
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports

A novel method‑based
reinforcement learning with deep
temporal difference network
for flexible double shop scheduling
problem
Xiao Wang 1, Peisi Zhong 1*, Mei Liu 2, Chao Zhang 1 & Shihao Yang 1

This paper studies the flexible double shop scheduling problem (FDSSP) that considers simultaneously
job shop and assembly shop. It brings about the problem of scheduling association of the related
tasks. To this end, a reinforcement learning algorithm with a deep temporal difference network is
proposed to minimize the makespan. Firstly, the FDSSP is defined as the mathematical model of the
flexible job-shop scheduling problem joined to the assembly constraint level. It is translated into a
Markov decision process that directly selects behavioral strategies according to historical machining
state data. Secondly, the proposed ten generic state features are input into the deep neural network
model to fit the state value function. Similarly, eight simple constructive heuristics are used as
candidate actions for scheduling decisions. From the greedy mechanism, optimally combined actions
of all machines are obtained for each decision step. Finally, a deep temporal difference reinforcement
learning framework is established, and a large number of comparative experiments are designed to
analyze the basic performance of this algorithm. The results showed that the proposed algorithm was
better than most other methods, which contributed to solving the practical production problem of the
manufacturing industry.

With the development of artificial intelligence and big data technologies, intelligent scheduling plays a decision-
making role in resource allocation and equipment management of advanced manufacturing systems1. Flexible
job-shop scheduling problem (FJSP), covering operation research, sequencing theory, and optimization methods,
is mainly to determine the processing equipment and process path planning. It is one of the hot topics in the
scheduling system2. Especially, flexible double shop scheduling problem (FDSSP) that considers job shop and
assembly shop is a kind of practical extension of FJSP3. Compared to FJSP where assembly-associated jobs
can start only after machining is completed, FDSSP is the essential key to collaborating with the scheduling of
associated jobs. It can reduce the assembly waiting time of associated jobs when they enter the assembly workshop
at the same time as possible, which is conducive to prioritizing the processing of urgent jobs and improving
production efficiency.

Over recent decades, FDSSP relatively less studied. It is mainly divided into two categories: non-assembly
scheduling (Lu et al.4; Thurer et al.5) and assembly scheduling (Zou et al.6). The former, not involving specific
assembly constraints, is to accomplish all tasks of the job shop before assembly operation with only a certain
extra assembly period. It is suitable for simple products or short assembly time relative to processing time. The
latter should be considered to process and assemble all jobs at the same time. Hence, it has high complexity and
practical application.

FDSSP is a comprehensive scheduling problem that offers a subtle fusion of flexible process plans with
assembly operations in the two adjacent working shops. It is a hierarchical coupling-constrained optimization
problem (HCC). Researchers have spent quite a considerable effort on FJSP, which can be divided into two
categories: exact methods (EM) and approximation methods (AM). EM can guarantee the global optimal
solution, but usually only solves small-scale problems such as mathematical programming (Zhang and Wang7;

OPEN

1College of Mechanical and Electronic Engineering, Shandong University of Science and Technology,
Qingdao 266590, China. 2Advanced Manufacturing Technology Centre, Shandong University of Science and
Technology, Qingdao 266590, China. *email: peisizhong_sdust@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-59414-8&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

Nourali et al.8,9) and Branch and Bound (B&B) (Brucker and Schlie10; Carlos Soto et al.11; Özgüven12). AM can
get the solution to the problem quickly, but it can’t guarantee the best explanation. It is very suitable for solving
large-scale problems, such as genetic algorithm (GA) (Tian et al.13), particle swarm optimization (PSO) (Nouiri
et al.14), ant colony optimization (ACO) (Huang and Yu15; Zhu et al.16; Zhang et al.17), multi-agent system
algorithm (Cheng et al.18,19).

These scheduling algorithms are designed along the lines of “modeling, analysis, and optimization”. It cannot
effectively use real-time data and historical data, which makes it difficult to deal with the complex and changeable
production scheduling problem. However, reinforcement learning (RL) has the advantages of real-time and
flexibility. It can directly select behavior strategies according to the input processing state. One of the earliest
studies was from Riedmiller and Riedmiller20, who proposed a Q-learning algorithm in RL to develop the single-
machine scheduling problem to minimize the summed tardiness. The agents used the common scheduling rules
as the behavior of the system such as earliest due date (EDD), longest processing time (LPT), minimal slack
(MS), etc. Later, some scholars have carried out remarkable in this field, followed by more detail in later sections.

In this paper, the application of DRL, namely deep temporal difference network (DTDN) to scheduling
problems in the flexible double shop system is presented. The main contributions of this work are summarized
below. (1) The flexible job-shop scheduling model with the assembly constraint level was proposed to redefine
the flexible double-shop scheduling problem. Specifically, the jobs assembly constraint level was designed for
the assembly shop. (2) We established a deep temporal difference network reinforcement learning framework
that defined state space, action space, and rewards space. (3) We applied a deep neural network that inputs the
proposed generic state features to fit the state value function.

Related work
Related work is reviewed under two parts: (1) the flexible double shop scheduling problem and (2) the DRL
scheduling.

Flexible double shop scheduling problem
The flexible job shop scheduling problem, which was introduced by Brucker and Schlie10 in 1990, has received
widespread attention. However, the flexible double shop scheduling problem has been little studied. Nourali
and Imanipour8 firstly introduced the assembly job scheduling problem with sequence-dependent setup times.
Zhang et al.7 deeply investigated distributed particle swarm optimization to solve multi-objective optimization
problems (makespan, total tardiness, and total workload). Zheng et al. applied the master-apprentice evolutionary
algorithm to cope with the assembly job-shop scheduling problem with random machine breakdown and
uncertain processing time. Tian et al.13, utilizing a genetic algorithm with variable neighborhood search, studied
the distributed assembly job shop scheduling problem to minimize maximum completion time. Cheng et al.18
established the adaptive simulated annealing algorithm to solve the mathematical model of the assembly job-
shop scheduling with lot streaming. Later, they19 discussed the spatial temporal links among three stages with
differentiated lot size. Demir and Erden21 proposed Genetic Algorithm and Ant Colony Optimization Algorithm
to minimize the earliness, tardiness, and due-dates for the dynamic integrated process plan, scheduling, and
due date assignment problem. Fan et al.22 studied FJSP with lot-streaming and machine reconfigurations (FJSP-
LSMR) to minimize the total weighted tardiness. To deal with the two decision steps for FJSP, namely, the job
sequencing and the job routing, Zhang et al.23 presented a new deep reinforcement learning with multi-agent
graphs model. Erden et al.24 designed an improved integer and categorical particle swarm optimization algorithm
to solve the dynamic integrated process planning, scheduling, and due date assignment problem, in which the
earliness, tardiness, and due dates in practical problems are fully considered. Su et al.25 established a framework
that used the graph neural network and deep reinforcement learning to solve JSP with dynamic events and
uncertainty. Fontes et al.26 utilized a hybrid particle swarm optimization and simulated annealing algorithm to
deal with the JSP with transport resources. Burmeister et al.27, applying a multi-objective memetic algorithm with
non-dominated sorting genetic algorithm, proposed an energy cost-aware FJSP model based on minimization
of both makespan and energy costs. Carlucci et al.28 presented a decision scheduling model that simultaneously
handled the power constraint and the variable speed of machine tools.

DRL scheduling problem
In recent years, RL, one of the three types of machine learning, has been successfully applied in some fields
such as computing resource scheduling, robot control, and elevator scheduling. Among them, many scholars
focused on the production scheduling system by RL. Liu et al.29 proposed a parallel algorithm that utilizes
asynchronous updates and deep deterministic policy gradients to solve the job shop scheduling problem. Using
MMDP to build this model, the state space is represented in the JSSP environment by the processing time
matrix, allocation matrix and activation matrix. And, action spaces are denoted by simple scheduling rules.
Wei and Zhao30 suggested the conception of the production pressure and the job’s estimated mean lateness
for respectively defining the system feature and the policy of reward or penalty. The Q-learning algorithm was
applied to the determination of the composite machine rules. However, this method can’t describe the actual
complex machining process. Luo et al.31 used the PPO algorithm to select processes in a discrete action space
and verified its superiority in solving flexible job shop scheduling problems. However, the PPO algorithm has
not been studied more thoroughly to improve its performance. Mouelhi-Chibani and Pierreval32 proposed a
neural network (NN) to dynamically select dispatching rules according to the current system status and the
workshop parameters. RL can take the scheduling strategy which adapts to the actual system state. Song et al.33
presented a method using DRL to learn priority dispatch rules (PDRs) and graph neural networks (GNNs) for
FJSP. A new kind of heterogeneous graph scheduling state representation was employed to combine operation

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

selection and machine allocation into one composite decision, which achieved high-quality learning of PDRs.
Chen et al.34 presented a rule-driven dispatching method based on the data envelopment analysis to solve the
multi-objective dynamic job shop scheduling problem. An agent was trained to obtain the elementary rules
with the WIP fluctuation of a machine. Shahrabi et al.35 introduced the dynamic job shop scheduling problem
(DJSSP) that considered machine breakdowns and random job arrivals. In their work, the dispatching rules
were based on variable neighborhood search (VNS) and compared with some common dispatching rules and
the general variable neighborhood search. Wang36 designed an improved Q-learning with the clustering and
greedy search policy. A dynamic scheduling system model with multi-agent technology was built including buffer,
machine, state, and job agent to maximize the weighted mean of the fuzzy earning. Shiue et al.37 established a
procedure in which they planned the real-time scheduling knowledge base (RTSKB) using multiple dispatching
rules (MDRs). Significantly, MDRs incorporated two mechanisms including an off-online learning module and
a Q-learning-based RL module. So far, these algorithms have lacked a unified scheduling problem name. Che
et al.38, applying a deep reinforcement learning based multi-objective evolutionary algorithm, proposed a multi-
objective optimization model for the scheduling problem of oxygen production system. Yuan et al.39 suggested a
novel framework that translated a combined optimization problem into a multi-stage sequential decision-making
problem. This framework is used a multi-agent double Deep Q-network algorithm for FJSP.

This research on the application of RL in these scheduling problems (Table 1) shows that RL is an effective
method to solve the scheduling problem. This algorithm has the following characteristics:

1.	 RL is a decision-making algorithm directly oriented to long-term goals based on state or action value.
2.	 RL doesn’t need a complete mathematical model of the learning environment. It can imitate human experi-

ence, and learn and accumulate experience from the examples or simulation experiments that have been
solved.

3.	 RL needs supervision and teaching. It adjusts the policy according to the evaluation reward obtained in the
interaction process. So, it makes optimal responses to different system states.

Problem formulation
Mathematical model
We introduce FDSSP by considering the production scheduling problem of the hydraulic cylinder. The hydraulic
cylinder processes flow diagram is simplified to a production scheduling model in Fig. 1. Each cylinder 40,41
is assembled from several components: body, bottom, piston, piston rod, lifting lug, O-ring, seal ring, piston
pin, and wiper, as shown in Fig. 1a. The cylinder body 3 is generally made of seamless steel pipe. Its internal
machining accuracy is highly required. Piston 4 and piston rod 6 are connected using snap ring 2. The piston
rod 6 is guided by guide sleeve 7 and sealed by seal ring 5. Cylinder bottom 1 and body 3 are respectively opened
with oil inlet and outlet ports. When the right chamber of the hydraulic cylinder is filled with oil, the piston
moves left. Inversely, the piston moves right.

The shop floor is divided into two areas, namely the job shop and the assembly shop. The product is started
from the order and is finished with the assembly (Fig. 1b). The job shop is equipped with three machines (fine
turning, CNC milling, and electric spark) (Fig. 1c). The assembly workshop has two assembly robots ( A1 , A2 )
(Fig. 1d). Each operation can be completed by multiple alternative machines. After each operation k is completed,
job j needs to enter the quality control center for quality inspection. If the quality is acceptable, a job is moved

Table 1.   Summary of relevant RL methods.

References Type of problem Objective Approach Dispatching rule and policy

Riedmiller and Riedmiller20 Single machine scheduling Total tardiness Q-learning None

Adylin and Oztemel70 Single machine scheduling Mean tardiness Q-learning New job insertions

Li et al.71 JSP Long-run average reward Q-learning Discrete-event

Chen et al.34 FJSP Makespan Q-learning None

Shahrabi et al.35 Dynamic JSP Mean flow time Q-Learning variable neighborhood search

Wang72 JSP Earliness
Tardiness Q-Learning Dynamic greedy search

Shiue et al.37 Real-time scheduling Mean
Standard deviation Q-Learning Multiple dispatching rules

Liu et al.29 JSP Makespan DDPG Multiple dispatching rules

Luo et al.31 JSP
TWT​
Machine utilization rate
Machine workload

HMAPPO Multiple dispatching rules

Song et al.33 FJSP Makespan PPO Multiple dispatching rules

Che et al.38 FJSP Total operating cost
Switching times DRL-MOEA Multiple dispatching rules

Yuan et al.39 FJSP Makespan MADDQN Multiple dispatching rules

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

to the next operation k + 1; if instead, it is returned to the current operation to be queued and reworked again.
The assembly operation is a complete kit assembly, which means that the assembly operation does not begin
until the all job is completed.

Since the assembly operation may be relatively short and fixed, the planned start time of the assembly opera-
tion can be extrapolated from the delivery date of the order. In this paper, we concentrate on the job shop
scheduling in a way that the completion time of each job is as close to the planned start time of the assembly as
possible. The assembly shop is defined as the assembly constraint level.

Based on the above example, the FDSSP can be described as follows: supposing that there are n jobs to be
processed in the job shop equipped with m machines. Each job j ( j ∈ {1, 2, . . . ,N} ) including O operations k
( k ∈ {1, 2, . . . ,O} ) needs to be processed according to the specified route. Each operation k can be selected
processing on any powerful machines m ( m ∈ {1, 2, . . . ,Mij} ) in Mij machines. Meanwhile, the machine m can
process different operations k of different jobs. Hence, there is a great discrepancy in the processing time of the
operation k on different machines, which makes the study of scheduling algorithms particularly significant. The
model parameters and indices are shown in Table 2.

Assembly restraint level definition
The job after assembly is referred to as the constrained job, and the job before assembly is referenced as the
front job. Firstly, according to the assembly constraint relationship, all jobs constraint levels that have no tight
front constraint are set to 1. Jobs with undefined constraint levels make up the job set, which is denoted by
U. Then, the job set Jset is formed from U in sequence taking out all tight front jobs Jk . Determining whether
the constraint levels in Jset have all been determined. If so, the level of the job Jk is set to max(L(Jset)+ 1) , i.e.,

Fine turning

1

2

m

(a)

1 1 1

n n n

Materials

(b)

(c)
Electric spark

1

2

m

CNC milling

1

2

m

(d)

A1

A2

Illustration:

Order

Materials

Products

Jobs

Components and parts

Transport equipment

Figure 1.   Integrated production of hydraulic cylinder: (a) structure charts; (b) production layout; (c) job shop;
(d) assembly shop.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

L(Jk) = max(L(Jset))+ 1 . When not, it puts the job Jk back into U until the constraint levels of all jobs have
been determined.

Other assumptions are considered as follows:

1.	 The processing times of each operation by each machine are determined and known.
2.	 Each job can select only one process path. And, one operation can only be processed by one machine at a time.
3.	 The sum of the start time and processing time of an operation is less than or equal to the makespan of the

operation.
4.	 The makespan of the previous operation is less than or equal to the start time of the next operation.
5.	 Completion time of products is the sum of processing time and assembly time.
6.	 The operation of each machine is cyclic.
7.	 Intermediate conversion time of the job, transferring from the job shop to the assembly shop, is omitted.

Decision variables:

According to the literature reviewed7,42–45 makespan is the most sufficiently studied objective. In this study,
the objective of the model is as follows:

Makespan

Transformation of scheduling problem
Definition of state‑space
The state features can reflect the main features of the production environment. The division of state space is
the basis for the reasonable selection of scheduling rules for the system. Nevertheless, owing to the constantly
changing production environment, the complete system state is continuous and often described by tens or even
dozens of state characteristics on the job shop.

To describe the state space in detail, the following state features are defined:

1.	 The state features can describe the main features and changes of the scheduling environment in detail, includ-
ing the global features and local features of the system.

2.	 The states of all problems are represented by a common feature set.
3.	 Different scheduling problems can be represented and summarized by state features.
4.	 State feature is a numerical representation of state variables.
5.	 The state should be easy to calculate.

xjkm =

{

1, if operation k of job j is processed on machine m
0, otherwise

.

(1)min (Cmax) = min

(

max
1≤j≤n

(

Cj

)

)

= min

(

n
∑

1

xjkmtjkm

)

.

Table 2.   Model parameters and indices.

Sets Description Indices Description

J Set of the job j Indices of the job, j ∈ J

M Set of the machine m Indices of the machine, m ∈ M

O Set of the operation k Indices of the operation, k ∈ O

Job-related parameters Description

at Arrival time of products

d Delivery time of products

apt Assembly time of the products

ojf The first operation of the process path

ojl The last operation of the process path

tjkm Processing time of machine m used in the operation kj
Sjkm Start time of machine m used in the operation kj
Cjkm Processing time of machine m used in the operation kj
Cj Processing time of the last operation for the job j

Cmax Makespan of the job j(maximum processing time of the last operation for the job j)

L Extreme value

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

To facilitate the expression with the formula, the processing state of the processes is recorded as Pjk = {0, 1} ,
i.e., the operations are not processed is Pjk = 0 , and has been processed is recorded as Pjk = 1 . The operations to
be processed on the machine are arranged in descending order of time length, and the resulting process sequence
is denoted as list(m) = {Jm1, Jm2, ..., Jmvm } , where vm is the number of processes to be processed on machine m.
As shown in Table 3, we define ten state features of the shop environment.

Definition of action space
Panwalker and Iskander46, summarizing the previous studies, elaborated 113 different combinations of dispatch-
ing rules. These rules defined the useful types of problems and measures of performance. The SCH is chosen to
define a candidate set of behaviors for each machine, where priority assignment rules for reinforcement learning
can overcome short-sighted natures. Behaviors that are relevant or irrelevant to the conversion should be adopted
to take full advantage of existing scheduling theory and the ability of the intelligence to learn from it. In Table 4,
eight common behaviors are selected as candidate sets.

Definition of rewards
The definition of the reward function is closely related to the objective function. The agent is rewarded according
to the result of the change of the system state after the implementation of the synthetic behavior and the reward
function. The reward function is chosen to be defined according to the following rules.

1.	 The immediate reward for each state transition reflects the immediate effect of the action performed, which
results in a short-term impact on the scheduling plan.

2.	 The cumulative total reward result reflects the long-term outcome of the execution strategy, denoted as the
optimal value of the objective function.

3.	 This reward function can be applied to scheduling problems of different sizes.

The literature47 shows a direct relationship between Cmax and machine utilization (e.g., minimizing the makes-
pan is equal to maximum machine utilization). This study is devoted to addressing minimizing the makespan.
The immediate reward earned for each state transition reflects the immediate impact of the action performed.

Table 3.   State features.

No State features Description

1 xm,1 =
∑Ojp

j=1,k=1,Pj,k=0 Tj,k
Total time of operations to be processed on machine m

2 xm,2 =
∑Ojp

j=1,k=1,Pj,k=0 Tj,k
Total time of operations processed on machine m

3 xm,3 = J
Pj,k=0

m,1
Time of the first operation in the sequence List(m) to be processed on the machine m

4 xm,4 = J
Pj,k=1

m,2
Time of the second operation in the sequence List(m) to be processed on machine m

5 xm,5 = W
Pj,k=1

j,1

Among all future operations, the time of the first operation in the sequence List(m) to
be processed on the machine m

6 xm,6 = W
Pj,k=0

j,2

Among all future operations, the time of the second operation in the sequence List(m)
to be processed on the machine m

7 xm,7 =
∑n

i=1 (1− Pj,k) Total number of operations for all future processes on the machine m

8 xm,8 =
∑n

i=1 (1− Pj,k)Tj,k Total time for all future operations on machine m

9 xm,9 =

{

0, if machine is idle
1, if machine is processing a job Machine states

10 xm,10 =
∑n

Jk=1 (L(Jk)) Total number of all jobs assembly constraint levels on the machine m

Table 4.   Dispatching rules.

No SCH Description

1 First come first served (FIFO) Processing in sequence according to the arrival order of the job

2 Shortest processing time (SPT) Sorted by the total processing time of the job on all machines from shortest to longest

3 Shortest remaining processing time (SRPT) Sorted by the remaining processing time of the job on all machines from shortest to
longest

4 Most operations remaining (MOR) Sorted by the number of the remaining operations on all machines from shortest to
longest

5 Earliest due date (EDD) Sorted by the due date from shortest to longest

6 Apparent tardiness cost (ATC) Sorted by the tardiness cost from shortest to longest

7 Total least operations remaining (TLOPR) Sorted by assembly-related constraints of the job from shortest to longest

8 Select no job (SNJ) Machines don’t select processing each job

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

It also represents the short-term impact of the action on the scheduling scheme. Cumulative rewards reflect the
long-term effects, which is the goal of RL maximization.

where Uave(t) is the average machine utilization rate. Let Cmax(t) denotes the completion time of the last operation
assigned on machine m at scheduling point t. Ot is the current number of operations for the job i that have been

assigned. Define the machine m utilization rate as Uk(t) , which can be calculated by Uk(t) =
∑n

1

∑Oi (t)
k=1 tjkmxjkm
Cmax(t)

 .
Let rk = Uk(t)− Uk−1(t) , then the cumulative reward R can be calculated as follows:

Proof 

where k is the counter for the allocation operation. It can be considered as a discrete-time step in RL.
P =

∑n
1

∑oi(t)
k=1 tjkmxjkm. Uk(t) and Cmax(t) are machine utilization and makespan at time step k.

Proposed methods for the FDSSP
Related work of RL
RL is a specific class of machine learning (ML) problems that can achieve global optimality48–50. In an RL model51,
the decision-maker chooses an appropriate action by observing the environment and is rewarded for doing so.
RL algorithms needn’t know many states and the state transfer probability matrix during iterations. RL is trans-
formed into the model of solving the optimal solution of Markov decision models, which is mainly used to solve
sequential decision problems. The most important feature of RL is that there is no correct answer in the learning
process, rather learning is done through reward signals.

1: For episode =1: M do

2: ∀ ∈ , Initialize states value ();

3: Set the initial state 0 to the current state ;

4: Select actions according to , state value () and strategy ;

5: Perform the actions at, determine the next decision moment state +1, and calculate the

reward +1;

6: Update () according to Eq. (8);

7: If +1 is not the terminated state:

8: = + 1, skip to step 3;

9: End if
10: End for

Algorithm 1.   Procedure of TD with evaluating state value

Markov decision processes (MDP)
Markov is the property that the next state st+1 in an RL system is related only to the current state st . The Markov
decision process is described by 5-tuple as follows:

where S is a finite set of states, characterizing the description of the environmental state; A is a finite set of action
spaces, representing the set of behaviors that can be taken; P is a state transfer rate function; R is a reward func-
tion; γ is a discount factor.

The objective of RL is to enable the agent to find an optimal strategy π∗ through continuous experimentation
in the environment that maximizes the expected cumulative reward function obtained by following the strategy
from any state. The reward function is determined by further defining the value function. The state-value func-
tion vπ (s) and the action-value function qπ (s) under the strategy are defined as follows.

(2)Uave(t) =
1

m

∑m

k=1
Uk(t) =

1

m

∑n
1

∑Oi(t)
k=1 tjkmxjkm

Cmax(t)
.

(3)R =

K
∑

k=1

rk =

K
∑

k=1

(

Uk(t)− Uk−1(t)
)

= Uk(t).

(4)

∑K

1

(

Uk(t)− Uk−1(t)
)

= U1(t)− U0(t)+ U2(t)− U1(t)+ · · · + Uk(t)− Uk−1(t)

= Uk(t)− U0(t)

= Uk(t) =
P

Cmax(t)
.

(5)E = {S,A(s),P,R, γ }.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

Updating Bellman’s expectation equation with the optimal strategy yields the optimal equation as follows:

Temporal difference algorithm
The TD algorithm52, combining Monte Carlo and dynamic planning methods, uses the classical Bellman formula
to iterate until the value function converges. The basic iteration formula is as follows:

where rt+1+γV(st+1) is the objective of TD; rt+1+γV(st+1)− V(st) is the deviation of TD; α is the learning
rate. The procedure to calculate v(s) is given in Algorithm 1.

Deep learning model
Deep neural network
Deep learning53 is a type of representation learning that is based on artificial neural networks. Deep neural
network structures have greater capacity and exponential representation space, which makes it easier to learn
and represent a variety of features with a significantly reduced number of neurons.

The recent success of deep learning relies heavily on massive amounts of training data, flexible models, suf-
ficient computing power, and prior experience to fight against dimensional disasters. Hinton54 has proposed a
technique combining pre-training and fine-tuning to drastically reduce the time training a multi-layer neural
network. Various optimization techniques have emerged to further alleviate the gradient disappearance prob-
lem. In particular, an application of a technique known as “Deep Residuals”55 can enable more than a hundred
network layers.Algorithm 1

1: Input: Initialize playback memory to capacity

2: Initialize states value function with weights

3: Initialize the target state value function ̂ with weights − =

4: For episode =1, do

5: Initialize sequence 1 = { 1} and pre-processed sequence

1 = (1)

6: For = 1, do

7: with probability or eq. (7) Select a random action

8: otherwise select = ((), ;)

9: Execute action in the emulator and observe the reward and image +1

10: Set +1 = , , +1 and pre-process +1 = (+1)

11: Store transition (, , , +1) in

12: Sample random minibatch of transitions (, , , +1) from

13: Set:

= (
+1, + 1

+1 + ′ ̂ (+1;
−); ℎ

14: Perform a gradient descent step [− ((+1);)]2 Concerning the network

parameters

15: Every step reset ̂ =

16: End For
17: End For

Algorithm 2.   Procedure of DTDN

Activation function
The activation function, a central unit in the design of neural networks, gives the ability to learn and adapt for
the neurons56,57. It incorporates nonlinear factors in the neural network to address the defect of expression ability
of the linear model. If the activation function isn’t used, the output of each layer is a linear function of the inputs
of the previous layer. No matter how many layers the neural network has, the output is a linear combination

(6)

vπ (s) = E[Gt |St = s]

= Eπ

[

∞
∑

k=0

γ krt+k+1|Sts

]

=
∑

a∈A

π(s|a)qπ (s, a)

=
∑

π(s|a)

[

Ra
s + r

∑

s∈S

p(s′|s, a)vπ (s
′)

]

(7)V∗(s) = max
π

Vπ (s) = max
π

Ra
s + γ

∑

Pass′V
∗(s′).

(8)V(st) = V(st)+ α[rt+1+γV(st+1)− V(st)].

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

of the inputs. Common activation functions include step functions, Sigmoid functions, Tanh functions, and
approximate biological neuronal activation functions such as Relu, Leaky-Relu, and Softplus. Because approxi-
mate biological neuronal activation functions are better than traditional functions in most network applications,
Relu is used in this paper.

Optimization function
Optimization function58, one of the core problems in neural network training, not only speeds up the solu-
tion process but also reduces the influence of hyperparameters on the solution process. Common optimization
algorithms used in research applications are the stochastic gradient descent algorithm (SGD), adaptive gradient
algorithm (AdaGrad), root mean square prop algorithm (RMSProp), and Adam algorithm.

In this paper, the deep neural network is made up of seven connection layers, which contain one input layer,
five implicit layers, and one output layer. Figure 2b gives the structure of the neural network.

Exploration and exploitation
FDSSP can be classified as a multi-stage decision-making problem with terminals. To balance the allocation of
exploration and exploitation of the agent in environmental interactions, a greedy strategy ε is used as a strategy
for selecting behavior. Greedy strategy is the selection of a greedy behavior with probability 1− ε ( 0 < ε < 1 )
and the random selection of any optional behavior with probability ε , where ε is the exploration factor. Suppose
P(s, a) denotes the probability of selecting a behavior at the decision state. The expression is as follows:

where A(s) is the set of combinatorial behaviors that are candidates in the state s ; |A(s)| is the number of behaviors
that can be chosen in the state s ; a∗(s) is the greedy behavior of the state. It denotes Eq. (7) as follows:

where rass′ is the immediate reward that takes a combination of actions from state s to state s,.

Deep temporal difference network model
To briefly describe the implementation process, a workshop visualization ( m = 3, n = 3 ) is proposed in Fig. 2.
The hexagonal shape represents the jobs. Hexahedra represents waiting for queues of sufficient capacity.

At the start of processing, the scheduling system is in the initial state S0 , i.e., all jobs are in the first waiting
queue Q1 with all machines free. Then the first machine selects an action a(k) ( 1 < k < 8 ). A job in the queue
Q1 is selected for processing while other machines select the action a(8) . Whenever any machines complete an
operation, the system moves to a new state St . In this state, each machine selects an action to perform. When

(9)P(s, a) =

{

1− ε + ε
|A(s)| , a = a∗(s)

ε
|A(s)| , a �= a∗(s)

.

(10)a∗(s) = argmax
[

rass′ + γV(s′)
]

Figure 2.   DTDN algorithm running model (3 × 3): Deep neural network model of state perception in agent: (a)
Deep neural network model of state perception; (b) Deep neural network structure.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

another operation is completed, the system moves to a new state St+1 , which gives the agent one reward rt+1 .
rt+1 can be calculated by the time interval between the two states. Since at each decision moment, each machine
simultaneously selects one act to execute. In actuality, the system implements a multidimensional behavior with
a combination of m sub-activities at a time in the state St(at+1 = (a1, a2, ..., am)) . When the system reaches the
termination state ST , it means that all queues are empty and that all jobs have been processed. Hence, a scheduling
plan is obtained.

The deep Q-network (DQN) output layer uses several nodes to represent a finite number of discrete action
values. However, it cannot cover the exponential multidimensional action space. When the Q-learning online
evaluates action values for heterogeneous strategies, it results in over-estimation that optimal value replaces actual
interaction values. Hence the method is not directly applied to the multi-dimensional action space problem.
Temporal difference learning with the same strategy, state-values indirectly calculating action-values, is proposed
to replace Q learning and state values are indirectly calculated for behavior values, which is suitable for selecting
multi-dimensional action in Algorithm 2.

Experiment study
To evaluate the validity of the proposed algorithm, the experiments have been conducted utilizing different test
cases in four parts. First of all, according to the standard test set established in Kacem59, we use eight small-scale
cases to compare with other algorithms17,32, 60, 61 in “Small scale FDSSP" section. Then, in “Comparisons with
the proposed dispatching rules" section, we compare the proposed DTDN algorithm with the Q-Learning (QL)
algorithm (Jiménez62) and deep deterministic policy gradient (DDPG) algorithm (Liu63) on different perfor-
mances in Brandimarte64. Moreover, for large-scale instances, we designed our test cases, which included 30
FDSSP problems of varying complexity, as shown in Section "Large-scale instances of FDSSP". Last but not least,
in "Case Study: production scheduling problem" section, we illustrate in detail the application of our algorithm
in a case study of solving the hydraulic cylinder production scheduling problem.

The DTDN algorithm is coded in Python 3.7 language on JetBrains PyCharm Community Edition
2019.2.1 × 64 and runs on Intel Core i9-10900x @ 3.7GHz CPU and 16 GB RAM. First of all, we build FDSSP
environment classes, machine classes, and job classes in an object-oriented manner on the RL platform OpenAI
Gym. Gym specifies the main member methods of environment classes as a framework, including init, reset,
step, render, and close. Then, an agent that executes the algorithm iterates interactively with the environment.
The deep neural network model of the agent is implemented with the back-end TensorFlow. The experimental
data are shown in Table 5.

The selection of parameters may affect the quality of the solution, thus general principles can be followed. The
discount factor γ measures the weight of the subsequent state value on the total return, which is why it generally
takes a value close to 1 (i.e.,γ = 0.95 ). To facilitate full exploration of the strategy space during the initial phase
of the iteration, the ε-greedy strategy sets the initial value of ε = 1 and decays with the discount rate of 0.995.
Set the learning rate: α = 5× 10−4 ; the maximum number of interactions: MAX − EPISODE = 800 ; memory
D capacity: N = 6000 ; and sample batch: BATCH − SIZE = 64 . The deep neural network of the agent is shown
in Fig. 2b, in which the network parameters adopt a random initialization strategy.

Performance metrics: The relative percentage deviation (RPD) and average relative percentage deviation
(ARPD) are described as follows:

where Cmax are the optimal results of algorithms; LB is the optimal results of the Branch and Bound algorithm.
It represents the most ideal solution result and is not possible to achieve.

Small scale FDSSP
To prove the validity of the solution process in this study, the cases proposed by Kacem. are validated. Where, the
number of jobs (n), the number of machines (m), and each operation of jobs ( Oij ) are represented. For example,
n×m is a case of a set consisting of jobs and machines. The literature with the same case study as this paper is
selected for comparison [Zhang17 (DACS); Xing et al.60 (SM); Moslehi32 (PSO); Li et al.61 (HTSA)], which ensures
the credibility of the comparison results. Meanwhile, each case is run ten times to obtain the combined optimal
solution. CPU times of various algorithms are calculated by the “relative ratio” downloaded from https://​www.​
cpube​nchma​rk.​net/ (Table 6). The results show that the optimal solution of DTDN and other algorithms are the
same as LB, but CPU running time is very significantly different for small-scale problems (Kacem) in Table 7.

RPD =
Cmax − LB

LB

Table 5.   Benchmarks.

Instances Benchmarks Source

Case01-05 Kacem01-05 Kacem

Case06-15 Orb01-10 Hurink-data

Case16-20 Mt10c1-xxx Barnes

Case21-35 01a-15a ChambersBarnes

Case36-45 MK01-10 Brandimarte

https://www.cpubenchmark.net/
https://www.cpubenchmark.net/

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

As designed in Table 8a, it can be seen that the algorithm progressively generates an optimal production
schedule (35). An optimal policy set {π∗} = {(6, 8, 8, 8), (2, 1, 8, 8), . . . , (8, 8, 8, 1)} is the operation sequence of
each job on the machine. Where the number of parentheses in the policy set indicates the combined behavior
of the four machines consisting of the behavior number taken in the corresponding state. Where the number
in parentheses in the policy set indicates that the four machines in the corresponding state consisting of the
behavior number adopt the combined action. At each decision time point, since most of the machine waiting
queues are empty or in-process, their feasible action space includes only a(8) , which saves computation time.
Moreover, the comparison of test results for Problem 2 (Table 8b) shows that the optimal solution of the DTDN
algorithm (426) is improved by 4.3% and 2.7% compared to the Nawaz Encore Han (NEH) (445) algorithms and
NEH-KK algorithms (438), respectively.

Comparisons with the proposed dispatching rules
To verify the efficiency and generality of the proposed DTDN, we planned the Brandimarte64 data set as our
adopted data set. Scores and RPD of the seven dispatching rules on each data case are tallied. As known from
Table 9, the proposed DTDN algorithm compared with other algorithms can obtain better solutions, and some
of them are already below the upper bound of the original cases. The actions that are used more than 10% are
FIFO, SPT, LPT, SRRT, LRPT, MOR, and EDD in Fig. 3. It is known that these actions have a greater contribution
to obtaining the optimal solution and thus have a greater utilization value. The frequency distribution of other
actions was relatively even, but the performance was not obvious. Therefore, it can be considered to add other
heuristic behaviors to the candidate action space, which eliminates some underutilized behaviors to streamline
the actions.

Large‑scale instances of FDSSP
In this study, to study the performance of DTDN on large-scale problems, the results of Brandimarte cases are
further compared with problem sizes ranging from BC, DP, and BR data cases in a total of 30 data cases. The
solution results of the proposed DTDN are compared with Gao et al.65 (HGA), Mastrolilli and Gambardella66
(MG), Sun et al.67 (HMEA), Chen et al.69 (SLGA), and Reddy68 [teaching–learning based optimization (TLBO)],
which are shown in Table 10 and Fig. 4. The test results show that the proposed DTDN algorithm can find better
computational results globally through a large amount of trial and error in the solution procedure. The obtained
performance index results are better than traditional optimization methods for different scales of arithmetic
cases, demonstrating the validity of the DTDN algorithm for FDSSP.

Case study: production scheduling problem
Nourali8,9 proposed a useful benchmark of FDSSP, including 40 different data cases. The solution results of the
proposed DTDN are compared with Huang et al69 [particle swarm optimization (PSO)]; Zhang and Wong7
(constraint programming (CP)), and Zhang et al.17 [distributed ant colony system (DACS)]. The results are
displayed in Table 11 and Fig. 4, and the following conclusions can be summarized. The optimal solutions of
this algorithm are all within [LB, UB], indicating that the solutions are valid. The performance of DTDN is close
to that of the other three algorithms. The run time from CPU Time is about as long as the other algorithms for
small-scale cases, but the large-scale problems are much more efficient than the other method. Lastly, in general,
this algorithm is slightly less capable of solving large-scale problems because of the large scheduling state space
for large-scale problems, the large learning error using the same network structure, and the need for more itera-
tions and a more optimized network structure to reduce the training error.

Table 6.   Relative ratio of different computers in studies.

Studies DACS SM PSO HTSA DTDN

CPU 2.7 GHz 2.4 GHz NaN 1.7 GHz 3.7 GHz

CPU mark 7023 228 NaN 132 10,203

Relative ratio 0.6883 0.0223 NaN 0.0129 1.0000

Table 7.   Results comparison of makespan and CPU time in different methods on Kacem’s test cases.

Prob

B&B DACS SM PSO HTSA DTDN

m n O LB UB CM T(s) CM T(s) CM T(s) CM T(s) CM T(s)

Case01 4 5 5 11 NaN 11 0.490 12 2.580 NaN NaN 11 0.150 11 1.567

Case02 8 8 8 11 NaN 14 2.420 14 39.370 14 NaN 14 3.080 13 2.189

Case03 10 7 7 11 NaN 11 2.100 11 110.000 NaN NaN 11 2.580 11 3.218

Case04 10 10 10 7 NaN 7 2.560 7 39.740 7 NaN 7 3.120 7 3.189

Case05 15 10 10 11 NaN 11 3.790 11 865.230 11 NaN 11 25.130 11 5.142

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

Conclusion
The main contribution of this paper is to propose an efficient DTDN method for FDSSP in a flexible shop
production environment to minimize makespan. The Q learning in the deep reinforcement learning algorithm
DQN is transformed into the temporal differential TD learning with state value. Hence, the deep temporal
differential reinforcement learning algorithm is obtained, which is successfully applied to the shop scheduling
problem. As shown by experiments, the algorithm can obtain a better solution in a smaller number of iterations
compared to simply constructed heuristic or population intelligence algorithms. Because of the introduction of
state features, heuristic behaviors, and deep neural networks, the algorithm is highly flexible and dynamic. The
advantages of the proposed algorithm include as following:

1.	 The algorithm can learn and real-time. Since the selection from the input state to the neural network is
made by the SCH Algorithm with basic rules. When the neural network is successfully trained, the previous
empirical patterns are stored in the network parameters that can make scheduling decisions in real time.

2.	 The algorithm model is more flexible. The state features, behavior rules, and neural network size can be
flexibly modified as needed. The constructive process is closer to the actual scheduling, which is not only
applicable to NPFS problems with greater computational complexity but also suitable for solving dynamic
scheduling problems from the principle.

Table 8.   Design of the test case problems in sets: a (O5,4); b (O6,3).

Case 1 2 3 4 5 6

1 5/19 4/42 3/85 7/59 3/87 –/42

2 4/46 5/65 2/56 3/68 8/66 –/41

3 5/65 4/12 2/78 6/25 3/53 –/51

4 3/– 5/– 3/– 3/– 7/– –/–

Table 9.   Results comparison of scheduling score and RPD in different methods on Orb data cases.

Prob. (%)

FIFO SPT LPT SRPT LRPT MOR EDD QL DDPG DTDN

Score Score Score Score Score Score Score Score RPD Score RPD Score RPD

Case06 7.74e2 7.17e2 7.51e2 7.03e2 7.41e2 7.56e2 6.66e2 9.18e2 1.98e−2 8.75e2 0.1435 8.75e2 1.44e−1

Case07 8.81e2 7.56e2 6.87e2 6.54e2 6.86e2 7.64e2 6.83e2 9.54e2 4.48e−2 8.86e2 0.1284 8.86e2 1.28e−1

Case08 7.15e2 8.52e2 7.03e2 6.96e2 7.01e2 7.15e2 6.75e2 9.18e2 8.96e−2 8.74e2 0.1443 8.51e2 1.75e−1

Case09 7.59e2 8.13e2 7.10e2 6.82e2 7.32e2 7.02e2 7.03e2 9.41e2 6.27e−2 8.88e2 0.1264 8.55e2 1.70e−1

Case10 7.68e2 7.70e2 8.07e2 7.83e2 6.92e2 7.31e2 7.13e2 9.09e2 1.00e−1 8.49e2 0.1701 8.48e2 1.79e−1

Case11 7.59e2 8.49e2 6.85e2 6.67e2 7.02e2 6.98e2 6.82e2 9.49e2 5.35e−2 9.13e2 0.0951 8.49e2 1.78e−1

Case12 8.36e2 7.88e2 8.45e2 8.02e2 6.99e2 7.42e2 7.05e2 9.36e2 6.80e−2 8.48e2 0.1788 8.63e2 1.59e−1

Case13 7.34e2 8.12e2 7.65e2 7.72e2 8.20e2 7.92e2 7.36e2 9.40e2 6.34e−2 8.80e2 0.1369 8.14e2 2.29e−1

Case14 7.86e2 7.40e2 7.26e2 6.41e2 6.53e2 6.87e2 6.93e2 9.38e2 6.63e−2 8.63e2 0.1585 8.49e2 1.78e−1

Case15 7.79e2 7.89e2 7.42e2 7.11e2 7.13e2 7.32e2 6.95e2 9.34e2 7.11e−2 9.75e2 0.1424 8.54e2 1.71e−1

(a) (b) (c)

FIFO SPT LPT SRPT LRPT MOR EDD
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

setar
g

ni
ni

W

Dispatcing rules

Case09

Case10

Case11

FIFO SPT LPT SRPT LRPT MOR EDD
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

setar
g

ni
ni

W

Dispatcing rules

Case06

Case07

Case08

FIFO SPT LPT SRPT LRPT MOR EDD
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

setar
g

ni
ni

W

Dispatcing rules

Case12

Case13

Case14

Figure 3.   Performance comparison of action space (dispatching rules) under different data cases.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

Table 10.   Results comparison of scheduling score and RPD in different methods on Orb data cases.

Prob B&B HGA MG HMEA DTDN

m n O LB UB Score RPD Score RPD Score RPD Score RPD

Case16 10 11 1 6.55e2 9.27e2 9.27e2 4.15e−1 9.28e2 4.17e−1 NaN NaN 9.12e2 3.92e−1

Case17 10 12 1 6.55e2 9.14e2 9.10e2 3.89e−1 9.10e2 3.89e−1 NaN NaN 9.10e2 3.89e−1

Case18 10 11 1 6.55e2 9.29e2 9.18e2 4.12e−1 9.18e2 4.02e−1 NaN NaN 9.18e2 4.02e−1

Case19 10 12 1 6.55e2 9.29e2 9.18e2 4.02e−1 9.18e2 4.02e−1 NaN NaN 9.18e2 4.02e−1

Case20 10 13 1 6.55e2 9.36e2 9.18e2 4.02e−1 9.06e2 3.83e−1 NaN NaN 9.06e2 3.83e−1

Case21 10 5 1 2.51e3 2.53e3 2.52e3 5.19e−3 2.52e3 4.01e−4 3.83e3 9.22e−2 2.52e3 6.39e−3

Case22 10 5 1 2.23e3 2.24e3 2.23e3 1.36e−3 2.23e3 1.35e−3 3.40e3 5.26e−1 2.35e3 5.66e−2

Case23 10 5 1 2.23e3 2.24e3 2.23e3 4.49e−4 2.23e3 4.49e−4 3.01e3 3.52e−1 2.23e3 2.24e−3

Case24 10 5 1 2.50e3 2.57e3 2.52e3 4.79e−3 2.50e3 0.00e0 3.80e3 5.16e−1 2.52e3 7.59e−3

Case25 10 5 1 2.19e3 2.23e3 2.22e3 1.28e−2 2.22e3 1.23e−2 3.33e3 5.21e−1 2.26e3 1.64e−2

Case26 10 5 1 2.16e3 2.22e3 2.20e3 1.57e−2 2.20e3 1.90e−2 3.11e3 4.37e−1 2.20e3 1.94e−2

Case27 15 8 1 2.19e3 2.41e3 2.31e3 5.49e−2 2.28e3 4.39e−2 3.88e3 7.72e−1 2.32e3 6.13e−2

Case28 15 8 1 2.06e3 2.09e3 2.07e3 5.82e−3 2.07e3 3.88e−3 3.33e3 6.18e−1 2.08e3 9.70e−3

Case29 15 8 1 2.06e3 2.07e3 2.07e3 2.43e−3 2.07e3 2.43e−3 2.98e3 4.47e−1 2.07e3 6.31e−3

Case30 15 8 1 2.18e3 2.36e3 2.32e3 6.29e−2 2.29e3 5.19e−2 4.00e3 8.36e−1 2.35e3 7.94e−2

Case31 15 8 1 2.02e3 2.08e3 2.07e3 0.00e0 2.06e3 2.28e−2 3.17e3 5.70e−1 2.08e3 3.32e−2

Case32 15 8 1 1.97e3 2.05e3 2.03e3 3.10e−2 2.03e3 3.30e−2 3.24e3 6.46e−1 2.04e3 3.35e−2

Case33 20 10 1 2.16e3 2.30e3 2.26e3 4.44e−2 2.26e3 4.59e−2 3.92e3 8.14e−1 2.28e3 5.51e−2

Case34 20 10 1 2.16e3 2.18e3 2.17e3 2.78e−3 2.17e3 2.78e−3 3.45e3 5.96e−1 2.16e3 9.25e−4

Case35 20 10 1 2.16e3 2.17e3 2.17e3 1.85e−3 2.17e3 2.78e−3 3.34e3 5.44e−1 2.17e3 5.09e−3

LB UB HGA SLGA TLBO DTDN

Case36 10 6 2 3.60e1 4.20e1 4.00e1 1.11e−1 4.00e1 1.11e−1 6.20e1 7.22e−1 4.20e1 1.67e−1

Case37 10 6 3.5 2.40e1 3.20e2 2.60e1 8.33e−2 2.70e1 1.25e−1 4.80e1 1.00e0 3.00e1 2.50e−1

Case38 15 8 3 2.04e2 2.11e2 2.04e2 0.00e0 2.04e2 0.00e0 3.74e2 8.33e−1 2.04e2 0.00e0

Case39 15 8 2 4.80e1 8.10e1 6.00e1 2.50e−1 6.00e1 2.50e−1 1.36e2 2.44e0 6.20e1 2.92e−1

Case40 15 4 1.5 1.68e2 1.86e2 1.72e2 2.38e−2 1.72e2 2.38e−2 2.65e2 5.77e−1 1.72e2 2.38e−2

Case41 10 15 3 3.30e1 8.60e2 5.80e1 7.58e−1 6.90e1 1.10e01 9.40e1 1.85e0 9.00e1 1.73e1

Case42 20 5 3 1.33e2 1.57e2 1.39e2 4.51e−2 1.44e2 8.27e−2 2.46e2 8.50e−1 1.58e2 1.88e−1

Case43 20 10 1.5 5.23e2 NaN 5.23e2 0.00e0 5.23e2 0.00e0 6.23e2 1.91e−1 5.23e2 0.00e0

Case44 20 10 3 2.99e2 3.69e2 3.07e2 2.68e−2 3.20e2 7.02e−2 3.92e2 3.11e−1 3.20e2 7.02e−2

Case45 20 15 3 1.65e2 2.96e2 1.97e2 1.94e−1 2.54e2 5.39e−1 2.75e2 6.67e−1 2.41e2 4.61e−1

(a) (b)

CP PSO DACS DTDN
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

Methods

D
P

R

HGA MG HMEA SLGA TLBO DTDN
-0.5

0.0

0.5

1.0

1.5

Methods

G
P

R

Figure 4.   Box plots based on the results in Tables 10 and 11.

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

Limitations and future work
Due to the shortcomings of the study, further work can be considered in the following aspects.

1.	 Scheduling model. Significantly, RL can add and subtract state features to better describe the processing state
with minimal redundancy. Searching for more efficient and practical heuristic behaviors can fit and generalize
stronger value function generalizer structures. What’s more, adding or subtracting candidate behavior sets
can be considered to add more highly utilized constructive heuristic behaviors.

2.	 Algorithm procedure. The DTDN algorithm itself has been proposed after many types of improvements. For
example, the DTDN algorithm with priority playback memory for memory sampling priority can improve
the efficiency of algorithm iteration.

3.	 Algorithm application. There is a large development space for the algorithm with the continuous progress of
deep neural network theory and the increasing computer computing power. The algorithm can be extended
to apply to more complex job shop scheduling problems and other dynamic scheduling problems.

Table 11.   Results Comparison of makespan and RPD in extended Nourali’s test cases.

Prob B&B CP PSO DACS DTDN

n m O LB UB Cmax RPD Cmax RPD Cmax RPD Cmax RPD

Ins01 6 2 2 4.16e2 5.23e2 4.23e2 1.68e−2 4.23e2 1.68e−2 4.23e2 1.68e−2 4.23e2 1.68e−2

Ins02 6 2 2 4.56e2 5.12e2 4.64e2 1.75e−2 4.64e2 1.75e−2 4.64e2 1.75e−2 4.64e2 1.75e−2

Ins03 6 2 2 5.10e2 6.17e2 5.17e2 1.37e−2 5.17e2 1.37e−2 5.17e2 1.37e−2 5.17e2 1.37e−2

Ins04 6 2 2 3.78e2 4.42e2 3.89e2 2.91e−2 389e2 2.91e−2 3.89e2 2.91e−2 3.89e2 2.91e−2

Ins05 6 2 2 4.31e2 5.36e2 4.31e2 0.00e0 4.31e2 0.00e0 4.31e2 0.00e0 4.60e2 6.73e−2

Ins06 6 2 3 3.80e2 4.27e2 3.84e2 1.05e−2 3.84e2 1.05e−2 3.84e2 1.05e−2 3.82e2 5.26e−3

Ins07 6 2 3 4.07e2 4.97e2 4.12e2 1.23e−2 4.12e2 1.23e−2 4.12e2 1.23e−2 4.12e2 1.23e−2

Ins08 6 2 3 3.89e2 4.76e2 3.97e2 2.06e−2 3.97e2 2.06e−2 3.97e2 2.06e−2 3.97e2 2.06e−2

Ins09 6 2 3 4.57e2 5.39e2 4.68e2 2.41e−2 4.68e2 2.41e−2 4.68e2 2.41e−2 4.68e2 2.41e−2

Ins10 6 2 3 3.02e2 3.99e2 3.06e2 1.32e−2 3.06e2 1.32e−2 3.06e2 1.32e−2 3.06e2 1.32e−2

Ins11 6 3 2 3.14e2 4.37e2 3.26e2 3.92e−2 3.26e2 3.82e−2 3.26e2 3.82e−2 3.26e2 3.82e−2

Ins12 6 3 2 3.47e2 4.26e2 3.53e2 1.73e−2 3.53e2 1.73e−2 3.53e2 1.73e−2 3.53e2 1.73e−2

Ins13 6 3 2 4.36e2 5.33e2 4.56e2 4.59e−2 4.58e2 4.95e−2 4.56e2 4.59e−2 4.56e2 4.59e−2

Ins14 6 3 2 3.94e2 4.93e2 4.05e2 2.79e−2 4.05e2 2.79e−2 4.05e2 2.79e−2 4.05e2 2.79e−2

Ins15 6 3 2 2.87e2 3.75e2 3.04e2 5.92e−2 3.04e2 5.92e−2 3.04e2 5.92e−2 3.04e2 5.92e−2

Ins16 6 3 3 2.76e2 3.63e2 2.80e2 1.45e−2 2.93e2 6.16e−2 2.80e2 1.45e−2 2.77e2 3.62e−3

Ins17 6 3 3 3.25e2 3.97e2 3.37e2 3.69e−2 3.37e2 3.69e−2 3.37e2 3.69e−2 3.37e2 3.69e−2

Ins18 6 3 3 3.65e2 3.23e2 2.71e2 − 2.57e−1 2.74e2 − 2.49e−1 2.71e2 − 2.58e−1 2.71e2 − 2.58e−1

Ins19 6 3 3 3.46e2 4.33e2 3.54e2 2.31e−2 3.54e2 2.31e−2 3.54e2 2.31e−2 3.54e2 2.31e−2

Ins20 6 3 3 2.98e2 3.77e2 3.09e2 3.69e−2 3.09e2 3.69e−2 3.09e2 3.69e−2 3.08e2 3.36e−2

Ins21 10 2 2 4.22e2 5.87e2 4.38e2 3.79e−2 4.47e2 5.92e−2 4.38e2 3.79e−2 4.36e2 3.32e−2

Ins22 10 2 2 4.76e2 5.98e2 4.97e2 4.41e−2 4.97e2 4.41e−2 4.97e2 4.41e−2 4.97e2 4.41e−2

Ins23 10 2 2 3.43e2 3.95e2 3.54e2 3.21e−2 3.54e2 3.21e−2 3.54e2 3.21e−2 3.54e2 3.21e−2

Ins24 10 2 2 4.32e2 5.33e2 4.46e2 3.24e−2 4.46e2 3.24e−2 4.46e2 3.24e−2 4.46e2 3.24e−2

Ins25 10 2 2 4.87e2 6.23e2 5.07e2 4.11e−2 5.21e2 6.98e−2 5.07e2 4.11e−2 5.07e2 4.11e−2

Ins26 10 2 3 4.21e2 5.47e2 4.48e2 6.41e−2 4.69e2 1.14e−1 4.54e2 7.84e−2 4.68e2 1.12e−2

Ins27 10 2 3 4.67e2 5.98e2 4.86e2 4.07e−2 5.03e2 7.71e−2 4.86e2 4.07e−2 4.86e2 4.07e−2

Ins28 10 2 3 4.02e2 5.88e2 4.22e2 4.98e−2 4.39e2 9.20e−2 4.24e2 5.47e−2 4.22e2 4.98e−2

Ins29 10 2 3 5.03e2 6.98e2 5.25e2 4.37e−2 5.34e2 6.16e−2 5.34e2 6.16e−2 5.25e2 4.37e−2

Ins30 10 2 3 4.75e2 6.21e2 4.79e2 8.42e−3 4.79e2 8.42e−3 4.79e2 8.42e−3 4.79e2 8.42e−3

Ins31 10 3 2 4.25e2 5.22e2 4.25e2 0.00e0 4.27e2 4.71e−3 4.25e2 0.00e0 4.25e2 0.00e0

Ins32 10 3 2 4.24e2 5.17e2 4.34e2 2.36e−2 4.34e2 2.36e−2 4.34e2 2.36e−2 4.34e2 2.36e−2

Ins33 10 3 2 3.35e2 4.73e2 3.68e2 9.85e−2 3.76e2 1.22e−1 3.70e2 1.05e−1 3.70e2 1.05e−2

Ins34 10 3 2 3.74e2 5.27e2 4.01e2 7.22e−2 4.03e2 7.75e−2 4.01e2 7.22e−2 4.22e2 1.28e−2

Ins35 10 3 2 3.86e2 4.87e2 4.09e2 6.00e−2 4.12e2 6.74e−2 4.09e2 6.00e−2 4.10e2 6.22e−2

Ins36 10 3 3 3.93e2 5.07e2 4.15e2 5.60e−2 4.15e2 5.60e−2 4.15e2 5.60e−2 4.15e2 5.60e−2

Ins37 10 3 3 4.13e2 5.37e2 4.52e2 9.44e−2 4.63e2 1.21e−2 4.52e2 9.44e−2 4.52e2 9.44e−2

Ins38 10 3 3 3.87e2 5.89e2 4.19e2 8.27e−2 4.21e2 8.85e−2 4.19e2 8.27e−2 4.19e2 8.27e−2

Ins39 10 3 3 4.97e2 6.27e2 5.21e2 4.83e−2 5.34e2 7.44e−2 5.21e2 4.83e−2 5.21e2 4.83e−2

Ins40 10 3 3 3.69e2 4.79e2 3.86e2 4.61e−2 3.91e2 5.96e−2 3.88e2 5.15e−2 3.84e2 4.07e−2

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

Data availability
All data mentioned in the paper are available through Xiao Wang. Email: skwx123@163.com.

Received: 27 December 2023; Accepted: 10 April 2024

References
	 1. 	Friederich, J. & Lazarova-Molnar, S. Reliability assessment of manufacturing systems: A comprehensive overview, challenges and

opportunities. J. Manuf. Syst. 72, 38–58. https://​doi.​org/​10.​1016/j.​jmsy.​2023.​11.​001 (2024).
	 2. 	Xu, Y. et al. Hybrid quantum particle swarm optimization and variable neighborhood search for flexible job-shop scheduling

problem. J. Manuf. Syst. 73, 334–348. https://​doi.​org/​10.​1016/j.​jmsy.​2024.​02.​007 (2024).
	 3. 	Fernandes, J. M. R. C., Homayouni, S. M. & Fontes, D. B. M. M. Energy-efficient scheduling in job shop manufacturing systems:

A literature review. Sustainability 14, 6264. https://​doi.​org/​10.​3390/​su141​06264 (2022).
	 4. 	Lu, H. L., Huang, G. Q. & Yang, H. D. Integrating order review/release and dispatching rules for assembly job shop scheduling

using a simulation approach. Int. J. Prod. Res. 49, 647–669. https://​doi.​org/​10.​1080/​00207​54090​35244​90 (2011).
	 5. 	Thuerer, M. et al. The application of workload control in assembly job shops: An assessment by simulation. Int. J. Prod. Res. 50,

5048–5062. https://​doi.​org/​10.​1080/​00207​543.​2011.​631600 (2012).
	 6. 	Zou, P., Rajora, M. & Liang, S. Y. A new algorithm based on evolutionary computation for hierarchically coupled constraint

optimization: Methodology and application to assembly job-shop scheduling. J. Sched. 21, 545–563. https://​doi.​org/​10.​1007/​
s10951-​018-​0572-2 (2018).

	 7. 	Zhang, S. & Wang, S. Flexible assembly job-shop scheduling with sequence-dependent setup times and part sharing in a dynamic
environment: Constraint programming model, mixed-integer programming model, and dispatching rules. IEEE Trans. Eng. Manag.
65, 487–504. https://​doi.​org/​10.​1109/​TEM.​2017.​27857​74 (2018).

	 8. 	Nourali, S., Imanipour, N. & Shahriari, M. R. A mathematical model for integrated process planning and scheduling in flexible
assembly job shop environment with sequence dependent setup times. Int. J. Math. Anal. 6, 2117–2132 (2012).

	 9. 	Nourali, S. & Imanipour, N. A particle swarm optimization-based algorithm for flexible assembly job shop scheduling problem
with sequence dependent setup times. Sci. Iran. Trans. E Ind. Eng. 21, 1021–1033 (2014).

	10. 	Brucker, P. & Schlie, R. Job-shop scheduling with multipurpose machines. Computing https://​doi.​org/​10.​1007/​BF022​38804 (1990).
	11. 	Soto, C. et al. Solving the multi-objective flexible job shop scheduling problem with a novel parallel branch and bound algorithm.

Swarm Evol. Comput. 53, 100632. https://​doi.​org/​10.​1016/j.​swevo.​2019.​100632 (2020).
	12. 	Özgüven, C., Özbakır, L. & Yavuz, Y. Mathematical models for job-shop scheduling problems with routing and process plan

flexibility. Appl. Math. Model. 34, 1539–1548. https://​doi.​org/​10.​1016/j.​apm.​2009.​09.​002 (2010).
	13. 	Tian, S. et al. A genetic algorithm with critical path-based variable neighborhood search for distributed assembly job shop

scheduling problem. Swarm Evol. Comput. 85, 101485. https://​doi.​org/​10.​1016/j.​swevo.​2024.​101485 (2024).
	14. 	Nouiri, M. et al. Two stage particle swarm optimization to solve the flexible job shop predictive scheduling problem considering

possible machine breakdowns. Comput. Ind. Eng. 112, 595–606. https://​doi.​org/​10.​1016/j.​cie.​2017.​03.​006 (2017).
	15. 	Huang, R. H. & Yu, T. H. An effective ant colony optimization algorithm for multi-objective job-shop scheduling with equal-size

lot-splitting. Appl. Soft Comput. 57, 642–656. https://​doi.​org/​10.​1016/j.​asoc.​2017.​04.​062 (2017).
	16. 	Zhu, Z., Zhou, X. & Shao, K. A novel approach based on Neo4j for multi-constrained flexible job shop scheduling problem. Comput.

Ind. Eng. 130, 671–686. https://​doi.​org/​10.​1016/j.​cie.​2019.​03.​022 (2019).
	17. 	Zhang, S. et al. Multi-objective optimization in flexible assembly job shop scheduling using a distributed ant colony system. Eur.

J. Oper. Res. 283, 441–460. https://​doi.​org/​10.​1016/j.​ejor.​2019.​11.​016 (2020).
	18. 	Cheng, L., Tang, Q. & Zhang, L. Mathematical model and adaptive simulated annealing algorithm for mixed-model assembly

job-shop scheduling with lot streaming. J. Manuf. Syst. 70, 484–500. https://​doi.​org/​10.​1016/j.​jmsy.​2023.​08.​008 (2023).
	19. 	Cheng, L., Tang, Q. & Zhang, L. Production costs and total completion time minimization for three-stage mixed-model assembly

job shop scheduling with lot streaming and batch transfer. Eng. Appl. Artif. Intell. 130, 107729. https://​doi.​org/​10.​1016/j.​engap​pai.​
2023.​107729 (2024).

	20. 	Riedmiller, S. & Riedmiller, M. A neural reinforcement learning approach to learn local dispatching policies in production
scheduling. IJCAI 2, 764–771 (1999).

	21. 	Demir, H. I. & Erden, C. Dynamic integrated process planning, scheduling and due-date assignment using ant colony optimization.
Comput. Ind. Eng. 149, 106799. https://​doi.​org/​10.​1016/j.​cie.​2020.​106799 (2020).

	22. 	Fan, J. et al. A matheuristic for flexible job shop scheduling problem with lot-streaming and machine reconfigurations. Int. J. Prod.
Res. 61, 6565–6588. https://​doi.​org/​10.​1080/​00207​543.​2022.​21356​29 (2023).

	23. 	Zhang, J. D. et al. DeepMAG: Deep reinforcement learning with multi-agent graphs for flexible job shop scheduling. Knowl. Based
Syst. 259, 110083. https://​doi.​org/​10.​1016/j.​knosys.​2022.​110083 (2023).

	24. 	Erden, C., Demir, H. I. & Canpolat, O. A modified integer and categorical PSO algorithm for solving integrated process planning,
dynamic scheduling, and due date assignment problem. Sci. Iran. 30, 738–756. https://​doi.​org/​10.​24200/​SCI.​2021.​55250.​4130
(2023).

	25. 	Su, C. et al. Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem.
Appl. Soft Comput. 145, 110596. https://​doi.​org/​10.​1016/j.​asoc.​2023.​110596 (2023).

	26. 	Fontes, D. B. M. M., Homayouni, S. M. & Gonçalves, J. F. A hybrid particle swarm optimization and simulated annealing algorithm
for the job shop scheduling problem with transport resources. Eur. J. Oper. Res. 306, 1140–1157. https://​doi.​org/​10.​1016/j.​ejor.​
2022.​09.​006 (2023).

	27. 	Burmeister, S. C., Guericke, D. & Schryen, G. A memetic NSGA-II for the multi-objective flexible job shop scheduling problem
with real-time energy tariffs. Flex. Serv. Manuf. J. https://​doi.​org/​10.​1007/​s10696-​023-​09517-7 (2023).

	28. 	Carlucci, D., Renna, P. & Materi, S. A job-shop scheduling decision-making model for sustainable production planning with power
constraint. IEEE Trans. Eng. Manag. 70, 1923–1932. https://​doi.​org/​10.​1109/​TEM.​2021.​31031​08 (2021).

	29. 	Liu, C. L., Chang, C. C. & Tseng, C. J. Actor-critic deep reinforcement learning for solving job shop scheduling problems. IEEE
Access. 8, 71752–71762. https://​doi.​org/​10.​1109/​ACCESS.​2020.​29878​20 (2020).

	30. 	Yingzi, W. & Mingyang, Z. Composite rules selection using reinforcement learning for dynamic job-shop scheduling robotics. In
2004 IEEE Conference on Automation and Mechatmnics, vol. 2, 1083–1088 (2004).

	31. 	Luo, S., Zhang, L. & Fan, Y. Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement
learning. IEEE Trans. Autom. Sci. Eng. 19, 3020–3038. https://​doi.​org/​10.​1109/​TASE.​2021.​31047​16 (2021).

	32. 	Mouelhi-Chibani, W. & Pierreval, H. Training a neural network to select dispatching rules in real time. Comput. Ind. Eng. 58,
249–256. https://​doi.​org/​10.​1016/j.​cie.​2009.​03.​008 (2010).

	33. 	Song, W. et al. Flexible job-shop scheduling via graph neural network and deep reinforcement learning. IEEE Trans. Ind. Inform.
19, 1600–1610. https://​doi.​org/​10.​1109/​TII.​2022.​31897​25 (2022).

	34. 	Chen, X., Hao, X. C., Lin, H. W. et al. Rule driven multi objective dynamic scheduling by data envelopment analysis and
reinforcement learning. In 2010 IEEE International Conference on Automation and Logistics, 396–401 (IEEE¸2010).

https://doi.org/10.1016/j.jmsy.2023.11.001
https://doi.org/10.1016/j.jmsy.2024.02.007
https://doi.org/10.3390/su14106264
https://doi.org/10.1080/00207540903524490
https://doi.org/10.1080/00207543.2011.631600
https://doi.org/10.1007/s10951-018-0572-2
https://doi.org/10.1007/s10951-018-0572-2
https://doi.org/10.1109/TEM.2017.2785774
https://doi.org/10.1007/BF02238804
https://doi.org/10.1016/j.swevo.2019.100632
https://doi.org/10.1016/j.apm.2009.09.002
https://doi.org/10.1016/j.swevo.2024.101485
https://doi.org/10.1016/j.cie.2017.03.006
https://doi.org/10.1016/j.asoc.2017.04.062
https://doi.org/10.1016/j.cie.2019.03.022
https://doi.org/10.1016/j.ejor.2019.11.016
https://doi.org/10.1016/j.jmsy.2023.08.008
https://doi.org/10.1016/j.engappai.2023.107729
https://doi.org/10.1016/j.engappai.2023.107729
https://doi.org/10.1016/j.cie.2020.106799
https://doi.org/10.1080/00207543.2022.2135629
https://doi.org/10.1016/j.knosys.2022.110083
https://doi.org/10.24200/SCI.2021.55250.4130
https://doi.org/10.1016/j.asoc.2023.110596
https://doi.org/10.1016/j.ejor.2022.09.006
https://doi.org/10.1016/j.ejor.2022.09.006
https://doi.org/10.1007/s10696-023-09517-7
https://doi.org/10.1109/TEM.2021.3103108
https://doi.org/10.1109/ACCESS.2020.2987820
https://doi.org/10.1109/TASE.2021.3104716
https://doi.org/10.1016/j.cie.2009.03.008
https://doi.org/10.1109/TII.2022.3189725

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

	35. 	Shahrabi, J., Adibi, M. A. & Mahootchi, M. A reinforcement learning approach to parameter estimation in dynamic job shop
scheduling. Comput. Ind. Eng. 110, 75–82. https://​doi.​org/​10.​1016/j.​cie.​2017.​05.​026 (2017).

	36. 	Wang, Y. F. Adaptive job shop scheduling strategy based on weighted Q-learning algorithm. J. Intell Manuf. 31, 417–432. https://​
doi.​org/​10.​1007/​s10845-​018-​1454-3 (2020).

	37. 	Shiue, Y. R., Lee, K. C. & Su, C. T. Real-time scheduling for a smart factory using a reinforcement learning approach. Comput. Ind.
Eng. 125, 604–614. https://​doi.​org/​10.​1016/j.​cie.​2018.​03.​039 (2018).

	38. 	Che, G. et al. A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system
in integrated iron and steel plants. Appl. Energy 345, 121332. https://​doi.​org/​10.​1016/j.​apene​rgy.​2023.​121332 (2023).

	39. 	Yuan, M. et al. A multi-agent double deep-Q-network based on state machine and event stream for flexible job shop scheduling
problem. Adv. Eng. Inform. 58, 102230. https://​doi.​org/​10.​1016/j.​aei.​2023.​102230 (2023).

	40. 	Bedotti, A., Pastori, M. & Casoli, P. Modelling and energy comparison of system layouts for a hydraulic excavator. Energy Procedia
148, 26–33. https://​doi.​org/​10.​1016/j.​egypro.​2018.​08.​015 (2018).

	41. 	Xu, Z. et al. Energy improvement of fineblanking press by valve-pump combined controlled hydraulic system with multiple
accumulators. J. Clean. Prod. 257, 120505. https://​doi.​org/​10.​1016/j.​jclep​ro.​2020.​120505 (2020).

	42. 	Moslehi, G. & Mahnam, M. A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm
optimization and local search. Int. J. Prod. Econ. 129, 14–22. https://​doi.​org/​10.​1016/j.​ijpe.​2010.​08.​004 (2011).

	43. 	Parveen, S. & Ullah, H. Review on job-shop and flow-shop scheduling using. J. Mech. Eng. 41, 130–146. https://​doi.​org/​10.​3329/​
jme.​v41i2.​7508 (2010).

	44. 	Framinan, J. M., Perez-Gonzalez, P. & Fernandez-Viagas, V. Deterministic assembly scheduling problems: A review and
classification of concurrent-type scheduling models and solution procedures. Eur. J. Oper. Res. 273, 401–417. https://​doi.​org/​10.​
1016/j.​ejor.​2018.​04.​033 (2019).

	45. 	Loukil, T., Teghem, J. & Tuyttens, D. Solving multi-objective production scheduling problems using metaheuristics. Eur. J. Oper.
Res. 161, 42–61. https://​doi.​org/​10.​1016/j.​ejor.​2003.​08.​029 (2005).

	46. 	Panwalkar, S. S. & Iskander, W. A survey of scheduling rules. Oper. Res. 25, 45–61 (1977).
	47. 	Watkins, C. J. C. H. & Dayan, P. Q-learning. Mach. Learn. 8, 279–292 (1992).
	48. 	Mnih, V., Kavukcuoglu, K., Silver, D. et al. Playing atari with deep reinforcement learning. arXiv preprint https://​arxiv.​org/​abs/​

1312.​5602 (2013).
	49. 	Liu, K. et al. SynerFill: A synergistic RGB-D image inpainting network via fast Fourier convolutions. IEEE Trans. Intell. Veh. 9,

69–78. https://​doi.​org/​10.​1109/​TIV.​2023.​33262​36 (2023).
	50. 	Arulkumaran, K., Deisenroth, M. P., Brundage, M. et al. A brief survey of deep reinforcement learning. arXiv preprint https://​

arxiv.​org/​abs/​1708.​05866 (2017).
	51. 	Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction Vol. 20, 30148–4 (MIT Press, 2018).
	52. 	Tsitsiklis, J. N. & Van Roy, B. An analysis of temporal-difference learning with function approximation technical. (Rep.

LIDS-P-2322). Laboratory for Information and Decision Systems, Massachusetts Institute of Technology Report (1996).
	53. 	LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	54. 	Hinton, G. E., Osindero, S. & Teh, Y. W. A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006).
	55. 	He, K., Zhang, X., Ren, S. et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 770–778 (2016).
	56. 	Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in

Neural Information Processing Systems, vol. 25 (2012).
	57. 	Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In JMLR Workshop and

Conference Proceedings, 249–256 (2010).
	58. 	Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn.

Res. 12, 2121–2159 (2011).
	59. 	Kacem, I., Hammadi, S. & Borne, P. Pareto-optimality approach for flexible job-shop scheduling problems: Hybridization of

evolutionary algorithms and fuzzy logic. Math. Comput. Simul. 60, 245–276. https://​doi.​org/​10.​1016/​S0378-​4754(02)​00019-8
(2002).

	60. 	Xing, L. N., Chen, Y. W. & Yang, K. W. Multi-objective flexible job shop schedule: Design and evaluation by simulation modeling.
Appl. Soft Comput. 9, 362–376. https://​doi.​org/​10.​1016/j.​asoc.​2008.​04.​013 (2009).

	61. 	Li, J., Pan, Q. & Liang, Y. C. An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems.
Comput. Ind. Eng. 59, 647–662. https://​doi.​org/​10.​1016/j.​cie.​2010.​07.​014 (2010).

	62. 	Jiménez, Y. M. A generic multi-agent reinforcement learning approach for scheduling problems. PhD, Vrije Universiteit Brussel,
128 (2012).

	63. 	Qin, Z., Johnson, D. & Lu, Y. Dynamic production scheduling towards self-organizing mass personalization: A multi-agent dueling
deep reinforcement learning approach. J. Comput. Syst. 68, 242–257. https://​doi.​org/​10.​1016/j.​jmsy.​2023.​03.​003 (2023).

	64. 	Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 41, 157–183 (1993).
	65. 	Gao, J., Sun, L. & Gen, M. A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems.

Comput. Oper. Res. 35(9), 2892–2907. https://​doi.​org/​10.​1016/j.​cor.​2007.​01.​001 (2008).
	66. 	Mastrolilli, M. & Gambardella, L. M. Effective neighbourhood functions for the flexible job shop problem. J. Sched. 3, 3–20. https://​

doi.​org/​10.​1002/​(SICI)​1099-​1425 (2000).
	67. 	Sun, J. et al. A hybrid many-objective evolutionary algorithm for flexible job-shop scheduling problem with transportation and

setup times. Comput. Oper. Res. 132, 105263. https://​doi.​org/​10.​1016/j.​cor.​2021.​105263 (2021).
	68. 	Reddy, M. B. S. S. et al. An effective hybrid multi objective evolutionary algorithm for solving real time event in flexible job shop

scheduling problem. Measurement 114, 78–90. https://​doi.​org/​10.​1016/j.​measu​rement.​2017.​09.​022 (2018).
	69. 	Huang, S. et al. Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization.

SpringerPlus 5, 1–22. https://​doi.​org/​10.​1186/​s40064-​016-​3054-z (2016).
	70. 	Aydin, M. E. & Öztemel, E. Dynamic job-shop scheduling using reinforcement learning agents. Robot. Auton. Syst. 33, 169–178.

https://​doi.​org/​10.​1016/​S0921-​8890(00)​00087-7 (2000).
	71. 	Li, X., Wang, J. & Sawhney, R. Reinforcement learning for joint pricing, lead-time and scheduling decisions in make-to-order

systems. Eur. J. Oper. Res. 221, 99–109. https://​doi.​org/​10.​1016/j.​ejor.​2012.​03.​020 (2012).
	72. 	Wang, Y. F. Adaptive job shop scheduling strategy based on weighted Q-learning algorithm. J. Intell. Manuf. 31, 417–432. https://​

doi.​org/​10.​1007/​s10845-​018-​1454-3 (2020).

Acknowledgements
This research was funded by the Supported by the Natural Science Foundation of Shandong Province (No.
ZR202103070107) and the National Natural Science Foundation of China (52234005).

https://doi.org/10.1016/j.cie.2017.05.026
https://doi.org/10.1007/s10845-018-1454-3
https://doi.org/10.1007/s10845-018-1454-3
https://doi.org/10.1016/j.cie.2018.03.039
https://doi.org/10.1016/j.apenergy.2023.121332
https://doi.org/10.1016/j.aei.2023.102230
https://doi.org/10.1016/j.egypro.2018.08.015
https://doi.org/10.1016/j.jclepro.2020.120505
https://doi.org/10.1016/j.ijpe.2010.08.004
https://doi.org/10.3329/jme.v41i2.7508
https://doi.org/10.3329/jme.v41i2.7508
https://doi.org/10.1016/j.ejor.2018.04.033
https://doi.org/10.1016/j.ejor.2018.04.033
https://doi.org/10.1016/j.ejor.2003.08.029
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://doi.org/10.1109/TIV.2023.3326236
https://arxiv.org/abs/1708.05866
https://arxiv.org/abs/1708.05866
https://doi.org/10.1016/S0378-4754(02)00019-8
https://doi.org/10.1016/j.asoc.2008.04.013
https://doi.org/10.1016/j.cie.2010.07.014
https://doi.org/10.1016/j.jmsy.2023.03.003
https://doi.org/10.1016/j.cor.2007.01.001
https://doi.org/10.1002/(SICI)1099-1425
https://doi.org/10.1002/(SICI)1099-1425
https://doi.org/10.1016/j.cor.2021.105263
https://doi.org/10.1016/j.measurement.2017.09.022
https://doi.org/10.1186/s40064-016-3054-z
https://doi.org/10.1016/S0921-8890(00)00087-7
https://doi.org/10.1016/j.ejor.2012.03.020
https://doi.org/10.1007/s10845-018-1454-3
https://doi.org/10.1007/s10845-018-1454-3

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:9047 | https://doi.org/10.1038/s41598-024-59414-8

www.nature.com/scientificreports/

Author contributions
Conceptualization, X.W.; Methodology, X.W and M.L.; Software, X.W and C.Z.; Validation, M.L. and P.Z.; formal
analysis, X.W.; data curation, X.W.; Resources, C.Z.; visualization, S.Y. All authors have reviewed and agreed to
the published version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to P.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A novel method-based reinforcement learning with deep temporal difference network for flexible double shop scheduling problem
	Related work
	Flexible double shop scheduling problem
	DRL scheduling problem

	Problem formulation
	Mathematical model
	Assembly restraint level definition
	Makespan

	Transformation of scheduling problem
	Definition of state-space
	Definition of action space
	Definition of rewards

	Proposed methods for the FDSSP
	Related work of RL
	Markov decision processes (MDP)
	Temporal difference algorithm
	Deep learning model
	Deep neural network
	Activation function
	Optimization function

	Exploration and exploitation
	Deep temporal difference network model

	Experiment study
	Small scale FDSSP
	Comparisons with the proposed dispatching rules
	Large-scale instances of FDSSP
	Case study: production scheduling problem

	Conclusion
	Limitations and future work

	References
	Acknowledgements

