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Streamlining neuroradiology 
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Radiological imaging to examine intracranial blood vessels is critical for preoperative planning and 
postoperative follow-up. Automated segmentation of cerebrovascular anatomy from Time-Of-
Flight Magnetic Resonance Angiography (TOF-MRA) can provide radiologists with a more detailed 
and precise view of these vessels. This paper introduces a domain generalized artificial intelligence 
(AI) solution for volumetric monitoring of cerebrovascular structures from multi-center MRAs. Our 
approach utilizes a multi-task deep convolutional neural network (CNN) with a topology-aware loss 
function to learn voxel-wise segmentation of the cerebrovascular tree. We use Decorrelation Loss 
to achieve domain regularization for the encoder network and auxiliary tasks to provide additional 
regularization and enable the encoder to learn higher-level intermediate representations for improved 
performance. We compare our method to six state-of-the-art 3D vessel segmentation methods 
using retrospective TOF-MRA datasets from multiple private and public data sources scanned at six 
hospitals, with and without vascular pathologies. The proposed model achieved the best scores in all 
the qualitative performance measures. Furthermore, we have developed an AI-assisted Graphical User 
Interface (GUI) based on our research to assist radiologists in their daily work and establish a more 
efficient work process that saves time.

The use of radiological imaging is critical in the diagnosis and comprehension of various vascular diseases and 
neurological disorders that affect the intracranial cerebrovascular structure, including intracranial aneurysms, 
arteriosclerosis, and arteriovenous malformations. Additionally, such imaging is crucial for post-operative follow-
up and pre-operative planning. Noninvasive medical imaging techniques, such as Time-Of-Flight Magnetic 
Resonance Angiography (TOF-MRA)1, are frequently used to obtain image data of blood vessels without the 
use of contrast agents. Inspection of the intracranial cerebrovascular structure with 3D TOF-MRA images is 
most commonly performed either by manual slice-by-slice inspection of the 3D volume image or by Maximum 
Intensity Projection (MIP)2. However, manual volume measurement of vascular anomalies related to pre and 
post-operative planning and evaluation is a tedious task that is subject to interobserver variability, human error, 
and bias. The cerebrovascular structure from TOF-MRA can be visualized by 3D renderings of computerized 
segmentation of the structure. This is an appealing alternative for facilitating time-critical diagnosis of vessel 
abnormalities. Inter-subject variation in cerebrovascular topology and complex geometry, and data-specific 
hazards like noise, sparsity, and artifacts make computerized segmentation extremely  difficult3.

Various vessel segmentation methods have been proposed in the literature, including model-driven or classical 
image analysis-based techniques such as simple thresholding-based, region growing, multiscale vesselness filter-
ing, and statistical shape modeling. However, these models face difficulties in producing acceptable segmenta-
tions, often requiring feature engineering and manual parameter selection. To overcome these limitations, recent 
studies have shown that Deep Convolutional Neural Networks (CNNs) can achieve better vessel segmentation 
accuracy by utilizing contextual information and high-level feature extraction  capabilities4,5. Encoder-decoder 
structures based on CNNs have gained attention for 2D and 3D segmentation of the cerebrovascular structure 
from TOF-MRA images.  Uception6,  DeepVesselNet7, BRAVE-NET4,  JointVesselNet8, and VC-Net9 are examples 
of such networks proposed for 3D volumetric cerebrovascular segmentation from TOF-MRA images. Uception 
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uses Inception modules within the U-Net structure, while DeepVessel-Net approximates the effect of 3D kernels 
in multiple orthogonal planes by using 2-D cross-hair filters to reduce memory and computational complexity. 
BRAVE-NET incorporates deep supervision and context aggregation within the baseline U-Net10 architecture 
to preserve small vessel structures. JointVesselNet and VC-Net are similar networks that propose using both 2D 
and 3D U-Nets, which are jointly trained on 3D volumetric patches and 2D MIP patches of the corresponding 
3D patch.

Deep CNN-based segmentation methods have made significant progress, but they still face challenges in 
accurately segmenting curvilinear and tubular structures such as vascular structures. In Fig. 1, the red segmen-
tation shows good performance in capturing the topological structure, although it is not  perfect11. On the other 
hand, green segmentation performs well in segmenting large vessels, but it struggles with small and thin vessels. 
Given the preference for topology, connectivity, and structures, red segmentation is preferred. However, the 
traditional Dice score is not a reliable quality measure for curvilinear and tubular structure segmentation since 
it evaluates similar values for both segmentation results (0.67). Despite this, it has become a common practice 
in the literature to use the Dice score as the loss function to train deep segmentation models. This practice can 
induce a strong bias towards accurately segmenting large vessels rather than preserving global network con-
nectivity, leading to suboptimal results.

Along with the aforementioned issue, it has been shown that data-driven approaches fail to generalize well 
when applied to multi-center datasets. MRA images coming from different centers have inter-scanner variability 
(Fig. 2), which affects the downstream voxel-based analysis. Combining multi-center imaging data is challeng-
ing as there is no standardization in image acquisition protocols, software, and scanner hardware (scanner drift, 
scanner upgrade, scanner strength, etc.). Another important concern is variability in the sample demographics, 
which should be carefully managed when combining data from multi-sites. Due to such issues, a large difference 
between training and test data (coming from different centers) is observed and often termed “domain shift”12. 
Several methods have been proposed in the literature to tackle the  issue12–14. We can broadly divide it into two 
groups viz. using massive data preprocessing or improving models’ generalization capacity through improved 
training strategies to handle domain shifts. Data preprocessing-based techniques use multiple sequential steps 
to map the multi-center neuroimaging datasets into a common reference space. It typically starts by selecting a 
reference image or an atlas image and normalizing the intensities of all the other images using some linear histo-
gram matching method as proposed by Nyul et al.15. Finally, the images are spatially normalized into a common 
isotopic atlas reference space such as Montreal Neurological Institute (MNI) reference space. Denoising, bias 
field correction, etc. are sometimes also performed before registration. Although this is the most commonly used 
technique in practice it is very time-consuming and needs a manual selection of parameters as well as reference 
images, which makes it unsuited for real application scenarios. In the recent literature, it is referred to as MRI 

Figure 1.  (a) Shows TOF-MRA patch (the vessels are shown as hyperintensities). (b) shows manual 
segmentation (in magenta). In (c,d), segmentations generated from two deep learning-based models are shown 
in green (Dice score 0.672) and red (Dice score 0.674).

Figure 2.  The overall intensity histogram distributions of the MRA images from five sites.
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harmonization, and methods such as Unlearning dataset bias for multi-center MRI have been addressed through 
network training strategies.

One of the most popular methods to achieve it is DANN (Domain Adversarial training of Neural Networks)16 
which uses a gradient reversal layer to adversarially learn domain information to maximize performance on 
the main task while removing domain information. Inspired by DANN Dinsdale et al.17 proposed a deep learn-
ing-based training scheme that creates scanner-invariant features for multi-site MRI using an iterative update 
approach. For diffusion MRI, Moyer et al.18 use variational autoencoders to create scanner-invariant represen-
tations of the data. The generalized representations may then be used to recreate the input images so that they 
lose the correlation with the original collection site. Generative models, mostly based on deep learning such as 
Encoder-Decoder  networks10,  GANs19,20, variational  autoencoders18 have been employed to harmonize multi-site 
MRI data. Heuristic techniques and randomization methods such as early  stopping21, weight  decay22,  dropout23, 
and data  augmentation24 is also used for improving the models’ generalization. The domain adaptation-based 
approaches are limited by the fact that it requires iterative adversarial training and can not be achieved in a single 
step. In the case of Generative methods, generated “harmonized” images are hard to validate and require the 
active participation of experienced radiologists. Risks of unknown errors propagating through pipelines have 
the potential to alter the results of any completed analysis.

This paper addresses the aforementioned issues by presenting and evaluating a topology-aware learning strat-
egy with a Decorrelation Loss (DcL) for volumetric cerebrovascular segmentation from multi-center MRAs. The 
topology-guided learning involves training a multi-task deep CNN along with a topology-aware loss function 
proposed in Ref.3. While  clDice25 is also proposed for ensuring topological consistency, it relies on min- and 
max-pooling, which we found unsuitable for thick vessel structures, such as cerebral vessels, and specifically, the 
circle of Willis. In cases involving MRA data, this approach leads to the generation of erroneous and discontinu-
ous vessel centerlines. The primary task in the multi-task deep CNN focuses on learning voxel-wise segmenta-
tion of the cerebrovascular tree in parallel with two sub or auxiliary tasks. The auxiliary tasks are to (i) learn 
the distance from the voxels on the surface of the vascular tree by utilizing a distance transform and (ii) learn 
the vessel centerline. Recent  literature26 has shown that training a multi-task model with sub or auxiliary tasks 
boosts the performance of the main task. In practice, this approach provides additional regularization and allows 
the encoder to learn more high-level intermediate representations. To diminish the effect of domain differences 
in the multi-center MRAs the encoder network of the proposed model is aimed to learn generalized features 
that the decoder network will use further. We propose to achieve this using a regularization network at the end 
of the encoder network, which acts as a domain-regularization for the encoder network. The advantage of the 
proposed approach is that it does not require an iterative adversarial training phase and can learn generalized 
features during the main training phase only.

The primary goal of this paper is to propose an end-to-end AI-based solution for enhanced monitoring of 
cerebrovascular structures. To achieve this, we addressed various aspects, including handling domain shifts in 
multi-center data and utilizing a loss function for better preservation of  topology3. Additionally, we developed 
a Graphical User Interface (GUI) that supports visualization and interactive annotation to assist radiologists in 
their daily work and establish a time-saving workflow. The GUI was implemented in Python and OpenGL within 
a zero-footprint application environment. This GUI can generate a 3D reconstruction of the cerebrovascular tree 
from an input 3D MRA scan, providing tools for semi-automated quantification of vascular pathologies from the 
MRA volume. Through experimental studies, we demonstrated that artificial intelligence (AI) technology can be 
seamlessly integrated into the clinical workflow to enhance efficiency and reduce medical costs. In addition to 
these contributions, we conducted rigorous testing, validation, and comparisons with state-of-the-art methods, 
both quantitatively and qualitatively. Our analysis also extended to evaluating the performance of the developed 
methods in terms of multi-center dataset generalization and pathology-preserving vessel segmentation.

Experiments and results
Dataset
Retrospective data with and without vascular pathologies were collected from multiple private and public data 
sources scanned at six different hospitals. We analyzed four publicly available datasets viz. “ITKTubeTK” (from 
CASILab, University of North Carolina at Chapel Hill (https:// public. kitwa re. com/ Wiki/ TubeTK/ Data), “HH” 
(from Hammersmith Hospital, Imperial College London), “Guys” (from Guy’s Hospital, London), and “IOP” 
(Institute of Psychiatry, King’s College London) contains TOF-MRA images of the brain from healthy subjects. 
We used another cohort of patients with at least one diagnosed Unruptured Intracranial Aneurysm (UIA) and 
cohorts of persons screened for UIAs because of a positive family history for aneurysms Subarachnoid Haem-
orrhage (aSAH) scanned at the University Medical Center (UMC), Utrecht. This brain TOF-MRA dataset was 
released by the “Aneurysm Detection And segMentation (ADAM)” Challenge organized in conjunction with 
MICCAI 2021. One in-house clinical TOF-MRA image dataset (prospective research project, approved by the 
local ethical committee) of Intracranial Aneurysm Remnant (IAR) named “UU-IAR” was collected from the 
Uppsala University hospital. Endovascular intervention was performed to remove a large portion of the aneu-
rysm. Parameters of the TOF imaging of each dataset are summarized in Table 1.

A total of 837 TOF-MRAs were collected from the aforementioned data sources as given in Table 1. Via 
manual inspection, we discarded 53 images due to poor image quality and finally, we left with 784 TOF-MRA 
images. We design experimenters to test the robustness of the proposed segmentation method in terms of 
the quantitative volumetric vessel segmentation performance along with its generalization capabilities across 
multi-site TOF-MRA datasets and preservation of the major vascular pathologies in the segmented volumetric 
representation of the vascular tree. Since UU-IAR and ADAM contain scans with pathologies, it is important 
to use samples from those two datasets in the test set. Also, the dataset is very diverse, with no set protocol 

https://public.kitware.com/Wiki/TubeTK/Data
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used for all of the scans. So, it would be perfect to use the ADAM dataset as the test data to analyze the model’s 
multiple-site generalizability.

Image annotation and dataset split
Manual voxel-wise vessel segmentation masks are publicly available for 54 subjects for the ITKTubeTK database. 
For the remaining five datasets, manual vessel segmentation masks are not provided. So, we follow a simple semi-
automatic pipeline based on thresholding and region-growing followed by a manual voxel-wise correction to 
generate a voxel-wise vessel-segmentation mask. For the initial segmentation of the vascular tree, we have used 
the popular region growing-based algorithm called Grow-Cut27 implemented in  3DSlicer28. The foreground 
seed regions on the vessels were generated using adaptive Otsu’s thresholding and the background regions were 
marked manually. After the initial segmentation performed by the semi-automatic pipeline, manual voxel-wise 
correction of the segmentation results was performed by the junior raters from our group. The Junior raters are 
experienced in neuroimage segmentation and were only permitted to mark images individually until their per-
formance reached the criteria of the gold standard by interacting with two expert radiologists from our research 
group. Using this semi-automatic pipeline we annotate the remaining 55 images from the ITKTubeTK dataset, 
and 50 images each from HH, IOP, and Guys. For UU-IAR and ADAM, all the images were manually annotated. 
For ADAM and UU-IAR manual segmentation masks for the pathologies viz. UIA and IAR are provided. Table 2 
summarizes the datasets and dataset splits with different parameters.

Experimental setup
Due to limited data and hardware resources, we pursued a patch-based training approach for our CNN models. 
We utilized a vessel centerline-based patch extraction  strategy3,4 to create a training dataset with patches con-
taining small vessels, as well as vessel crossovers and bifurcations for intermediate and large vessel  structures8,9. 
We generated corresponding homotopic skeletonization and distance transform volumes from the ground truth 
volumes. During inferencing, non-overlapping patches covering the entire TOF-MRA volume were used (nnU-
Net was applied with its default out-of-the-box configuration, automatically determining the patch size). We 
extracted 100 volumetric training patches of size 16× 128× 128 from each TOF-MRA volume in the training 
set, resulting in a training dataset of 22, 700 patches that was sufficient to train all models without overfitting. 

Table 1.  Detailed description of different datasets, scanning protocols, and number of CT images from 
different manufacturers.

Dataset Voxel size ( mm
3) Matrix size TR/TE (ms) Flip angle (degrees) Scanner # of images

ITKTubeTK 0.5× 0.5× 0.8 448× 448× 128 35/3.56 22 Siemens 3T 109

HH 0.5× 0.5× 0.8 512× 512× 100 16.72/5.75 16 Philips 3T 181

IOP 0.3× 0.3× 0.8 1024× 1024× 92 26/4.2 25 GE 1.5T 73

Guys 0.5× 0.5× 0.8 512× 512× 100 20/6.91 25 Philips 1.5T 316

UU-IAR 0.5× 0.7× 1 512×512×148–150 25/1.7 20 Philips 3T 46

ADAM 0.2–1 × 0.2-1 × 0.4–0.7 512-1024 × 512–1024 × 
64–180 17.58–45.2 / 2.28–10.36 Multiple values Philips 1, 1.5 or 3T 113

Table 2.  Demographics of the datasets used and data splits.

Dataset # images (train/val/test) #pathology (# images) Annotation (vessel/pathology)

ITKTubeTK 109 (78/9/22) 0 Manual/na

HH 50 (45/5/0) 0 semi-automatic/na

IOP 50 (36/4/10) 0 Semi-automatic/na

Guys 50 (45/5/0) 0 Semi-automatic/na

UU-IAR 46 (23/23/0) 40 (36) semi-automatic/manual

ADAM 0/0/113 129 (53) semi-automatic/manual

Dataset summary

Data split # Samples # Pathologies # Scanner

Train 227 23 3

Val 46 23 3

Test 145 113 3

Dataset summary

Data split # Samples # Pathologies # Scanner

Train 227 23 3

Val 46 23 3

Test 145 113 3
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TensorFlow:2.3 in Python was used to develop and train the CNN models, and experiments were conducted on 
the Google Cloud Platform with 32 vCPUs, 240 GB RAM, and two NVIDIA Tesla T4 GPUs.

Experimental results
Six state-of-the-art deep learning-based 3D vessel segmentation methods, namely 3D U-Net29,  Unception6, VC-
Net8,9, BRAVE-NET4, nnU-Net30, and DeepVessel-Net7, are compared with the proposed method. Vesselness 
filters, parametric intensity-based segmentation methods, or 2D CNN are not being considered as they have 
already been proven inferior when compared with 3D vessel segmentation methods in the  literature4,8,9. All 
models are trained with the same dataset split optimized with Adam (learning rate 10−4 ) until fully converged. 
Four evaluation metrics, namely Dice coefficient (Dice), Precision, and Average Surface Distance (ASD) imple-
mented in MedPy (https:// loli. github. io/ medpy/), along with the Topological Coincidence (TC) between the 
ground truth or the voxel-wise label map L and the predicted segmentation L̂ defined as,

are used for quantitative evaluation and comparison. Here C = {c|c ∈ Z
3
} represents a three-dimensional coor-

dinate set and each coordinate triplet corresponds to a voxel. ϕL denotes the homotopic skeletonization of L and 
δL represents morphological dilation of L (to reduce the impact of slight differences in vessel tracing).

For a fair comparison with respect to the domain generalization capability of the compared and the proposed 
models, we train them with and without the decorrelation loss reported in Fig. 3 on the holdout test-set from the 
ADAM dataset (113 subjects). To better understand the segmentation performance of the proposed segmentation 
model we report the comparative performance in Table 3. Here we did not use the decorrelation loss during the 
model training as we are interested in the core segmentation performance of the models. Table 3 gives the mean 
and standard deviation of the segmentation scores of all the models on both the validation and holdout test sets. 
p-values of the statistical significance test regarding the Topological Coincidence (TC) between the proposed 
method and the six methods being compared are also reported in Table 3. Figures 4 and 5 depict the qualitative 
segmentation outcomes for five subjects, demonstrating a comparison between the proposed method and six 
state-of-the-art techniques viz. BRAVE-NET, VC-Net, nnU-Net, DeepVessel-Net, Unception, and 3D U-Net. 
True positive, false negative, and false positive voxels are shown in blue, red, and green by comparing with the 
corresponding ground truth segmentation. The visual analysis of these figures reveals that the proposed method 
exhibits a notable reduction in false negatives and false positives in comparison to the alternative methods, which 
makes it clinically more acceptable.

AI-assisted graphical user interface
We extend our GUI-based segmentation tool from https:// github. com/ Fredr ikNys jo/ ichseg such that it can sup-
port interactive editing of the segmentation result of the proposed method. The GUI (see Fig. 6) is implemented 
in Python and OpenGL, can read DICOM data in addition to NIfTI and VTK volume files, and provides draw-
ing tools for manual and semi-automatic segmentation and annotation. To extend the GUI to be able to apply 
trained models on loaded images, we store the required metadata (Anaconda environment name and other 
information) about each model in a single JSON file, which is read when the application is initialized. When the 
user selects a model from the GUI to generate an automatic segmentation, a separate process is launched and the 
corresponding Anaconda environment for the model is activated, after which the model is executed. Afterward, 
the generated segmentation mask is read back into the GUI for editing.

Discussion
In this paper, we developed an AI-assisted clinical decision support system for the inspection of the intracranial 
cerebrovascular structure. To be a clinically feasible solution it should be robust and easy to use. The robust-
ness of the developed system is studied in terms of its generalizability with respect to multi-center datasets. As 
evident from the experimental results, it can be observed that the proposed model achieved the best scores in 
all the qualitative performance measures. The proposed model beats its immediate competitor (BRAVE-NET) 

(1)TC =

∑
c∈C ϕL̂(c) · δL(c)+

∑
c∈C δL̂(c) · ϕL(c)+ ǫ∑

c∈C ϕL̂(c)+
∑

c∈C ϕL(c)+ ǫ
,

Table 3.  Quantitative performance comparison of different models on both the validation and the hold-out 
test sets.

Validation Test

# Para. ↓ p-valueDice ↑ TC ↑ ASD ↓ Dice ↑ TC ↑ ASD ↓

3D U-Net 0.71 ± 0.06 0.78 ± 0.14 1.65 ± 0.28 0.69 ± 0.02 0.75 ± 0.12 2.34 ± 0.31 ∼ 6 M < 0.0001

Unception 0.72 ± 0.13 0.77 ± 0.11 1.63 ± 0.21 0.69 ± 0.01 0.71 ± 0.13 2.31 ± 0.35 ∼ 9 M < 0.0001

VC-Net 0.78± 0.11 0.84 ± 0.13 1.10± 0.19 0.72 ± 0.02 0.76 ± 0.11 1.69 ± 0.45 ∼ 24 M < 0.0001

BRAVE-NET 0.77 ± 0.08 0.82 ± 0.12 1.12 ± 0.21 0.71 ± 0.01 0.80 ± 0.09 1.72 ± 0.23 ∼ 10 M < 0.001

nnU-Net 0.76 ± 0.11 0.81 ± 0.15 1.15 ± 0.23 0.71 ± 0.02 0.77 ± 0.10 1.42 ± 0.25 ∼ 6 M < 0.0001

DeepVessel-Net 0.68 ± 0.12 0.75 ± 0.09 2.52 ± 0.35 0.65 ± 0.04 0.69 ± 0.18 2.39 ± 0.41 ∼ 0.06 M < 0.00001

Proposed 0.77 ± 0.10 0.90± 0.11 1.10± 0.15 0.74 ± 0.01 0.87 ± 0.01 1.11± 0.26 ∼ 8 M –

https://loli.github.io/medpy/
https://github.com/FredrikNysjo/ichseg
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with around 2% gain in the Dice score and around 6% gain in the Topological Coincidence (Table 3). This means 
that the proposed method can preserve the topological structure along with very accurately segmenting the 
vascular structure (Fig. 3).

Multi-center dataset generalization
To better understand and demonstrate the effect of the decorrelation loss in the training process we present 
Fig. 7. This figure shows the learning curves for the model training and validation and model generalization 
during the supervised learning. As observed from Fig. 7a,e initially the MRA scans coming from the five dif-
ferent sites (ITKTubeTK, IOP, UU-IAR, HH, and Guys) form well-separated clusters. The model without the 
decorrelation loss learns how to segment the input images also encoding their source domain. Thus using the 
decorrelation loss we are able to remove scanner information during the course of the training process. This 
forces the model to learn how to segment the image while maximally reducing the domain bias as the training 
progress as observed by Fig. 7a–d. This is confirmed by the scanner classification accuracy being almost random 
chance after unlearning has been completed Fig. 7e. It can also be seen from the learning curves given in Fig. 7e 
that unlearning does not substantially decrease the performance on the main task i.e. vessel segmentation. The 
plot given in 7d can be considered as the best possible estimation of the performance of decorrelation loss as 
overfitting is observed after the 30th epoch.

Figure 3.  Quantitative performance of different models with (“Model_Name_CC”) and without the 
decorrelation loss on ADAM dataset.
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Pathology preserving vessel segmentation
Another important aspect is how effectively the developed system can preserve the vascular pathologies in the 
3D modeling of the segmented cerebrovascular structure. We further quantitatively analyze this by measuring 
the overlap percentage between the segmented pathology volume generated by expert radiologists and the vessel 
segmentation generated by the proposed AI-based system. We compute the percentage of the voxels correctly 
preserved in the segmented cerebrovascular structure for the ADAM dataset, where aneurysms of different sizes 

Proposed

BRAVE-NET

VC-Net

nnU-Net

DeepVessel-Net

True Positive False Negative False Positive

Figure 4.  Qualitative segmentation results.
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are present. Fig. 8a plots the aneurysm volume (number of voxels) and its overlap percent with the segmented 
cerebrovascular structure generated by the proposed system. Qualitative representation of the aneurysm with 
the surrounding vessel structures along with the 2D views are given in Fig. 8b–e. It can be observed from Fig. 8a 
that the proposed vessel segmentation model can preserve the different vascular pathological conditions very 
well. It achieves more than 80% overlap in the case of small aneurysms which is even pretty hard for an expert 
radiologist to correctly detect from only the 2D slices.

Methods
The architecture of the multi-task deep CNN is illustrated in Fig. 9. It is composed of encoders and decoders, 
with a shared encoder and a partially shared main decoder. There are also exclusive decoding blocks for each of 
the related auxiliary tasks. Auxiliary tasks (T1 and T2) share some initial decoder blocks with the main task (M) 
but have their own decoders as well. Joint training, as proposed  in26, utilizes shared decoders to aid the main 
decoder in learning intermediate representations and sharing important feature characteristics. Each encoder 
block consists of two 3D convolution layers with ReLU nonlinearity and one 3D MIP (Maximum Intensity Pro-
jection) layer that reduces the spatial dimension of the response map in half. Each decoder block of the main 
task contains one 3D RIP (Reverse Intensity Projection) layer, which uses the spatial location information from 
the corresponding encoder block to un-project the response map into twice the dimensions of the input along 
with two 3D convolution layers with ReLU nonlinearity. Residual and skip connections are employed within 
encoder and decoder blocks, as well as from the encoder to the decoder (main-task), to preserve small anatomical 

Unception

3D U-Net

True Positive False Negative False Positive

Figure 5.  Qualitative segmentation results. True positive, false negative and false positive voxels are shown in 
blue, red, and green by comparing with the corresponding ground truth segmentation.

Figure 6.  GUI for interactive editing of the automatic segmentation result of our proposed method.
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structures and ensure gradient flow. The network utilizes 3× 3× 3 convolution kernels throughout and 2× 2× 2 
projection windows for the MIP and RIP layers.

To train three different tasks with distinct optimization objectives, three distinct loss functions viz. θ1 , θ2 , and 
θ3 are utilized. Let’s consider a 3D coordinate set C = {c|c ∈ Z

3
} , where each triplet of coordinates corresponds 

to a voxel. We define a 3D TOF-MRA image X and the corresponding voxel-wise label map L of dimensions 
D ×W ×H such that X : C → R and L : C → {0, 1} . The values of X and L at position c are represented by X(c) 
and L(c) respectively. The predictions for the two auxiliary tasks are denoted as Ĵ1 and Ĵ2 , whereas the prediction 
for the main task is denoted as L̂ . To calculate the loss θ3 , the label map L is directly used. On the other hand, 
for computing loss θ1 and θ2 , we generate the distance transform and skeleton maps from L. To compute the 
distance transform let us define the set of vessel voxels as V = {v|L(v) = 1} and the set of vessel surface voxels 
as S = {s|L(s) = 1, ∃u ∈ N (s), L(u) = 0} . Where N (s) represent the 6-neighbourhood of voxel s , and let u be a 
neighbourhood voxel with L(u) = 0 . Then, for each vessel voxel v ∈ V  we can determine its distance transform 
value by calculating the distance from the nearest surface voxel as D(v) = min∀s∈S ||v − s||2.

The loss function θ1 is defined as the smoothL1 loss, which is less affected by outliers and can prevent gradi-
ent explosions. This loss is expressed as, θ1 =

∑
∀v∈V smoothL1(D(v)− Ĵ1(v)) . Where smoothL1 is defined as,
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Figure 7.  Latent features generated by the encoder network during the training process are plotted in 2D after 
applying tSNE (t-distributed stochastic neighbor embedding) (a) after the first epoch, (b–d) after 10, 30, and 50 
epochs, (e) learning curves.

Figure 8.  (a) Aneurysm volume vs its overlap percent with the segmented cerebrovascular structure generated 
by the proposed system. (b–e) Qualitative representation of aneurysms with the surrounding vessel structures in 
3D and 2D views.
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The Topological Coincidence (TC) between L and Ĵ2 is quantified by the loss θ2 and can be defined as,

Here ϕY refers to the homotopic  skeletonization31 of L, while δL denotes morphological dilation of L to mitigate 
the effect of minor discrepancies in vessel tracking. It is worth noting that the computation of θ2 requires the 
prediction of both the primary task ( ̂L ) and its own output ( ̂J2 ), which serves as a form of regularization for the 
primary task. To optimize the primary task, we minimize the voxel-wise soft Dice  loss29 between L and L̂ across 
all voxels, as follows,

The proposed model includes a regularization network as its third component, consisting of an average pooling 
layer, two fully connected layers, and a softmax layer. The network takes latent features from the encoder and 
produces category-wise predictions, which in this case correspond to the input’s domain prediction. During train-
ing, we observed that the model without the regularization network learned to segment the input images while 
encoding their source domain, leading to overfitting and a domain bias that resulted in decreased segmentation 
performance on data from unseen domains. To address this issue, we introduced an auxiliary loss term called 
Decorrelation Loss (DcL) to reduce the domain bias during training. The DcL minimizes the Pearson correla-
tion coefficient between the actual and predicted domain labels, confusing the model about the dataset domains 
and forcing it to learn how to segment the image while minimizing the domain bias. For a given input MRA 

smoothL1(z) =

{
0.5z2/β if z < β

|z| − 0.5β otherwise.

(2)θ2 = 1−

∑
c∈C Ĵ2(c) · δL(c)+

∑
c∈C δL̂(c) · ϕL(c)+ ǫ

∑
c∈C T̂2(c)+

∑
c∈C ϕL(c)+ ǫ

,

(3)θ3 = 1−
2
∑

c∈C L(c) · L̂(c)+ ǫ
∑

c∈C L(c)+
∑

c∈C L̂(c)+ ǫ
.
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Figure 9.  Model architecture.
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volume xi ∈ X , the domain regularization network generates an output vector Pi = (pi1, pi2, . . . , pin) : pij = [0, 1] 
representing the probability of the input MRA volume being in one of the n domains. The ground truth domain 
labeling is represented by Di = (di1, di2, . . . , din) : dij = [0, 1] as a one-hot encoded vector. The Decorrelation 
Loss (DcL) is calculated as,

where pij  and dij  represent the mean values of vectors Pi and Di respectively.
“All methods were carried out in accordance with relevant guidelines and regulations and informed consent 

was obtained from all subjects and/or their legal guardian(s).”

Data availability
Five datasets viz. “ITKTubeTK” (https:// public. kitwa re. com/ Wiki/ TubeTK/ Data), “HH” (https:// brain- devel 
opment. org/ ixi- datas et/), “Guys” (https:// brain- devel opment. org/ ixi- datas et/), “IOP” (https:// brain- devel opment. 
org/ ixi- datas et/), and ADAM (https:// adam. isi. uu. nl/) are publicly available from the given sources. The current 
ethics approval of the dataset “UU-IAR” does not allow sharing of the original neuroimaging data.
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