed cases, new cases in intensive care unit, and new deaths for each day) helped 
prepare the appropriate response (e.g., creating additional intensive care unit beds, and implementing 
strict interventions). Various predictive models and predictor variables have been used to forecast 
these indicators. However, the impact of prediction models and predictor variables on forecasting 
performance has not been systematically well analyzed. Here, we compared the forecasting 
performance using a linear mixed model in terms of prediction models (mathematical, statistical, 
and AI/machine learning models) and predictor variables (vaccination rate, stringency index, 
and Omicron variant rate) for seven selected countries with the highest vaccination rates. We decided 
on our best models based on the Bayesian Information Criterion (BIC) and analyzed the significance 
of each predictor. Simple models were preferred. The selection of the best prediction models and the 
use of Omicron variant rate were considered essential in improving prediction accuracies. For the 
test data period before Omicron variant emergence, the selection of the best models was the most 
significant factor in improving prediction accuracy. For the test period after Omicron emergence, 
Omicron variant rate use was considered essential in deciding forecasting accuracy. For prediction 
models, ARIMA, lightGBM, and TSGLM generally performed well in both test periods. Linear mixed 
models with country as a random effect has proven that the choice of prediction models and the 
use of Omicron data was significant in determining forecasting accuracies for the highly vaccinated 
countries. Relatively simple models, fit with either prediction model or Omicron data, produced best 
results in enhancing forecasting accuracies with test data.

Coronavirus Disease 19 (COVID-19) is a severe respiratory syndrome caused by 2019-nCoV  virus1. Since the 
first case in Wuhan, China, in 2019, there have been 540,625,513 confirmed cases and 6,331,685 deaths worldwide 
(June 13, 2022)2. In the early stages of the epidemic, most countries applied intensive restriction policies including 
lockdowns to control the spread of COVID-19, since neither vaccines nor cures had yet been  developed3. After 
vaccines’ development, some countries including Israel, the United Kingdom, and Singapore increased their vac-
cination rates (VRs) rapidly to ease  restrictions4–6. Currently, most countries are administering booster doses of 
vaccination to their fully vaccinated population. Despite these efforts, the emergence of new SARS-CoV-2 virus 
variants including Omicron (whose first specimen was collected on November 9, 2021)7 and the resulting risk 
of a breakthrough  infection8 showed that humans could not yet fully escape from the COVID-19 pandemic. In 
particular, Omicron variants are known to have a higher basic reproduction number (R0) of up to 10 compared 
to 2.5 of the original SARS-CoV-2 series or below 7 for Delta  variants9. This high reproduction number directly 
affects the rate of spread, which in turn, can be observed by the number of confirmed cases. Thus, it is essential 
to provide separate predictions for each using data before and after Omicron variant emergence. Policy and vac-
cination data may play an important role in forecasting the spread of the pandemic before Omicron appearance, 
whereas Omicron rate (OR) data itself may be considered pivotal for prediction after its appearance.
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During the COVID-19 epidemic, predicting the trend of the epidemic can help to allocate healthcare ser-
vices efficiently and measure the impact of intervention  policies10. There are several important indicators of an 
epidemic such as (1) new confirmed cases, (2) new deaths, and (3) Intensive Care Unit (ICU) patients. These 
indicators could be predicted by several prediction models and predictor variables.

For prediction models, (1) mathematical models, (2) statistical models, and (3) AI/machine learning models 
can be used. For mathematical models, the Susceptible-Exposed-Infectious-Quarantined-Recovered (SEIQR) 
model was applied to predict daily confirmed cases, isolated people, and peak date of isolation during the first 
outbreak in Daegu, South  Korea11. Using the number of cumulative cases, suspected, recovery, deaths, and quar-
antined population in mainland China, the Susceptible-Exposed-Infectious-Quarantined-Diagnosis-Recovered 
(SEIQDR) model was used to predict cumulative future cases, infection rate, and regeneration number of the 
 disease12. However, both models were not able to cover the effects of vaccinations and the insusceptible group 
with immunity. Thus, we developed and applied our SEIQRDV3P model, which is a modification of the Suscep-
tible-Exposed-Infectious-Quarantined-Recovered-Deceased-Vaccinated-Unprotected-Protected (SEIQRDVUP) 
model.

For statistical models, Auto-Regressive Integrated Moving Average (ARIMA) models, single and double 
exponential methods, and trend models were used for the prediction of confirmed cases in India. Among them, 
ARIMA models showed the best  performance13. However, seasonality and regression were not considered in this 
study, limiting the most appropriate time series model to a relatively simple ARIMA model (2,2,2). In the case of 
a study regarding the prediction of ICU patients in Berlin, Lombardy, and Madrid, hyperparameters including 
appropriate time lags, time in ICUs, and ICU rates were first determined. Then simple linear and exponential 
models were applied to predict the number of future ICU  patients14. The above models utilized relatively short-
term data usually from one month to three months at the longest, both for training and prediction. Conversely, 
considering that the pattern of patients has changed dramatically with various outbreaks, we applied a long 
training period (14 months) to better observe the overall trend.

Most of these statistical approaches are only valid for short-term forecasting. Meanwhile, for long-term and 
more accurate predictions, AI/machine learning models were considered. Two hybrid methods of Artificial 
Neural Network (ANN) algorithms such as the Multi-Layered Perceptron-Imperialist Competitive Algorithm 
(MLP-ICA) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) were used for a 6-month future prediction 
of the number of cases and mortality in  Hungary15. In addition, nonlinear autoregressive artificial neural network 
(NARANN)16, Long Short-Term Memory (LSTM)17, and ANFIS with Chaotic Marine Predators Algorithm 
(CMPA)18 were also used to predict the spread of COVID-19. Most of these AI/machine-learning models were 
shown to have better performance than statistical models. However, no single model performs best across dif-
ferent countries, due to their diverse pandemic  trends19. Recently, AI/machine learning models have also been 
used in other various prediction problems during the COVID-19 epidemic, such as detecting COVID-19 infec-
tions from CT/X-ray images using  CNNs20 and identifying virus subsequences based on infection propagation 
mechanisms using the Fragmented Local Aligner Technique (FLAT)  model21.

Some prediction models can also use additional predictor variables to improve the accuracy of prediction. 
Several predictor variables include (1) previously new confirmed patients/critical patients / new deaths at specific 
periods (ex: before 7 days), (2) VR, (3) daily restriction policy, (4) mobility, etc. For restriction policies, one 
study has considered lockdown variables and population demographics of eight European countries. It showed 
that stringency indices (SI), including lockdown, have a large effect on both infection and mortality  rates22. In 
another study using mobility data to predict confirmed cases in Spain, an explanatory variable was first obtained 
by an ensemble of time series models and machine learning models. Then a multivariate regression model using 
that explanatory variable and Google mobility variables of lags 1 to 7 was introduced for forecasting cumula-
tive  cases23. However, there exists little research involving VRs and their lagged data as predictor variables for 
forecasting future cases.

Therefore, in this paper, we tried to compare the accuracy of predictions when using various prediction 
models and predictor variables. First, we predicted the newly confirmed patients, ICU patients, and new deaths 
in seven countries namely, Denmark, Israel, Japan, Singapore, South Korea, the UK, and the USA. We selected 
them from developed countries with high VRs (higher than 70% fully vaccinated, as of December 31st, 2021). 
In addition, we tried to show the effect of Omicron emergence by analyzing both periods, before Omicron 
appearance and after Omicron appearance. We used the last 7 days for each period as test data, and the rest 
were used for training the model. We chose three statistical models (Generalized Additive Model (GAM), Time 
Series Generalized Linear Model (TSGLM), and Multiplicative Seasonal ARIMA), two AI/machine learning 
algorithms (lightGBM and Bi-directional Long Short-Term Memory (Bi-LSTM)), and one mathematical model 
(SEIQRDV3P) to forecast the spread of COVID-19. These six prediction models and three predictor variables 
were used for prediction.

The multiplicative seasonal ARIMA model is a fundamental prediction model for time series data. TSGLM 
is another representative method for analyzing data when observations depend on past data. GAM deals with 
the nonlinear relationship between predictor variables and response variables. Among various AI/machine 
learning models, lightGBM with its fast learning time, and Bi-LSTM which learns time series data bidirection-
ally, were chosen. Lastly, the SEIQRDV3P model was developed to handle three different VRs depending on 
the number of inoculations. We also used various predictor variables (VR, SI, OR) to increase the forecasting 
accuracy. Especially, we used VRs depending on the different number of inoculations, from the first dose, the 
second dose (fully vaccinated), and the third dose (also called the booster shot). Secondly, we compared the 
accuracy of each prediction.

A Linear Mixed Model (LMM)24 was used to investigate the impact of predictive models and predictor vari-
ables on prediction accuracy across different countries. Bayesian Information Criterion (BIC)25 was applied for 
selecting the best model. Prediction models and Omicron variants were significant in the prediction of test data.
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In short, the major contributions of our study are as follows. First, we utilized various types of prediction 
models and predictor variables including vaccination coefficients for forecasting different indicators of COVID-
19. Secondly, we introduced an approach using forecast error as a response variable for LMMs, measuring the 
impact of each predictor and making our results generalizable to other countries for further research. Finally, we 
have discovered the choice of the prediction model and the use of OR are significant in improving forecasting 
accuracy for each country.

Results
Fitting and choosing the best LMMs
We have used LMMs to distinguish predictor variables with the largest influence on forecasting accuracy. As 
we are interested in the distinct effects of prediction models, vaccination coefficients, and Omicron variant on 
confirmed cases, deaths, and ICU patients, these were considered fixed effects, whereas countries were treated 
as random effects. All variables are categorical and dummy coded, including interaction terms, but for conveni-
ence, we suggested two models. (LMM a) and (LMM b) are the full models for test periods #1 (before Omicron) 
and #2 (after Omicron), respectively. Compared to (LMM b), Omicron predictor variable and interaction terms 
involving Omicron variant data are not included as response variables in (LMM a).

ai,v and bj,v refer to dummy coded prediction models and vaccination coefficients, respectively. ARIMA prediction 
model without vaccination coefficient and Omicron variant usage for Denmark serves as the baseline model. 
dij refers to the interaction between prediction models and vaccination coefficients. ejk refers to the interaction 
between vaccination coefficients and the use of Omicron variants. fki refers to the interaction between the use 
of Omicron variants and prediction models. gijk refers to the three-way interaction between prediction models, 
vaccination coefficients, and the use of Omicron variants. δl refers to country, or our random intercept effect. εijkl 
and yijkl refer to the error term and  log10WMAPE value for each prediction model, vaccination coefficient, use 
of Omicron variants, and country, respectively. WMAPE values were log-transformed to reduce the influence 
of outliers and to better follow a normal distribution. We assumed that δl and εijkl follow normal distributions N 
(0, σl2 ) and N(0, σ 2 ), respectively. Note that the extended SEIR model is not designed to use Omicron variants 
as its variable, thus, we do not fit y4j1l values. Table 1 shows coefficient values for our model.

Table 2 and Table 3 show our data structure with predictor variables and response variables for test period 
#1 (before Omicron) and #2 (after Omicron), respectively.

We created all possible combinations of LMMs using fixed effects and their interaction terms. Note that the 
number of parameters slightly differs since our extended SEIR model does not provide predictions for ICU 
patients due to model limitations. For convenience, we denote our prediction model parameter as model, vac-
cination coefficient parameter as cov, usage of Omicron variant parameter as omicron, country parameter as a 
country, and  log10WMAPE forecast as y. Our model formulae refer to which are used in the R lmerTest package. 
For instance, the formula y ~ omicron + (1|country) refers to the reduced model.

Among those, we selected the best models based on AIC and BIC values for each of the 6 cases; raw confirmed 
cases, smoothed confirmed cases, raw daily deaths, smoothed daily deaths, raw ICU patients, and smoothed 
ICU patients. For test period #1, regardless of prediction case and criterion (AIC or BIC), the best model was 
y ~ model + (1 | country). Table 4 lists the best models for each case in test period #2. Note that the best models 
selected based on AIC were more complex than those based on BIC since in our study we have a total of 210 
observations per country, i.e., log(n) = 5.35 in (26) and (27).

When selecting the best model for each prediction case, the RMSE values for the best models were calculated. 
For smoothed confirmed cases, raw daily deaths, and smoothed daily deaths, the same models were selected by 

(LMM a)yijl = β0 + β1,1ai,1 + · · · + β1,5ai,5 + β2,1bj,1 + · · · + β2,4bj,4 + γ1dij + δl + εijl

(LMM b)
yijkl = β0 + β1,1ai,1 + · · · + β1,5ai,5 + β2,1bj,1 + · · · + β2,4bj,4 + β3ck + γ1dij + γ2ejk + γ3fki + γ4gijk + δl + εijkl

yijkl = β0 + β3ck + δl + εijkl

Table 1.  Coefficient values for linear mixed effect model (test period #2). For test period #1, we do not have ck 
predictor variables. Interaction coefficients are not shown. Country codes are as follows. DNK Denmark, GBR 
Great Britain, ISR Israel, JPN Japan, KOR South Korea, SGP Singapore, USA United States of America.

v ai,v(Prediction Model) bj,v(Vaccination Coefficient) ck(Omicron variant usage) δl(Country)

Baseline ai,1 = · · · = ai,5 = 0(ARIMA) bj,1 = · · · = bj,4 = 0 (Vaccination coefficient 
unused) ck = 0 (Omicron variant unused) l = 0 (DNK)

1 ai,1 = 1(BiLSTM), 0 (otherwise) bj,1 = 1  (1st-vaccination), 0 (otherwise) ck = 1 (Omicron variant used) l = 1 (GBR)

2 ai,2 = 1(GAM), 0 (otherwise) bj,2 = 1  (2nd-vaccination), 0 (otherwise) l = 2 (ISR)

3 ai,3 = 1(lightGBM), 0 (otherwise) bj,3 = 1  (3rd-vaccination), 0 (otherwise) l = 3 (JPN)

4 ai,4 = 1(SEIR), 0 (otherwise) bj,4 = 1 (1st, 2nd, 3rd vaccinations), 0 (otherwise) l = 4 (KOR)

5 ai,5 = 1(TSGLM), 0 (otherwise) l = 5 (SGP)

6 l = 6 (USA)
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Table 2.  Overall data structure for test period #1.

Country Vaccination coefficient Prediction model yijl

DNK (l = 0)

Unused ( bj,1 = · · · = bj,4 = 0)

ARIMA ( ai,1 = · · · = ai,5 = 0) y000

BiLSTM ( ai,1 = 1) y100

GAM ( ai,2 = 1) y200

lightGBM ( ai,3 = 1) y300

SEIR ( ai,4 = 1) y400

TSGLM ( ai,5 = 1) y500

1st-vaccination ( bj,1 = 1)

ARIMA ( ai,1 = · · · = ai,5 = 0) y010

· · · · · ·

TSGLM ( ai,5 = 1) y510

· · · · · · · · ·

1st, 2nd, 3rd vaccinations ( bj,4 = 1) TSGLM ( ai,5 = 1) y540

· · · · · · · · · · · ·

USA (l = 6) 1st, 2nd, 3rd vaccinations ( bj,4 = 1) TSGLM ( ai,5 = 1) y546

Table 3.  Overall data structure for test period #2.

Country Omicron variant usage Vaccination coefficient Prediction model yijkl

DNK (l = 0)

Unused ( ck = 0)

Unused ( bj,1 = · · · = bj,4 = 0)

ARIMA ( ai,1 = · · · = ai,5 = 0) y0000

BiLSTM ( ai,1 = 1) y1000

GAM ( ai,2 = 1) y2000

lightGBM ( ai,3 = 1) y3000

SEIR ( ai,4 = 1) y4000

TSGLM ( ai,5 = 1) y5000

1st-vaccination ( bj,1 = 1)

ARIMA ( ai,1 = · · · = ai,5 = 0) y0100

· · · · · ·

TSGLM ( ai,5 = 1) y5100

· · · · · · · · ·

1st, 2nd, 3rd vaccinations ( bj,4 = 1) TSGLM ( ai,5 = 1) y5400

Used ( ck = 1)

Unused ( bj,1 = · · · = bj,4 = 0) ARIMA ( ai,1 = · · · = ai,5 = 0) y0010

· · · · · · · · ·

1st, 2nd, 3rd vaccinations ( bj,4 = 1) TSGLM ( ai,5 = 1) y5410

· · · · · · · · · · · · · · ·

USA (l = 6) Used ( ck = 1) 1st, 2nd, 3rd vaccinations ( bj,4 = 1) TSGLM ( ai,5 = 1) y5416

Table 4.  The best model for each prediction case based on AIC and BIC (test period #2).

Criterion Prediction case Best model Number of parameters

AIC

Confirmed cases
Raw y ~ model * cov + cov * omicron + omicron * model + model * cov * omi-

cron + (1 | country) 57

Smoothed y ~ omicron + (1|country) 4

Daily deaths
Raw y ~ omicron + (1|country) 4

Smoothed y ~ model + (1 | country) 8

ICU patients
Raw y ~ model * cov + (1 | country) 27

Smoothed y ~ model * cov + omicron + (1 | country) 28

BIC

Confirmed cases
Raw y ~ omicron + (1|country) 4

Smoothed y ~ omicron + (1|country) 4

Daily deaths
Raw y ~ omicron + (1|country) 4

Smoothed y ~ model + (1 | country) 8

ICU patients
Raw y ~ model + (1 | country) 7

Smoothed y ~ model + (1 | country) 7
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AIC and BIC. Their RMSE were 0.6182, 104.9059, and 1.6723, respectively. For raw confirmed cases, the RMSE 
for the BIC best model was 10.6081, slightly higher than 7.5671, the RMSE for the AIC best model. For raw 
ICU patients, RMSE for the BIC best model was 0.1196, compared to 0.1037 for the AIC best model. Lastly, for 
smoothed ICU patients, RMSE for the BIC best model was 0.0427, compared to 0.0384 for the AIC best model. 
Since BIC tends to limit the number of parameters, it is natural that more complex models selected by AIC have 
lower RMSE values. However, if there is not much difference in RMSE between AIC and BIC best models, the 
principle of parsimony can be applied and BIC can be a better criterion.

Supplementary Figs S1-S4 are the visualizations of all AIC and BIC values for each test period and each 
prediction case, respectively. In Figs S3 and S4, we can observe that the best model selection is more consistent 
when BIC is used. Thus, we decide to use BIC as our measure for test period #2.

Hypothesis testing for best models
Using p-values obtained by the best models selected based on BIC measure for each prediction case, we per-
formed the Wald test on the fixed effects and their interactions to see if each of them is significant. Figures 1 
and 2 are the visualizations of the estimate of predictors in each of our best models in test periods #1 and #2, 
respectively.

Hypothesis testing for test period #1
Since we have the same best model y ~ model + (1 | country) regardless of prediction case and criterion for test 
period #1, we summarize our results in a single table. Table 5 shows our results for test period #1. Our hypothesis 
tested are given as:

First, we can observe that the estimate of almost all prediction models (except for lightGBM model in 
smoothed new cases and raw new deaths) is positive, indicating that our log WMAPE value has increased due 
to these models. In contrast, the baseline model, ARIMA, provides the best predictions in most cases. Further-
more, the prediction accuracy of ARIMA significantly differs from other models.

Hypothesis testing for test period #2
The best model for raw new cases is the simplest model y ~ omicron + (1|country)). Thus, we tested the following 
hypothesis:

The estimates for the intercept and Omicron variant predictor are 1.5078 and -0.7793, respectively. However, 
their p-values are 0.0746 and 0.5011, thus we cannot reject our null hypothesis under significance level 0.05, 
i.e., there is no significant effect of Omicron variant usage on the prediction of raw new cases. Nevertheless, the 
estimated value for the Omicron variant predictor is still negative, indicating that using Omicron data contributes 
to lowering the mean WMAPE or improving the accuracy of the test data in general.

(3)H0 : β1,i = 0 vs Ha : β1,i �= 0 (i = 1, 2, 3, 4, 5)

(4)H0 : β3 = 0 vs Ha : β3 �= 0

Figure 1.  Visualization of estimate of predictors (test period #1). The blue/gray bar represents whether the 
corresponding predictor is significant/not significant under significance level 0.05, respectively.
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The best model for smoothed new cases is the simplest model y ~ omicron + (1|country)). Our hypothesis 
is the same as (H2). The estimates for the intercept and Omicron variant predictor are 0.37357 and -0.14064, 
respectively. In addition, their p-values are 8.53e-07 and 0.0315, thus we can reject our null hypothesis under 
significance level 0.05, indicating that the Omicron variant plays a significant role in the prediction of smoothed 
confirmed cases. Furthermore, we may conclude that using omicron data contributes to improving test data 
accuracy since our estimate is negative, as in 3.4.1.

The best model for raw new deaths is the simplest model y ~ omicron + (1|country)). Our hypothesis is the same 
as (H2). The estimates for the intercept and Omicron variant predictor are 4.523 and 10.356, respectively, with 
p-values of 0.543 and 0.351. Thus, there is no significant difference between models with and without Omicron 
variant usage in the prediction of raw deaths.

The best model for smoothed new deaths is the model y ~ model + (1|country). Our hypotheses are the same 
as (H1). Results are shown in Table 6. We can reject our null hypothesis under a significance level of 0.05 for two 
prediction models (GAM and Extended SEIR), indicating that these two models have a significant difference 
compared to the baseline (ARIMA) model. We also observed that GAM and Extended SEIR models are less 
appropriate in predicting smoothed death cases than other prediction models, as their estimates are positive. The 
choice of prediction model plays a significant role in the prediction of smoothed confirmed cases.

The best model for raw ICU patients is the model y ~ model + (1 | country). Our hypotheses are the same as 
(H1). Note there are no results for the extended SEIR model since it is not designed to predict ICU patients (both 
raw and smoothed). Results are also shown in Table 6. We can reject our null hypothesis under a significance level 
of 0.05 for all models except BiLSTM. This result further elaborates the choice of model is significant in deciding 
prediction accuracy and models except GAM performed better than the baseline model.

The best model for smoothed ICU patients is the model y ~ model + (1 | country). Our hypotheses are the same 
as (H1). Results are also shown in Table 6. We can reject our null hypothesis under a significance level of 0.05 

Figure 2.  Visualization of the estimate of predictors (test period #2). The blue/gray bar represents whether the 
corresponding predictor is significant/not significant under significance level 0.05, respectively.

Table 5.  Estimates and p-values for each predictor, test period #1. ARIMA model is given as the baseline 
model. The asterisk * indicates that we can reject the null hypothesis at a significance level = 0.05.

Predictor (Model)

New cases Deaths ICU patients

Raw Smoothed Raw Smoothed Raw Smoothed

Estimate Pr( >|t|) Estimate Pr( >|t|) Estimate Pr( >|t|) Estimate Pr( >|t|) Estimate Pr( >|t|) Estimate Pr( >|t|)

Intercept − 0.66790 3.50e− 05* − 0.90356 6.04e− 05* − 0.27847 0.0374* − 0.91120 1.64e-05* − 1.15828 1.32e-06* − 1.56572 1.46e− 09*

BiLSTM 0.28847 9.70e− 06* 0.24581 0.01585* 0.11603 0.0402* 0.37717 0.000110* 0.56921 2.70e-07* 0.73186 1.31e− 11*

GAM 0.36787 1.10e− 08* 0.37328 0.00021* 0.11500 0.0361* 0.32542 0.000677* 0.49300 7.68e-06* 0.90331 1.89e− 15*

lightGBM 0.04372 0.4724 − 0.04826 0.61800 − 0.08473 0.1164 0.21973 0.017149* 0.02571 0.806 0.47151 4.12e− 06*

Extended SEIR 0.40807 1.99e− 10* 0.54506 5.96e− 08* 0.42644 1.64e-13* 0.93339  < 2e-16* – – – –

TSGLM 0.14249 0.0208* 0.24966 0.01104* 0.04311 0.4264 0.49576 2.10e-07* 0.52226 1.95e-06* 0.90945 8.25e-16*
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for BiLSTM and GAM models. For smoothed ICU patients, the baseline model (ARIMA) and TSGLM showed 
better results than other prediction models.

Discussions
For predictions before Omicron appearance, the ARIMA model shows consistently high prediction accura-
cies. ARIMA models are still constantly being used as baselines for time series prediction since seasonality 
can be easily applied to them and they best reflect the fact that the number of daily cases is greatly affected by 
the number of cases the day before than any other model. In addition, as lightGBM uses leafwise tree growth 
as its boosting algorithm and continuously updates its tree structure, its prediction performance is decent in 
most cases. In addition, since parameter tuning is more efficient in lightGBM when the number of parameters 
is small, test accuracies before Omicron are better than those after Omicron. For predictions after Omicron 
appearance, using Omicron data turned out to improve test data accuracy. This is not only because Omicron 
data has a weekly seasonality but also because the Omicron variant is starting to dominate over other variants. 
In this sense, as Omicron variants are highly infectious but not so fatal, they are selected as predictors for best 
models in predicting new cases but not in predicting ICU patients. For prediction models, the ARIMA model, 
lightGBM, and TSGLM performed fair overall. In addition to the aforementioned two, TSGLM, as a time series 
model which includes previous conditional means to its prediction process, provides reasonable predictions for 
both deaths and ICU patients.

Here, we analyzed the effects of various predictor variables and prediction models on forecasting perfor-
mance. To compare our work with existing methods, we conducted a literature review investigating prediction 
models and predictor variables used in published COVID-19 prediction papers. Table 7 shows the summarized 
results of previous studies focusing on AI/machine learning models. Some of the studies used past observation 
to predict the response variable. For instance, some studies forecasted cumulative confirmed  cases29 or cumula-
tive vaccination  rates30 using past observations. Other studies used predictor variables including temperature, 
mobility, and social  distancing26,27. However, these studies only compare the prediction models, not predictor 
 variables26–28. Differing from previous studies, SI, VR, and OR were used as predictor variables. These vari-
ables were rarely considered in forecasting studies, despite their evidence that they are related to the epidemic 

Table 6.  Estimates and p-values for each predictor, smoothed deaths, raw ICU patients, and smoothed ICU 
patients. The asterisk * indicates that we can reject the null hypothesis at a significance level = 0.05.

Predictor

New deaths 
(Smoothed) ICU patients (Raw)

ICU patients 
(Smoothed)

Estimate Pr( >|t|) Estimate Pr( >|t|) Estimate Pr( >|t|)

Intercept 0.55468 0.0624 0.12606 0.00006* 0.05201 0.00222*

BiLSTM − 0.21731 0.4695 − 0.04375 0.07106 0.03822 0.00001*

GAM 0.62766 0.0347* 0.04969 0.04752* 0.02203 0.01373*

lightGBM − 0.30701 0.2857 − 0.06841 0.00497* 0.00473 0.58436

Extended SEIR 3.32317  < 2e− 16* – – – –

TSGLM − 0.08712 0.7633 − 0.06217 0.01058* − 0.0005 0.95378

Table 7.  AI/machine learning models for forecasting the COVID-19 epidemic.

Authors Target Regions Response variables Predictor variables Prediction models

Pinter et al. (2020) Single region Daily new cases
Mortality rate

Single variable
(past observation)

Multiple models
(MLP-ICA, ANFIS)

Saba and Elsheikh (2020) Single region Cumulative cases Single variable
(past observation)

Multiple models
(ARIMA, NARANN)

Ramazi et al. (2021) Single region Daily new cases
Daily new deaths

Multiple variables
(daily COVID-19 tests
daily temperature
daily precipitation
Google mobility)

Multiple models
(LaFoPaFo,UCLA-SuEIR, STH-3PU, etc.)

Gomez-Cravioto et al. (2021) Single region Daily new cases
Daily new deaths

Multiple variables
(weather information—temperature, UV index, 
humidity, etc
Google mobility)

Multiple models
(logistic growth curve, ARIMA, LSTM, etc.)

Elsheikh et al. (2021) Multiple regions
Cumulative cases
Cumulative recovered
Cumulative deaths

Single variable
(past observation)

Multiple models
(ARIMA, NARANN, LSTM)

Al-qaness et al. (2021) Multiple regions Daily new cases Single variable
(past observation)

Multiple models
(ANFIS, ANFIS-MPA, ANFIS-CMPA)

Meakin et al. (2022) Single region Daily hospitalization Single variable
(Daily new cases with time lag)

Multiple models
(baseline, Timeseries ensemble, ARIMA, etc.)
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 trend31–33. In addition, to the best of our knowledge no study has simultaneously analyzed both the effects of 
prediction models and predictor variables across multiple regions. In summary, our analysis has novelty com-
pared to previous studies by employing distinct predictor variables and analyzing both prediction models and 
predictor variables at the same time.

While many previous studies focused on improving prediction accuracies of daily confirmed cases, we have 
measured the impact of different predictors including vaccinations, policies, and prediction models on accura-
cies of not only confirmed cases but also deaths and ICU patients. In this regard, this general approach using 
linear mixed models may be applied to other pandemics in the future and presents a guideline on responding to 
fast-spreading diseases for various countries. Because we utilized LMMs considering the choice of a country as a 
random effect, we believe our result can be applied well to highly vaccinated countries. However, since our results 
were obtained using data from only 7 countries, the generalizability needs to be verified with more countries. 
Meanwhile, although VR is not a significant predictor in our results for highly vaccinated countries, it can still 
be considered as a candidate predictor for improving forecasting accuracy for future analysis of countries where 
only a small number of their population has been vaccinated.

The LMM framework we developed is practical in that it identifies which factors are significant for the accu-
rate prediction of infectious diseases. In this study, the impact of different prediction models (mathematical, 
statistical, and AI/machine learning models) and predictor variables (SI, VR, OR) on forecasting performance 
was analyzed. Through LMM analysis, the best prediction models and predictor variables were identified. This 
LMM framework can easily be extended to other infectious diseases to improve prediction performance and 
identify important factors affecting the spread of disease.

Several further analyses could be considered in future studies. Firstly, more recent AI/machine learning 
models such as NARANN and ANFIS, and various ensemble  models34 could be considered. Secondly, stratified 
analyses can be conducted. For example, each country can be categorized into low-, middle-, and high-income 
countries according to their GDP. Such a stratified analysis based on GDP level is expected to provide more 
accurate prediction results. Lastly, a different strategy for selecting the best hyperparameters could be employed 
to achieve better results from each model. For example, the best ARIMA model can be selected based on mini-
mum MAPE and RMSE values instead of AIC or  BIC35.

In this study, different prediction models, vaccination coefficients, and Omicron variants are selected to 
predict the number of COVID-19 confirmed cases, deaths, and ICU patients for two periods: before Omicron 
variant and after Omicron variant emergence. Then LMMs were fit using prediction error as response variables 
and models with the least BIC were selected. Finally, predictor levels that significantly contributed to reducing 
forecasting error were presented. Lagging was applied to SI and vaccination coefficients of each country since 
their effects may not be observed immediately. We both predicted using raw and smoothed data. Fitting our 
LMMs and choosing the best models, we proved that prediction models and Omicron data are significant predic-
tor variables in deciding forecasting accuracies various countries. For the test period before Omicron, the model 
which uses the prediction model as its only predictor is selected as the best model. Specifically, the ARIMA model 
shows reasonable performance overall. For the test period after Omicron, the model fitted with only Omicron 
data was selected as the best model for confirmed cases and raw deaths. For ICU patients and smoothed deaths, 
the model fitted with only the prediction model was selected as the best model. This indicates that not only do 
simpler models produce better fitting results but also the choice of the prediction model and Omicron variant 
data usage are crucial in the improvement of prediction accuracies.

Methods
Overview
Figure 3 is an overview of our study. We divided our prediction periods into before and after Omicron variant 
emergence and set the last week of each period as test data. For a given country and response variable, we fit 
each prediction model using VR, SI, and OR (if exists) and obtained Weighted Mean Absolute Percentage Error 
(WMAPE). Then, using the obtained WMAPE values as response variables and the country as random effects, 
we fit Linear Mixed Models (LMMs). Fixed effects for our LMMs are the vaccination coefficient, the selection of 
prediction models, and the Omicron variant (if exists). Note that the predictor variables used in Step 1 (obtain-
ing WMAPE values for each prediction model and country) are numerical values, whereas the predictors used 
in Step 2 (fitting and finding best LMMs) are categorical variables. In other words, we are primarily interested 
in determining whether using vaccination coefficient, selection of prediction models, and Omicron variant is 
significant or not in forecasting. Best LMMs are selected in reverse order of their Bayesian Information Criterion 
(BIC) and used for hypothesis testing to further determine factors that contribute to reducing prediction error. 
In short, compared to numerous previous studies that simply concentrated on finding models and variables 
which will explain given data, we suggest a new approach by first selecting predictors which bring a significant 
difference in prediction accuracy utilizing LMM and then delving into the specific features of each predictor.

Data collection
The merged data consists of a series of daily confirmed cases, death cases, ICU patients, VRs according to the 
number of inoculations (per hundred people), and the Stringency Index (SI). All data was downloaded from 
Our World in Data (OWID)36. The daily confirmed cases and deaths were originally collected by the Center for 
Systems Science and Engineering (CSSE) at Johns Hopkins  University37, where ICU patient data was officially 
collected by the OWID team. The SI, which is the overall measure of the strictness of the government’s response 
to COVID-19, was provided by the Oxford COVID-19 Government Response  Tracker38. The VR data was col-
lected by Our World in Data  group39. In addition to this merged data, Korea’s ICU data was downloaded from 
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Korea’s COVID-19 Dashboard since it was not provided by  OWID40. Lastly, the proportion of sequences from 
each country by variant (including Omicron) was downloaded from the  CoVariants41 and  GISAID42–44.

Data preparation
Data from 7 countries (Denmark, United Kingdom, Israel, Japan, South Korea, Singapore, and the United States) 
were selected for prediction analysis. Data from November 1, 2020, to November 8, 2021, were used for predic-
tions before the Omicron appearance. The last 7 days (November 2, 2021, to November 8, 2021) were used as 
test data, and the rest were used to train forecasting models. Then data from November 9, 2021, to December 
31, 2021, were used for predictions after the Omicron appearance. Similarly, the last 7 days (December 25, 2021, 
to December 31, 2021) were used as test data, and the rest were used as train data.

We applied the following procedures to handle missing values. First, the missing values preceding the first 
observation of each variable were all treated as 0. Second, the missing values after the last observation were 
imputed using the last observation carried forward (LOCF) method, which replaces the missing values at a later 
time point as the last non-missing  observation45. Finally, when a missing value exists between actual observa-
tions, linear interpolation was used to fill it. The processing of the missing values used the na.fill() function and 
the na.approx() function of the R package zoo.

As for the test periods, since the VR, SI, and OR were not known yet at the point of prediction, the actual 
rates, and SI should not be used in prediction. We, therefore, used simulated data  (Xt) for the test period using 
observed data  (XT-6 ~  XT) of our training period, assuming that rates and SI for the test periods (#1: November 2, 
2021, to November 8, 2021; #2: December 25, 2021, to December 31, 2021) will change similar to the last week of 
the training period (#1: October 26, 2021, to November 1, 2021; #2: December 18 to December 24), to avoid using 
test data. When the last time point for the train data is T, the simulated data for time t was obtained as follows:

Xt = XT +
(t − T)

∑T
i=T−6 Xi

7

Figure 3.  An overview of the study.
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In addition, we decided to use both raw and smoothed data to capture the changing trend and obtain higher 
prediction accuracy. In our study, smoothed data refers to a 7-day simple moving average since the number of 
confirmed cases has a weekly seasonal pattern in most countries. This is because the number of diagnostic tests 
greatly varies over the week. Fewer people are confirmed during weekends than during weekdays since fewer 
diagnostic tests are carried out during the weekends. Using raw and smoothed data may lead to different param-
eters for each model, different predictions for each country, and different forecasting accuracies. It is known 
from several  studies46,47 that prediction errors from using smoothed data are smaller compared to when using 
raw data. For example, in stock trading, when price data is smoothed, trends may not be detected on time but 
detected after a particular time lag. However, there are fewer error  trades48. In this regard, we can assume that 
our models can better catch the changing trend of the test data, i.e., an abrupt increase or decrease when we use 
raw data. In comparison, the accuracy itself will be relatively lower when we use smoothed data. Since both have 
some implications for predicting future data, we examined both data.

Lagging
The effects of vaccination and intervention policies on the spread of COVID-19 may take some time to be 
observed. Therefore, it would be reasonable to consider these effects when predicting future daily confirmed 
cases, daily death cases, or ICU patients. We used a total of 4 lags of 7, 14, 21, and 28 days for VRs and SIs in 
our models as follows:

where Yt is the response variable at time t, and X is the predictor variable with 4 lags.

Statistical analysis
In this study, statistical models and AI/machine learning models were developed following the previous compari-
son  study32, and the mathematical model was developed similarly to the prior mathematical model development 
 research33. A brief introduction to forecasting models is provided here, and detailed information can be found 
in the above mentioned studies and additional references.

Multiplicative Seasonal ARIMA
AutoRegressive Moving Average (ARMA) models for time series analysis were first suggested in Time Series 
Analysis: Forecasting and Control49. Since ARMA models could be applied only to stationary time series, AutoRe-
gressive Integrated Moving Average (ARIMA) models utilize differencing to deal with non-stationary data. 
Furthermore, multiplicative seasonal ARIMA models were developed to include seasonality in ARIMA  models50. 
Unlike prior automatic selections via auto.arima(), Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) of all potential models were considered to select the best ARIMA model in this study. The 
selection process identifies the optimal model by pre-setting model orders to integer values, thus preventing 
overfitting. The forecast package in R facilitated fitting, with SI, OR, and VR as additional predictor variables.

Generalized additive model
The Generalized Additive Model (GAM) is a regression model that captures non-linear relationships between 
predictor variables and response variables, using smoothing  functions51. It is assumed that the count time series 
at a specific time point follows a Poisson distribution, with the logarithmic function serving as the link func-
tion. Different smoothing functions were used depending on the predictor variables including cubic splines for 
weekdays, P-splines for dates, and thin plate regression splines for VR, OR, and  SI52, respectively. R package 
mgcv was used for fitting GAM  models53,54.

TSGLM poisson
Time Series following Generalized Linear Models (TSGLMs) are introduced in tscount: An R Package for Analysis 
of Count Time Series Following Generalized Linear Models55. This model analyzes count time series with covariates 
and history to predict the conditional mean of the series, drawing on past observations and relevant covariates. 
VR, OR, and SI were considered as covariates in this study. The ’tscount’ package in R was utilized for TSGLM 
Poisson model  fitting55.

LightGBM
LightGBM, a gradient boosting decision tree algorithm for regression and classification, iteratively combines 
weak learners to form a strong  model56. It employs gradient descent to minimize the loss function, adding models 
in a greedy manner. The past observation was used as predictor variable after differencing, and VR, OR, and SI 
were used as covariates in this study. The ‘LightGBM’ package in Python was utilized to construct the model 56.

BiLSTM
To address time series data, Long Short-Term Memory (LSTM) networks is considered as a deep learning 
 approach57. Recognizing that LSTM networks process only past information during training, Bidirectional LSTM 
(BiLSTM) networks were introduced to incorporate backward propagation information as  well58. In this study, 
past observation and other covariates (VR, OR, and SI) were used as predictor of this model. In addition, sev-
eral hyperparameters (bandwidth, layer number, dropout rate) were optimized during the training process. The 
model was developed in Python version 3.7.6 using Keras (Version 2.4.3, https:// github. com/ keras- team/ keras) 
and TensorFlow (Version 2.3.0, https:// github. com/ tenso rflow/ tenso rflow) libraries.

Yt ∼ Xt−7 + Xt−14 + Xt−21 + Xt−28

https://github.com/keras-team/keras
https://github.com/tensorflow/tensorflow
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Extended SEIR (SEIQRDVP and SEIQRDV3P) model
Mathematical methods can also be used for the prediction of COVID-19  transmission59–62. The SEIQRDVP 
and SEIQRDV3P models, extended versions of the SEIR model, were employed to incorporate the vaccination 
 effect33. In the SEIQRDVP model, the vaccinated people still can be infected through contact with the infected 
group, but with a lower transmission rate. Furthermore, the SEIQRDV3P model differentiates the vaccination 
group with three vaccination stages (initial, full, and booster dose) to give them with distinct protective effica-
cies. In addition, the estimation of transmission rate was conducted for distinct periods, delineated by changes 
in government policy as tracked by the OxCGRT SI. Consequently, SI information was consistently utilized to 
segment the periods for transmission rate estimation, ensuring its incorporation into the models. The detailed 
model structure and parameters can be found in our previous  study33. The fitting process was performed using 
the Runge–Kutta fourth-order method and lsqcurvefit toolbox in MATLAB.

Forecasting accuracy measures
There are many error measures such as Mean Squared Error (MSE), Mean Absolute Error (MAE), or Mean 
Percentage Error (MAPE), but each has its drawbacks when used in our analysis. First, since MSE and MAE are 
scale-dependent measures, they are not suitable for analyzing the prediction performance of different countries. 
Unlike these, MAPE is a scale-free measure, but it may cause singularity problems when the denominator is 
zero or can exaggerate the error if the denominator is too small. In this study, we used Weighted Mean Absolute 
Percentage Error (WMAPE) to measure forecast accuracies for both train and test data. WMAPE is defined as 
follows:

where  At and  Ft are actual and forecast values, respectively. The use of WMAPE guarantees the scale-free compari-
son of forecasting performance between different countries. Also, for convenience in visualization and analysis, 
we used  log10WMAPE values as our accuracy measure.

Linear mixed effects models
In this study, we used LMMs to determine which predictor has the most significant impact on forecast accuracy 
between prediction models, vaccination covariates, and the use of the omicron variant variable. Generally, 
LMMs help model correlated multilevel data. We may decide each coefficient to be fixed or random; fixed effects 
are controlled variables that we are interested in, whereas random effects are considered to be sampled from a 
population. In other words, fixed effects should show constant coefficients regardless of random effects. In matrix 
notation, linear mixed models are defined as:

where β represents all fixed effects, u represents the random effects. X and Z represent design matrices for fixed 
and random effects, respectively. Note that both random effects and errors follow normal distributions. We used 
the lmerTest package in R for hypothesis testing 63. Furthermore, we selected the best LMMs for each indicator 
using the least Bayesian Information Criterion (BIC) values. Akaike Information Criterion (AIC) 64 and BIC 
are defined as follows:

where k is the number of parameters estimated by the model, n is the number of observations and L̂ is the maxi-
mum likelihood of the model. As AIC and BIC values increase because of variations in the dependent variable and 
the number of explanatory variables, models with lower AIC and BIC values are preferred. By utilizing LMMs, we 
can determine the choice of which predictor is significant in forecasting each of the given COVID-19 indicators 
(for both raw and smoothed data). Moreover, after deciding the best LMMs, we performed hypothesis testing on 
each of the selected models to further determine specific predictor levels that contribute to reducing test error. 
For example, if our best LMM for confirmed cases suggests that the choice of the prediction model is significant 
in determining forecasting accuracy, then we proceed to test the impact of each factor (models introduced in 
Sect. 2.4 and predictor variables) and find which model is significant in reducing test error.

Data availability
The datasets used and analyzed during this study are available from the corresponding author on reasonable 
request.
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