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Bidirectional mediation of bone 
mineral density and brain atrophy 
on their associations with gait 
variability
Xin Zhang 1,2, Heyang Lu 3, Min Fan 4, Weizhong Tian 5, Yingzhe Wang 2,6, Mei Cui 2,3, 
Yanfeng Jiang 2,6, Chen Suo 1,2, Tiejun Zhang 1,2, Li Jin 2,6, Kelin Xu 1,2* & Xingdong Chen 2,6,7,8*

This mediation analysis aimed to investigate the associations among areal bone mineral density, 
mobility-related brain atrophy, and specific gait patterns. A total of 595 participants from the Taizhou 
Imaging Study, who underwent both gait and bone mineral density measurements, were included 
in this cross-sectional analysis. We used a wearable gait tracking device to collect quantitative gait 
parameters and then summarized them into independent gait domains with factor analysis. Bone 
mineral density was measured in the lumbar spine, femoral neck, and total hip using dual-energy 
X-ray absorptiometry. Magnetic resonance images were obtained on a 3.0-Tesla scanner, and the 
volumes of brain regions related to mobility were computed using FreeSurfer. Lower bone mineral 
density was found to be associated with higher gait variability, especially at the site of the lumbar 
spine (β = 0.174, FDR = 0.001). Besides, higher gait variability was correlated with mobility-related 
brain atrophy, like the primary motor cortex (β = 0.147, FDR = 0.006), sensorimotor cortex (β = 0.153, 
FDR = 0.006), and entorhinal cortex (β = 0.106, FDR = 0.043). Bidirectional mediation analysis revealed 
that regional brain atrophy contributed to higher gait variability through the low lumbar spine bone 
mineral density (for the primary motor cortex, P = 0.018; for the sensorimotor cortex, P = 0.010) and 
the low lumbar spine bone mineral density contributed to higher gait variability through the primary 
motor and sensorimotor cortices (P = 0.026 and 0.010, respectively).
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Gait disorder is a common problem among community-dwelling older adults and primarily affects the quality of 
their lives1,2. The nervous and skeletal muscle systems play crucial roles in gait function3,4, and brain atrophy and 
osteoporosis are prevalent in old age. Previous research has shown that volume loss in brain regions responsible 
for mobility-related functions showed discrepancies in associations with poorer gait performances5–7. Specific 
gait performances have been identified as novel markers for detecting individuals with low bone mineral den-
sity (BMD)8. Moreover, poor gait performances are related to areal BMD9,10. However, the combined impact of 
mobility-related brain atrophy and low BMD at specific sites on gait remains unclear. Understanding the under-
lying mechanisms is crucial for developing interventions to enhance gait performance in the aging population.

Many studies found that brain atrophy and low BMD were not wholly independent, with clinical and molecu-
lar evidence suggesting biological similarities and interactions between bone and brain11–13. The atrophy of the 
cerebral cortex in Alzheimer’s disease patients has been linked to morphometric changes in the cortical micro-
vascular network, where vascular smooth muscle is composed of collagen I14. Type I collagen, a key component 
of bone, is closely related to skeletal abnormalities15. Epidemiological evidence indicates a coexistence of brain 
and bone degeneration in the elderly population. Patients with cognitive impairment, especially those with 
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Alzheimer’s disease, are at greater risk for osteoporosis16, and BMD continues to decrease as the severity of cog-
nitive impairment increases17. A recent Mendelian randomization study also demonstrated a causal relationship 
between atrophy in different brain regions and low bone density in specific areas18. Specifically, the bone–brain 
axis involves bidirectional communication between the brain and bone tissues. For one thing, neural tissues 
can produce neurokines that signal down from the brain to bone cells, promoting skeletal homeostasis and 
regeneration19. Animal experiments have proved that proangiogenic factor SLIT3, a contributor to the positive 
regulation of bone formation, would influence bone mass20. But brain atrophy may lead to a reduction in neural 
factor release. Widespread loss of neurotransmitters has been observed in patients with common neurodegen-
erative disorders21. Such depletion of neural factors may result from the neuronal loss caused by brain atrophy. 
Meanwhile, osteoporosis, one condition involving inflammation, may affect the survival and activity of osteocytes 
by inducing the secretion of proinflammatory cytokines and growth factors22. Some bone-derived osteokines can 
cross the blood–brain barrier to reach the central nervous system and affect nerve cells19. Lipocalin2 (LCN2), 
osteopontin (OPN), and insulin-like growth factor 1 (IGF-1) were found to be associated with brain atrophy in 
a region-specific manner23–25. We hypothesize that the reciprocal reinforcement between regional brain atrophy 
and low BMD might be one mechanism causing specific poor gait performances.

In this population-based study, we investigated the associations of gait performances with low BMD at specific 
sites and mobility-related brain atrophy. Our study aimed to explore whether brain atrophy and low BMD could 
mediate each other’s effects on gait performances, shedding light on the potential mechanisms through which 
bone and brain impact gait.

Methods
Study population
This cross-sectional study is based on the Taizhou Imaging Study (TIS), an ongoing community-based cohort 
study. The inclusion and exclusion criteria for the baseline population have been described in detail in our 
previous study26. Ethical approval for the TIS was obtained from the Ethics Committee of the School of Life 
Sciences, Fudan University, and Fudan University Taizhou Institute of Health Sciences (Institutional Review 
Board approval numbers: 496 and B017, respectively). There are two approval numbers because our subjects 
were recruited in two phases at baseline. Specifically, in phase I, 562 participants (mean age 59.1 years, 46.0% 
male) were recruited from two villages (Lubao and Hutou). In phase II, 342 subjects (mean age 60.9 years, 42.1% 
male) were from Caixiang Village. Among the 904 individuals in TIS, 622 participants had complete magnetic 
resonance imaging (MRI) data, quantitative gait data, and BMD data. After excluding pre-or perimenopausal 
women and individuals with a history of fracture and thyroid disease, 595 participants, comprising 266 men and 
329 postmenopausal women, were finally included in the current analysis. The inclusion and exclusion process is 
illustrated in Fig. S1. Written informed consent was obtained from all participants before data and biospecimen 
collection. All methods included in this study were performed in accordance with the Declaration of Helsinki 
and its later amendments.

Measurement of gait
A gait tracking device embedded in insoles (Senno gait, Sennotech Co. Ltd., China) was employed to obtain 
quantitative gait data in multiple dimensions. After placing the insoles comfortably in their shoes, participants 
were instructed to walk 20 m forth and back in a straight line at their accustomed pace. Vast gait parameters for 
each stride were recorded and analyzed throughout the procedure, with the gait tracking device automatically 
excluding the turning strides. The quantitative gait parameters measured included stride time, stance time, swing 
time, stance time percentage of the gait cycle (%GC) symmetry, swing time (%GC) symmetry, stride time sym-
metry, stride time coefficient of variation (CV), stance time CV, swing time CV, heel strike angle, stride length, 
maximum swing velocity, gait velocity, stance time (%GC), and double support time (%GC). Table S1 provides 
the definitions of each gait parameter and indicates the direction in which a parameter is considered “poorer”. 
Given that gait velocity is a commonly used measure of overall gait quality, the participants were categorized 
into two groups based on their gait velocity: the impaired gait group (< 1.0 m/s) and the unimpaired gait group 
(≥ 1.0 m/s)27.

Measurement of BMD
BMD measurements were conducted at three sites: the lumbar spine, the femoral neck, and the total hip on the 
left side, using a dual-energy X-ray absorptiometry (Lunar DPX NT-400157; GE Healthcare, Madison, WI, USA). 
All measurements were assessed by the same experienced operator on the same machine, according to standard-
ized procedures for participant positioning. BMD values were recorded in grams per square centimeter (g/cm2). 
The lumbar spine BMD included the first, second, third, and fourth lumbar vertebra (L1–L4), and the total hip 
BMD included the whole hip bone. According to the World Health Organization, participants were divided into 
the normal BMD (T-score ≥ − 1.0), osteopenia (− 1.0 < T-score < − 2.5), or osteoporosis (T-score ≤ − 2.5) groups28. 
These diagnoses were defined with the minimum T-score of three measuring positions.

MRI acquisition and measurements
MRI scans were conducted at Taizhou People’s Hospital using a 3.0 T scanner (Magnetom Verio Tim scanner; 
Siemens, Erlangen, Germany). The detailed protocol and sequence parameters for MRI have been previously 
reported29. Based on previous studies, we selected specific brain regions associated with mobility as regions of 
interest5,30. Fifteen mobility-related regions of interest were as follows: motor function (primary motor, sensori-
motor), visuospatial attention (inferior posterior parietal lobules, superior posterior parietal lobules), executive 
control function (dorsolateral prefrontal cortex, anterior cingulate), cognition (hippocampus, entorhinal cortex), 
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motor imagery (precuneus, parahippocampus, posterior cingulated cortex), and balance (pallidum, putamen, 
caudate, thalamus). FreeSurfer software (v6.0.0) was used to extract these regional volumes from structural T1 
images, utilizing the Desikan–Killiany atlas31. All brain region volumes were standardized using z-scores for 
analysis.

Co‑variables
Demographic and lifestyle characteristics data were collected using a questionnaire comprehensively contain-
ing age, sex, smoking habits, alcohol and tea consumption, and physical activity. Physical data (height, weight, 
waist and hip circumferences) were obtained through physical examinations26. Waist-to-Hip Ratio (WHR) was 
calculated by dividing the waist circumference by the hip circumference. Medical history, including hypertension, 
diabetes, and hyperlipidemia, was defined as the following criteria. Hypertension was defined as a blood pressure 
greater than 140/90 mmHg, a self-reported history, or current use of antihypertensive drugs. Diabetes was defined 
as fasting blood glucose greater than 7.0 mmol/L, a self-reported history, or current use of anti-diabetic drugs. 
Hyperlipidemia was defined as total cholesterol greater than 5.2 mmol/L, triglyceride greater than 1.7 mmol/L, 
a self-reported history, or current use of antihyperlipidemic drugs.

Statistical analysis
Description analysis
Continuous variables were reported as mean (standard deviation, SD), and categorical variables were presented 
as frequencies (%). The normality of continuous variables was assessed using the Shapiro–Wilk test, and Levene’s 
test evaluated the homogeneity of variance. Logarithmic transformation was applied to the symmetry gait vari-
ables (Fig. S2), whereas square root transformation was applied to the variability gait variables (Fig. S3). Group 
differences in gait velocity were examined using the following tests: the two-sample t-test or Wilcoxon rank 
sum test for continuous variables and Pearson’s chi-squared test or Fisher’s exact test for categorical variables.

Factor analysis of quantitative gait parameters
The original variables in the rhythm, symmetry, variability, and phase domains were inverted, representing poorer 
gait performances with lower values. To extract independent factors with an eigenvalue > 1, fifteen quantitative 
gait parameters were orthogonally rotated using the “Varimax” rotation method. Gait parameters were then 
categorized into independent domains based on correlation loadings and the extracted factors. These factors 
were standardized and expressed as z-scores for further analysis.

Association analysis
General linear models were employed to investigate the associations among BMD, mobility-related brain regions, 
and gait performances. The regression analysis, which evaluated the associations of gait performances with 
BMD and brain volumes, was fitted in two models: Model 1 was adjusted for age, sex, height, and standardized 
total intracranial volume (included in the analysis of brain volumes); Model 2 was further adjusted for WHR, 
hypertension, diabetes, hyperlipidemia, tea consumption, smoking, alcohol consumption, and physical activity. 
A linear trend test was conducted to assess the association between BMD groups and gait domains by scoring the 
BMD groups from 0 (normal) to 2 (osteoporosis) and entering the score as a continuous term in the regression 
model. Multiple testing problem was corrected by the false discovery rate (FDR) method.

Mediation analysis
Two mediation models were fitted with gait performances as the dependent variables for both. In the first set 
of models, brain atrophy was inserted as the independent variable, with BMD as the candidate mediator. Con-
versely, in the second set of models, BMD was inserted as the independent variable, while brain atrophy served 
as the candidate mediator. The mediation analysis was conducted utilizing the R package (mediation) with 1,000 
repetitions. Additionally, a sensitivity analysis of mediation was conducted using the R package “medsens” to 
explore the potential influence of unmeasured confounders on the assumption and assess the robustness of the 
results, represented as ρ. The threshold of statistical significance was set at adjusted two-tailed P < 0.05. Statistical 
analyses were performed using R software (Version 4.2.2).

Ethical approval
The studies involving human participants were reviewed and approved by the Ethics Committee of the School of 
Life Sciences, Fudan University, and Fudan University Taizhou Institute of Health Sciences (institutional review 
board Approval Number: 496 and B017, respectively). The patients/participants provided their written informed 
consent to participate in this study.

Results
Characteristics of the study population
Table 1 presents the demographic, cardiovascular risk factors, neuroimaging, gait, and BMD characteristics of 
our participants. The impaired gait group and unimpaired gait group comprised 23.2% and 76.8% of the sam-
ple. The two groups differed in sex, age, height, and tea consumption (P < 0.05). In addition, participants with 
impaired gait velocity exhibited smaller gray matter volumes and poorer gait performance, such as maximum 
swing velocity, heel strike angle, and double support time.
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Associations between gait domains and different BMD groups
Quantitative gait parameters were summarized into five independent domains with factor analysis, which 
accounted for 84.70% of the total variance (Table S2). Referring to previous studies32–34, we categorized them 
as rhythm domain (stride time, stance time, swing time), phase domain (double support time percentage of the 
gait cycle, stance time percentage of the gait cycle), symmetry domain (stance time percentage of the gait cycle 
symmetry, swing time percentage of the gait cycle symmetry, stride time symmetry), variability domain (stance 
time coefficient of variation, swing time coefficient of variation, stride time coefficient of variation), and pace 
domain (stride length, maximum swing velocity, heel strike angle, gait velocity).

The associations between gait domains and BMD groups were examined (Table S3). Figure 1 shows mean 
standardized z-scores for gait variability in different groups. After full adjustment (Model 2), we observed a 
trend (P = 0.004) in gait variability across different groups, indicating that participants with lower BMD may 
exhibit higher variability when walking. However, no statistically significant association was observed in other 
gait domains, such as rhythm, symmetry, pace, and phase.

Associations between gait domains and areal BMD
Considering that different anatomical parts of bones have distinct physiological effects during walking, we further 
studied the influence of BMD of different anatomical parts on gait variability. Figure 2 shows the associations of 
various gait domains with areal BMDs (the lumbar spine BMD, the femoral neck BMD, and the total hip BMD) 
as the independent variables. Lower lumbar spine BMD exhibited a significant association with higher gait vari-
ability, a relationship that remained statistically significant even after full adjustment (FDR = 0.001). The negative 
associations of the phase domain with the femoral neck BMD and the total hip BMD were also significant after 
correction (both FDR < 0.05).

Table 1.   Characteristics of study participants. Categorical variables are presented as numbers (percentages), 
and continuous variables as means (SDs). BMD, bone mineral density; WHR, Waist-to-Hip Ratio; %GC, 
percentage of the gait cycle. Significant values are in bold.

Variable Study population (n = 595) Unimpaired gait (n = 457) Impaired gait (n = 138) P

Demographics

 Female, n (%) 329 (55.3) 240 (52.5) 89 (64.5) 0.017

 Age, y 59.9 ± 3.1 59.8 ± 3.2 60.5 ± 2.9 0.015

 Height, cm 159.29 ± 7.84 160.00 ± 7.62 156.96 ± 8.13  < 0.001

 WHR 0.91 ± 0.06 0.91 ± 0.07 0.91 ± 0.06 0.917

Cardiovascular risk factors

 Current smoker, n (%) 76 (12.8) 64 (14.0) 12 (8.7) 0.134

 Alcohol consumption, n (%) 174 (29.2) 142 (31.1) 32 (23.2) 0.093

 Tea consumption, n (%) 141 (23.9) 123 (27.0) 18 (13.3) 0.002

 Physical activity, n (%) 88 (14.8) 72 (15.8) 16 (11.6) 0.285

 Hypertension, n (%) 294 (52.5) 218 (50.9) 76 (57.6) 0.216

 Hyperlipidemia, n (%) 311 (54.8) 239 (54.6) 72 (55.4) 0.949

 Diabetes, n (%) 63 (11.1) 51 (11.7) 12 (9.2) 0.531

Neuroimaging

 Total intracranial volume, cm3 1469.92 ± 161.09 1474.72 ± 159.16 1454.03 ± 166.94 0.186

 White matter volume, ml 505.89 ± 130.48 506.96 ± 134.00 502.36 ± 118.46 0.717

 Gray matter volume, ml 559.15 ± 61.96 561.94 ± 59.85 549.89 ± 67.91 0.045

Gait parameters

 Gait velocity,m/s 1.09 ± 0.16 1.15 ± 0.12 0.88 ± 0.12  < 0.001

 Maximum swing velocity,m/s 3.88 ± 0.55 4.04 ± 0.45 3.32 ± 0.47  < 0.001

 Heel strike angle, ° 7.20 ± 6.72 7.76 ± 6.68 5.34 ± 6.54  < 0.001

 Double support time (%GC),% 26.35 ± 6.28 26.99 ± 6.23 24.23 ± 5.99  < 0.001

BMD, g/cm2

 Lumbar spine (L1–L4) 0.97 ± 0.16 0.97 ± 0.16 0.97 ± 0.15 0.920

 Femoral neck 0.88 ± 0.13 0.89 ± 0.13 0.87 ± 0.13 0.271

 Total hip 0.92 ± 0.14 0.92 ± 0.14 0.91 ± 0.15 0.576

BMD groups, n (%)

 Normal BMD 223 (37.5) 175 (38.3) 48 (34.8) 0.745

 Osteopenia 259 (43.5) 197 (43.1) 62 (44.9)

 Osteoporosis 113 (19.0) 85 (18.6) 28 (20.3)
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Associations between gait domains and mobility‑related brain regions
After full adjustment, higher gait variability was significantly associated with smaller volumes in the pri-
mary motor (β = 0.147, FDR = 0.006), sensorimotor (β = 0.153, FDR = 0.006), and entorhinal cortex (β = 0.106, 
FDR = 0.043) (Table 2). Additionally, the pace domain exhibited significant associations with the primary motor 
(β = 0.263, FDR < 0.001), sensorimotor (β = 0.210, FDR < 0.001), visuospatial attention (β = 0.170, FDR < 0.001), 
executive control function (β = 0.146, FDR = 0.005), entorhinal cortex (β = 0.155, FDR < 0.001), motor imagery 
(β = 0.262, FDR < 0.001), and basal ganglia (β = 0.166, FDR = 0.006) regions. Moreover, we also found the asso-
ciations of the rhythm domain with the primary motor (β = 0.109, FDR = 0.047) and sensorimotor (β = 0.103, 
FDR = 0.047) cortex were borderline significant after full adjustment (Table S4). However, no statistically sig-
nificant association was observed between mobility-related brain regions and the symmetry and phase domains 
(Table S4).

Figure 1.   The association between variability domain (z-score) and different BMD groups.

Figure 2.   The associations between gait domains and areal BMD.
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Mediation analysis
Bidirectional mediation analysis was conducted to assess the combined impact of lumbar spine BMD and mobil-
ity-related brain atrophy on gait variability. The findings indicated that the atrophy of mobility-related brain 
regions, such as the primary motor cortex and sensorimotor cortex, may contribute to higher gait variability 
by decreasing the lumbar spine BMD (Fig. 3a). Specifically, the lumbar spine BMD explained 11.8% of the 
total effect of the primary motor cortex on gait variability (Pmediation = 0.018) and 10.6% of the total effect of the 
sensorimotor cortex on gait variability (Pmediation = 0.010). Furthermore, the reverse mediation analyses revealed 
that the lumbar spine BMD could also influence the gait variability through the two brain regions (Fig. 3b). The 
mediating effect of the primary motor cortex represented 8.2% (Pmediation = 0.026), while that of the sensorimotor 
cortex accounted for 8.3% (Pmediation = 0.010). Additional detailed information was provided in Tables S5 and S6.

Sensitivity analysis
We conducted sensitivity analyses to assess the potential impact of unmeasured confounding. The results in 
Tables S7 and S8 indicated that the estimated indirect effects were relatively robust to unmeasured confounders, 
as indicated by the sensitivity parameter (ρ).

Discussion
This study found evidence for a bidirectional relationship between BMD and brain atrophy concerning gait 
variability. Specifically, we found that the lumbar spine BMD partially mediated the effects of the primary 
motor cortex and sensorimotor cortex on gait variability, and the primary motor cortex and the sensorimotor 
cortex partially mediated the effect of the lumbar spine BMD on gait variability. Although our results showed a 
small-to-medium range of effect sizes, we consider it reasonable because the role of a single anatomical site of 
the brain and bone is limited.

Previous studies have indicated a link between brain atrophy and gait variability. Specifically, a meta-analysis 
of 25 studies found a strong association between high gait variability and neurodegeneration35. Compared to 
other gait domains, variability can help to differentiate Alzheimer’s disease dementia, a common neurodegenera-
tive disorder, which can be observed atrophy in specific brain regions36. Notably, higher step length variability 
is associated with the atrophy of the hippocampus, superior parietal lobe, and anterior cingulate gyrus, regions 
responsible for cognition and executive control that matter in mobility7. Similarly, our research has corrobo-
rated these findings, showing that brain atrophy affecting motor function and cognition, including areas like 
the primary motor cortex, sensorimotor cortex, and entorhinal cortex, is associated with higher gait variability. 
However, to our knowledge, no existing studies have investigated the potential impact of brain atrophy on 
gait performance through BMD. The following evidence supports our finding that the lumbar spine BMD can 
explain the effect of mobility-related brain atrophy on gait variability. First, higher gait variability seems to be a 
shared gait performance between individuals with brain atrophy and those with lower BMD. Besides, based on 
the bone–brain axis, brain atrophy may directly affect central control of bone remodeling, thus resulting in low 
BMD37. A recent Mendelian randomization study has further supported these relationships by establishing causal 

Table 2.   Associations of mobility-related brain region volumes with gait variability. Values are estimated 
coefficients (95%CI). Model 1 was adjusted for sex, age, height, and standardized total intracranial volume 
(TIV); Model 2 was further adjusted for WHR, hypertension, diabetes, hyperlipidemia, smoking, alcohol 
consumption, and physical activity. WHR, Waist-to-Hip Ratio; FDR, false discovery rate. Significant values are 
in bold.

Mobility-related regions Model

Variability

β (95%CI) P P (FDR)

Primary motor
Model 1 0.138 (0.056, 0.219) 0.001 0.004

Model 2 0.147 (0.057, 0.236) 0.001 0.006

Sensorimotor
Model 1 0.142 (0.058, 0.226) 0.001 0.004

Model 2 0.153 (0.064, 0.242) 0.001 0.006

Visuospatial attention
Model 1 0.044 (− 0.042, 0.130) 0.313 0.542

Model 2 0.032 (− 0.060, 0.124) 0.491 0.786

Executive control
Model 1 0.022 (− 0.075, 0.120) 0.652 0.745

Model 2 0.007 (− 0.095, 0.109) 0.887 0.901

Hippocampus
Model 1 0.005 (− 0.097, 0.106) 0.929 0.929

Model 2 0.007 (− 0.096, 0.109) 0.901 0.901

Entorhinal cortex
Model 1 0.096 (0.016, 0.177) 0.019 0.052

Model 2 0.106 (0.020, 0.192) 0.016 0.043

Motor imagery
Model 1 0.041 (− 0.044, 0.127) 0.345 0.542

Model 2 0.034 (− 0.059, 0.127) 0.476 0.786

Basal ganglia
Model 1 0.048 (− 0.066, 0.163) 0.406 0.542

Model 2 0.017 (− 0.103, 0.138) 0.777 0.901
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links between the atrophy of specific brain regions and BMD at distinct sites18. Our results provided evidence of 
the mediating effect of BMD on the association between brain atrophy and gait.

Likewise, the potential mediating role of brain atrophy between BMD and gait performance has not been 
studied. Previous studies have indicated an association between low BMD and mobility impairment, such as bal-
ance, variability, and symmetry38–40. This may be attributed to less propulsion and stability caused by abnormal 
changes in kinematics and kinetics parameters of the trunk or extremities41. Such associations between specific 
physical performances and areal BMD were informed before10,42. Similarly, we found a significant association 
between low lumbar spine BMD and higher gait variability and the mediating role of mobility-related brain 
atrophy. Although there are no direct comparisons available for our specific findings, existing evidence indirectly 
supports our findings. First, some elderly-based studies have observed that individuals with osteoporosis tend 
to exhibit greater parenchymal atrophy and significant ventricular enlargement and that BMD loss was cor-
related with regional gray matter volume decline43,44. Second, patients with osteoporotic vertebral compression 
fractures were found to have smaller volumes of brain parenchyma45, which emphasizes the association of the 
lumbar spine BMD with brain atrophy. Finally, insights from the bone–brain axis suggest that osteokines, like 
IGF-1, could help improve behavioral phenotypes in mouse models46 and have also been associated with gait 
speed in older adults47.

Lumbar BMD was observed to have a more substantial impact on gait variability compared to femoral neck 
and total hip BMD. This is likely attributed to several factors. Firstly, potential vertebral compression fractures 
could be a contributing factor. Patients suffering from vertebral compression fractures may experience varying 
degrees of lower back pain, resulting in reduced lumbar extensor function and increased gait variability48. Lumbar 
acceleration was also identified as being more indicative of gait stability. In terms of biomechanics, the stability 
of the human body during walking primarily depends on the ability to regulate the movement of the center of 
mass (COM)49, typically situated at the junction of the waist and pelvis of the human body50.

Our study contributes to the existing literature by examining and providing evidence for the bidirectional 
relationship between areal BMD, regional brain atrophy, and their combined effects on gait variability in elderly 
adults. To enhance the sensitivity of gait assessments, we employed a quantitative approach using an insole-style 
wearable gait tracking device, addressing limitations of commonly used qualitative or semi-quantitative methods. 
The gait parameters collected were categorized into distinct domains representing specific gait patterns in our 
study. Gait variability assessment can serve as a valuable tool for potentially identifying elderly individuals with 
low lumbar BMD or reduced motor cortex volume. By detecting these conditions early, interventions targeting 
bone and brain degeneration processes can be initiated, ultimately delaying their progression and promoting 

Figure 3.   Mediation linkages among the lumbar spine BMD, mobility-related brain atrophy, and gait variability.
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increased years of healthy living. Moreover, gait variability assessment can also play a role in evaluating the 
efficacy of bone and brain health care for patients, offering valuable insights to guide treatment strategies and 
rehabilitation efforts to enhance physical function.

However, our results should be interpreted in light of several limitations. First, causal conclusions cannot be 
drawn in this cross-sectional study. Further investigation using longitudinal designs of TIS would be valuable 
to help rectify this limitation. Second, our sample is a Chinese rural population around 60 years old, potentially 
limiting the generalizability of our findings to other population groups. Future research could involve individuals 
in our expanded cohort to enhance external validity. Third, potential back pain resulting from vertebral compres-
sion fractures was not taken into account51,52. In the future, we will consider adding a measurement of vertebral 
compression fractures and related pain severity when conducting the DXA examination. Finally, muscular 
factors were not considered in the present study. Including these factors in future studies would provide a more 
comprehensive understanding of gait.

Conclusion
The present study indicates that brain atrophy, especially mobility-related brain regions, and low BMD in the 
lumbar spine are associated with higher gait variability. Importantly, bidirectional mediation analysis conducted 
for the first time identifies the interrelationship between mobility-related brain atrophy and low lumbar spine 
BMD in gait variability. However, additional extensive population studies and longitudinal investigations are 
required to validate our findings and provide a more comprehensive understanding of the effects of brain and 
bone on gait changes in more detail.

Data availability
The datasets used and/or analyzed in this study are available from the corresponding author on reasonable 
request.
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