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Development and validation 
of a smartwatch algorithm 
for differentiating physical activity 
intensity in health monitoring
Daixi Chen 1,2, Yuchen Du 2, Yuan Liu 3, Jun Hong 3, Xiaojian Yin 4, Zhuoting Zhu 5, 
Jingjing Wang 2, Junyao Zhang 5, Jun Chen 2, Bo Zhang 2, Linlin Du 2, Jinliuxing Yang 2, 
Xiangui He 1,2* & Xun Xu 1,2*

To develop and validate a machine learning based algorithm to estimate physical activity (PA) 
intensity using the smartwatch with the capacity to record PA and determine outdoor state. Two 
groups of participants, including 24 adults (13 males) and 18 children (9 boys), completed a sequential 
activity trial. During each trial, participants wore a smartwatch, and energy expenditure was 
measured using indirect calorimetry as gold standard. The support vector machine algorithm and 
the least squares regression model were applied for the metabolic equivalent (MET) estimation using 
raw data derived from the smartwatch. Exercise intensity was categorized based on MET values into 
sedentary activity (SED), light activity (LPA), moderate activity (MPA), and vigorous activity (VPA). 
The classification accuracy was evaluated using area under the ROC curve (AUC). The METs estimation 
accuracy were assessed via the mean absolute error (MAE), the correlation coefficient, Bland–Altman 
plots, and intraclass correlation (ICC). A total of 24 adults aged 21–34 years and 18 children aged 9–13 
years participated in the study, yielding 1790 and 1246 data points for adults and children respectively 
for model building and validation. For adults, the AUC for classifying SED, MVPA, and VPA were 0.96, 
0.88, and 0.86, respectively. The MAE between true METs and estimated METs was 0.75 METs. The 
correlation coefficient and ICC were 0.87 (p < 0.001) and 0.89, respectively. For children, comparable 
levels of accuracy were demonstrated, with the AUC for SED, MVPA, and VPA being 0.98, 0.89, and 
0.85, respectively. The MAE between true METs and estimated METs was 0.80 METs. The correlation 
coefficient and ICC were 0.79 (p < 0.001) and 0.84, respectively. The developed model successfully 
estimated PA intensity with high accuracy in both adults and children. The application of this model 
enables independent investigation of PA intensity, facilitating research in health monitoring and 
potentially in areas such as myopia prevention and control.
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SED  Sedentary activity
LPA  Light activity
MPA  Moderate activity
VPA  Vigorous activity
MVPA  Moderate and vigorous activity
ROC  Receiver operating characteristic
AUC   Area under the curve
MAE  Mean absolute error
ICC  Intraclass correlation
IQR  Interquartile range
RMSE  Root mean square error
BMI  Body mass index
LoA  Limit of agreement

Myopia is the most common eye condition worldwide, is most often characterized by a blurring of objects viewed 
at a distance. This blurring is typically a result of an abnormal elongation of the eyeball, causing the refractive 
image formed by the cornea and the lens to fall in front of the retina, rather than directly on  it1,2. Generally, 
myopia is commonly defined as a spherical equivalent (SE) ≤ − 0.50 diopters (D)3. Recently, considerable attention 
has been given to the protective role of outdoor time in the onset of  myopia4–6. However, the impact of physical 
activity (PA) on myopia remains a subject of debate due to the confounding effects of time spent  outdoors7–12. 
Consequently, an device-based measurement is needed to quantify PA independently of outdoor time.

Although various devices like accelerometers are available for physical activity (PA) assessment, they often fail 
to accurately differentiate between indoor and outdoor activity  states13,14. Our smartwatch technology innova-
tively integrates light intensity sensing with triaxial accelerometer data, enabling more precise differentiation. Our 
team has developed an algorithm that segments indoor and outdoor states based on raw data from  smartwatch15. 
This study aims to develop a model for segmenting and estimating the intensity of PA. By combining the algo-
rithms for distinguishing indoor and outdoor states with the PA segmentation developed in this study, it is pos-
sible to differentiate between indoor and outdoor PA and intensities. This capability is crucial for understanding 
the relationship between PA and myopia and holds significant value for broader health monitoring research.

In recent years, machine learning (ML) techniques have been increasingly applied in health monitoring, 
including the assessment of PA  levels16–18. These techniques have demonstrated significant potential in extract-
ing meaningful insights from complex health data, leading to more accurate and device-based measurements 
in various health-related research  fields19,20. Among the various ML algorithms that have been explored for the 
segmentation of PA from raw accelerometer data, the support vector machine (SVM) algorithm stands out for 
its application in our  study21,22. We intend to utilize SVM due to its suitability for segmenting PA, benefiting 
from its robust performance in both binary and multi-class  problems16–18. This is supported by its capability to 
handle large datasets effectively and its versatility in managing linear and non-linear data structures. The kernel 
functions of SVM, which facilitate linear separation in higher-dimensional space, are particularly advantageous 
for dealing with the high-dimensional data encountered in our  domain23. Additionally, a review of 19 studies 
assessing the accuracy of machine learning algorithms in classifying PA indicated that SVM outperformed other 
techniques such as Artificial Neural Networks (ANN), Decision Trees (DT), and Naive Bayes (NB). Moreover, 
SVM was identified as the most frequently employed ML algorithm in the studies included in the  review18.

In this study, we aim to apply the ML algorithms to develop a model for classifying and estimating PA in 
young adults and children with information from participants and PA data of our smartwatch. Meanwhile, the 
accuracy and agreement performance of the model was validated.

Methods
Participants
Two groups of participants were recruited for the study, including 24 adults aged 21–34 years and 18 children 
aged 9–13 years. Among the participants, there were 13 (54.2%) adult males and 9 (50.0%) male children. Sub-
jects were excluded if any medical condition that may inhibit physical activity or affect metabolic rate, such as 
cardiovascular disease, metabolic disorder, skeletal motor system disease, and so on. For children, the subjects 
older than 13 years were excluded. All the participants must be able to exercise without assistance and complete 
the required activity trials. The study was conducted according to the tenets of the Declaration of Helsinki, with 
ethics approval from Institutional Review Board of Shanghai General Hospital, Shanghai Jiao Tong University. 
Informed consent was obtained from parents or guardians and verbal assent was obtained from children.

Study design
Personal information including age, height, weight, and birth were collected. BMI was calculated as weight (kg) 
divided by height squared  (m2). For the activity types, Welk suggested that the activities design for accelerometry-
based calibration should include a variety of activity levels and emphasize the most common movements. Besides, 
the free-living activities were preferable to lab-based treadmill  movements24. Accordingly, the selected activities 
ranged from sedentary to vigorous intensity, included 7 usual types, and were conducted in living environment. 
The description of each activity is presented in Table 1. For adults, participants completed the whole 7 sequences 
of activities. For children, observing that some children exhibited more energy expenditure than anticipated when 
instructed to jog, combined with the consideration of their varied physical capabilities and adherence, we decided 
to eliminate jogging from the vigorous activities. Each participant performed the activities from sedentary to the 
most vigorous intensity in a standardized manner (Step 1 in Fig. 1). Each activity trial was conducted for 14 to 
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16 min, with data on the first 3 min and the last 1 min excluded from analysis. Before performing the activities, 
participants wore the smartwatch ‘Mumu’ on the wrist and equipped with the indirect calorimetry machine.

Smartwatch
Our team designed and developed a smartwatch which was equipped with a 3 axes accelerometer, a light sensor, 
and a GPS receiver (Fig. 2)25. The accelerometer consists of 3 axes that indicate the X, Y, and Z axes in space and 
through filtering, peak-valley detection, and removing interference, converts the data into counting steps, aver-
age of PA, and variance of PA. The light sensor samples luminance and ultraviolet intensity at 20-s intervals. The 

Table 1.  Description of each activity trial.

Activity type Intensity Description

Sitting Sedentary Seated in a chair at a desk and using mobile phones or reading books

Standing still Sedentary Standing quietly. Instructed not to move around

Slow walking Light Walking for pleasure, at a self-selected slow speed

Quick walking Moderate Walking for exercise, at a self-selected quick speed

Ascending and descending stairs Moderate Walking up and down stairs at a self-selected usual speed

Jogging Vigorous Jogging at a self-selected usual speed

Run/rope skipping Vigorous Running at a self-selected usual speed or jumping rope at moderate pace, 100–120 skips/
min, 2-foot skip

Figure 1.  Flowchart of study design. In step 1, the data of smartwatch and indirect calorimetry of adults and 
children were collected. In step 2, the support vector machine (SVM) algorithm and the least squares regression 
model were applied for the metabolic equivalent (MET) estimation. In step 3, two models were built and 
validated for the 2 testing groups.

Figure 2.  The construction of the smartwatch.
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built-in GPS receivers are used for receiving satellite signals and collecting data on the longitude and latitude 
of the location. The smart watch samples data once a minute. One piece of data consists of: time (year/month/
day/00:00:00), average of PA, variance of PA, count of steps, 3 data points of luminance (lx), 3 data points on 
ultraviolet light intensity, and wearing status. The above data were uploaded by the mobile terminal to a software 
platform, that was developed for collecting, analyzing, and counting the data.

Indirect calorimetry
Previous research often utilized metabolic equivalent (MET) values to estimate the intensity of PA, where one 
MET is defined as the amount of oxygen consumed while at rest, equivalent to 3.5 ml  O2 per kg body weight 
per  minute17,26,27. Several studies estimating PA consider device-based indirect calorimetry as the gold standard 
and categorize PA into three distinct types (SED: 0–1.49 METs; LPA: 1.50–2.99 METs; MPA: 3.00–5.99 METs; 
VPA: ≥ 6.00 METs)28–33. In our study, the METs were measured by a portable metabolic analyzer K5 (COSMED, 
Rome, Italy). The K5 consisted of a wearable miniaturized analyzer device and the attached mask. The mask 
was placed to cover the nose and mouth of participants for measuring the volume of inspired and expired air, 
and the analyzer system could pair the computer software for outputting the results. The device weighted about 
900 g, was worn on the back of participants during activity intensity measurement. Calibration of the K5 was 
conducted using standard gases (4%  CO2 and 16%  O2) before each test. The resting and exercise oxygen uptake 
was measured and the METs were derived by oxygen consumption of each activity dividing by REE. Evidence 
has been proved that the COSMED K5 can provide reliable and valid measures of metabolic variables over a 
range of PA  intensities34–36. Additionally, the COSMED has been used for accelerometer calibration protocols 
in different age of  participants37–40.

Data processing
The data were excluded for the training set and testing set if the smartwatch failed to record the PA information 
or if EE were not in a stable state. The measured METs by indirect calorimetry were set as gold standard for model 
building in training set and evaluation in testing set. Participants were randomly assigned into either the train-
ing set or the testing set at about a proportion of 70% and 30% in adults and children, respectively. The data of 
‘average of PA, ‘variance of PA, and ‘count of steps’ from the smartwatch, and gender, BMI were used to estimate 
METs. Average measured METs in each minute were calculated to match the smartwatch data.

For the ‘average of PA’ (PA_avg), it was computed from the acceleration values measured by the three-axis 
accelerometer, which samples data at a frequency of 2 times per second, resulting in 120 readings per minute. 
For each axis (x, y, z), we calculated the average maximum change in acceleration per minute. For instance, the 
calculation for the x-axis would be: PA_avg(x) = (x 2 − x 1) + (x 3 − x 2) + ⋯ + (x 120 − x 119)/119. This process was 
similarly conducted for the y and z axes. The final ‘average of PA’ value was determined as the maximum among 
these three axis values. For the ‘variance of PA’ (PA_s), after identifying the axis with the maximum average 
change in acceleration, we then calculated the variance of the acceleration changes relative to this average. The 
formula for this was: PA_s = ((x 2 − x 1) − PA_avg)2 + ((x 3 − x 2) − PA_avg)2 + ⋯ + ((x 120 − x 119) − PA_avg)2/119. 
Additionally, the smartwatch’s three-axis accelerometer automatically recorded the ‘count of steps’ based on the 
user’s physical activity.

Model building
This study initially classified the PA intensities into SED, LPA, and MVPA using the support vector machine 
(SVM) algorithm followed by METs estimated using a least squares regression model with measured METs. The 
SVM algorithm was adopted to solve the PA intensity classification problem. The data on ‘average of PA’, ‘variance 
of PA’, and ‘count of steps’ was primarily transferred into log-scale to be readily used for the following classifica-
tion and modelling. The SVM algorithm established a set of hyperplanes to separate the instances into different 
categories with respect to the PA intensity. The SVM model with a linear kernel was employ as the classification 
model. The SVM model was trained on the training set. During the training procedure, the grid-search strategy 
and the fivefold cross validation was used to automatically optimize the parameters of SVM. The performance 
of the learned model was validated in the test set. For instances of each PA intensity, the least squares regression 
was used to build a specific model to estimate METs of each instance. As a result, 3 models were learned for each 
PA intensity category. The estimated METs were eventually obtained through the models (Step 2 and 3 in Fig. 1).

Statistical analysis
Normality of data was assessed using a Shapiro–Wilk test. Significance level was set at p ≤ 0.05. The testing set 
were analyzed to evaluate the METs estimation model in adults and children. To evaluate the classification 
accuracy for discriminating between 2 populations, the estimated METs were set as binary variables by intensity 
categories of PA. The sensitivity, specificity, and the area under the ROC curve (AUC) were calculated. For the 
accuracy of estimated METs, the mean absolute error (MAE), the mean absolute percentage error (MAPE), and 
the root mean square error (RMSE) were employed. Additionally, Bland–Altman plots and intraclass correlation 
(ICC) were used to assess the agreement between true METs and the estimated METs. The relationship of the 
true METs and the estimated METs were evaluated by Spearman correlations. Data were analyzed using SPSS 
version 26.0 (SPSS, Inc., Chicago, IL, USA).

Ethics approval and consent to participate
The study was approved by the ethics committee of the Shanghai General Hospital.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9530  | https://doi.org/10.1038/s41598-024-59602-6

www.nature.com/scientificreports/

Consent for participation
Informed consent was obtained from parents or guardians of the children. Also informed consent was obtained 
from adult participants.

Results
Participants’ characteristics and activity trials
A total of 1790 and 1246 pieces of data for adults and children respectively were included for model building 
and validation. The body mass index (BMI) was 21.0 ± 2.9 kg·m−2 for adults and 20.2 ± 3.2 kg·m−2 for children 
(Table 2). The training set and testing set were similar in gender, age, height, weight, and BMI. The mean and 
SD of measured METs for the different type of PAs in all adults and children are displayed in Table 3. The PA 
intensity ranged from SED to VPA. According to the measured METs, the sitting and standing still trials were 
considered SED intensity; the slow walking trial was considered LPA intensity; MPA intensity consisted of 
ascending and descending stairs; and trials of jogging and run/rope skipping were taken for VPA. However, 
METs of some activity trials could not be categorized into one intensity range because of the massive individual 
variability in EE in each activity trial.

Accuracy of PA classification in testing set
Figure 3 provides the ROC curves of the algorithm for classifying different intensities of PA in adults and chil-
dren. In adults, the model showed excellent sensitivity and specificity for classifying the SED intensity (99.4% 
and 92.9%, respectively). For classifying MVPA and VPA, the model displayed good sensitivity (97.1% and 
84.6%, respectively) as well, while the specificity for classifying VPA (88.4%) was higher than that of MVPA 
(79.8%). When evaluating the accuracy of the model, the Youden indexes for classifying SED and LPA or above 
(0.92 and 0.92, respectively) were higher than that of MVPA and VPA (0.77 and 0.73, respectively). Addition-
ally, the AUC displayed almost perfect accuracy for the classification of SED (AUC = 0.96, 95% CI 0.94–0.98). 

Table 2.  Characteristics of included participants. Values are presented as mean ± SD.

Training set Testing set Total

Gender (male/female)

 Adults 10/7 3/4 13/11

 Children 7/6 2/3 9/9

Age (years)

 Adults 25.3 ± 2.8 23.9 ± 1.9 24.9 ± 2.6

 Children 12.2 ± 1.1 12.4 ± 0.5 12.3 ± 1.0

Height (cm)

 Adults 169.4 ± 7.2 168.9 ± 7.9 169.2 ± 7.2

 Children 159.2 ± 11.4 163.9 ± 6.1 160.5 ± 10.3

Weight (kg)

 Adults 61.6 ± 7.6 62.0 ± 11.6 61.7 ± 8.7

 Children 52.3 ± 14.4 53.5 ± 6.1 52.6 ± 12.5

BMI (kg  m−2)

 Adults 21.5 ± 2.6 21.6 ± 2.3 21.0 ± 2.9

 Children 20.3 ± 3.6 19.9 ± 1.8 20.2 ± 3.2

Data points

 Adults 1342 448 1790

 Children 862 384 1246

Table 3.  Mean and SD values of measured METs for each activity in all adults and children.

Activity type

Adults Children

Mean SD Mean SD

Sitting 1.01 0.13 1.04 0.19

Standing still 1.11 0.19 1.19 0.42

Slow walking 2.23 0.62 2.52 0.80

Quick walking 3.66 1.14 3.56 1.32

Ascending and descending stairs 5.30 1.89 6.01 2.18

Jogging 6.41 2.38 Not available Not available

Run/ rope skipping 9.40 3.74 6.68 2.58
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The discrimination of the model for MVPA and VPA (AUC = 0.88, 95% CI 0.85–0.92) and AUC = 0.86, 95% CI 
0.81–0.92 respectively) were less accurate than SED, but nonetheless of acceptable accuracy.

For children, the model for SED exhibited excellent classification accuracy (Youden indexes = 0.95; 
AUC = 0.98, 95% CI 0.96–0.99), with high sensitivity and specificity (95.7% and 99.5%, respectively). For clas-
sifying MVPA, the model showed reasonable sensitivity (77.2%) with perfect specificity (100.0%). For VPA, the 
model provided excellent sensitivity (92.1%) and fair specificity (78.6%). Consequently, the Youden indexes 
were fair for distinguishing MVPA and VPA (0.77 and 0.71, respectively). The AUC indicated that the model 
was good for classifying MVPA and VPA (0.89, 95% CI 0.85–0.92 and 0.85, 95% CI 0.76–0.94 respectively). 
Additionally, the AUC between adults and children for distinguishing PA intensities displayed no significant 
difference. Table 4 presents the sensitivity, specificity, Youden index, and AUC for the model discriminating PA 
intensities for adults and children.

Accuracy and precision of METs estimation in testing set
In adults, the median of estimated METs was higher than true METs (3.84 METs vs. 2.74 METs), while the 
opposite result was obtained in children (1.11 METs vs. 1.37 METs; Table 5). The overall MAEs were both 

Figure 3.  ROC curve of the algorithm for classifying SED (a), MVPA (b), and VPA (c) in adults and children.

Table 4.  The sensitivity, specificity, and area under the ROC curve of the algorithm for classifying PA 
intensities in adults and children. a p value for AUC comparison between adults and children classifying PA 
intensities.

SED MVPA VPA

Adults

 Sensitivity, 95% CI 99.4, 98.2–100.0 97.1, 94.9–99.4 84.6, 76.6–92.6

 Specificity, 95% CI 92.9, 89.3–95.6 79.8, 74.7–84.9 88.4, 85.1–91.6

 Youden index 0.92 0.77 0.73

AUC, 95% CI 0.96, 0.94–0.98 0.88, 0.85–0.92 0.86, 0.81–0.92

Children

 Sensitivity, 95% CI 95.7, 92.9–98.6 100.0, 100.0–100.0 92.1, 89.3–94.9

 Specificity, 95% CI 99.5, 98.5–100.0 77.2, 72.1–82.3 78.6, 63.4–93.8

 Youden index 0.95 0.77 0.71

AUC, 95% CI 0.98, 0.96–0.99 0.89, 0.85–0.92 0.85, 0.76–0.94

p value a 0.20 0.94 0.81

Table 5.  The true METs, estimated METs, and MAE, MAPE, and RMSE between measured and estimated 
METs in adults and children.

Adults Children

Estimated METs 3.84, 1.07–5.89 1.11, 1.02–5.01

True METs 2.74, 1.12–5.61 1.37, 1.06–4.44

MAE 0.75 ± 0.95 0.80 ± 0.90

MAPE, % 25.05 ± 39.09 29.48 ± 33.30

RMSE 1.21 ± 2.04 1.21 ± 1.59
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within 1 METs in adults and children (Adult = 0.75 ± 0.95 METs and Children = 0.80 ± 0.90 METs). Therefore, 
the accuracy of MET estimation in adults was slightly higher than in children, as further demonstrated by 
MAPEs (Adult = 25.05% vs. children = 29.48%). Moreover, the RMSE for adults and children were 1.21 ± 2.04 
and 1.21 ± 1.59 respectively.

Correlation and agreement between true METs and estimated METs in testing set
The correlation was good for adults (Spearman coefficient = 0.87, p < 0.001; Fig. 4a) and reasonable for children 
(Spearman coefficient = 0.79, p < 0.001; Fig. 4b). For the agreement between true METs and estimated METs, the 
mean differences were both low in adults and children (− 0.36 METs and − 0.43 METs, respectively; Fig. 5a). The 
95% limit of agreement (LoA) were − 2.63 to 1.90 for adults and − 2.65 to 1.79 for children (Fig. 5b). Additionally, 
the ICC was 0.89 and 0.84 for adults and children, respectively.

Discussion
Our smartwatch, equipped with a tri-axial accelerometer, is primarily designed to accurately measure various 
intensities of PA. This study developed and validated a new model to classify PA intensities, based on estimated 
METs for adults and children. The model exhibited excellent accuracy (AUC = 0.96–0.98) for classifying SED 
and LPA or above and good accuracy for distinguishing MVPA and VPA (AUC = 0.85–0.89) in young adults 
and children. Moreover, the estimated METs exhibited good accuracy (MAE = 0.75–0.80 METs) and agree-
ment (ICC = 0.84–0.89) when compared with measured METs. Equipped with a highly accurate PA estima-
tion model and an outdoor state discrimination algorithm developed by our team  formerly15, the smartwatch 

Figure 4.  Correlation plots between true METs and estimated METs in adults (a) and children (b). The 
Spearman coefficient is 0.87 (**p < 0.001, estimated METs compared with true METs) for adults and 0.79 
(**p < 0.001, estimated METs compared with true METs) for children, respectively.

Figure 5.  Agreement between true METs and estimated METs (Bland–Altman plot) in adults (a) and children 
(b). (a) The bias is − 0.36 (solid line), the 95% limit of agreement (LoA) are − 2.63 and 1.90 (dotted line). (b) The 
bias is − 0.43 (solid line), the 95% limit of agreement (LoA) are − 2.65 and 1.79 (dotted line).
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could be applied to large-scale research, to analyze the role of PA and the outdoor time for myopia protection 
independently.

We collected data on a wide range of PA intensities in a controlled setting, alongside gold-standard meas-
urements for validation. Additionally, we utilized SVM algorithms to classify PA intensities, optimizing the 
algorithm’s performance. Comparing the EE in this study with that of prior research, the measured METs were 
similar in each type of activity trial. The EE of SED intensity in adults and children, ranged from 1.01 to 1.19 
METs in the current study, similar to the 1.0–1.3 METs recorded in the former  research40–42. For LPA, the EE was 
2.23–2.52 METs compared to 2.2–3.3 METs in the previous  studies40,43. For MPA, the EE ranged from 3.56–6.01 
METs, while previous studies recorded 3.0–7.6  METs40,44,45. Finally, for VPA intensity, the EE was 6.41–9.40 METs 
in our study and 6.5–9.4 METs in the previous  studies40,44,45. Some discrepancies of the METs between our study 
and previous studies may derive from the different characteristics of subjects. However, overall, the measured 
METs displayed the consistent reliability for PA quantification in the current study.

To compare with previous studies, among the device-based approaches applied in myopia research, sev-
eral studies had assessed the accelerators for measuring PA intensity. The CHAMPS Eye  Study9,11 used the 
GT3X + accelerometer (ActiGraph, Florida, FL, USA) to measure PA. The cut-off points for different intensity lev-
els have been validated by previous  studies41,42. For SED, both our model and the previous studies showed excel-
lent classification accuracy (AUC = 0.96–0.98 for adults and children in the present study vs. AUC = 0.90–0.98 in 
the previous study)41,42. Although the accuracy of MVPA classification was lower than that for SED discrimina-
tion (AUC = 0.88–0.89 in adults and children), in comparison to the previous studies the accuracy was equiva-
lent (AUC = 0.85–0.90)41,42. In terms of VPA, our model demonstrated comparable discrimination accuracy 
(AUC = 0.85–0.86 for adults and children in the current study) when considered alongside AUC values reported 
in previous studies (AUC = 0.83–0.84)41,42. Additionally, it seems that our model shows better specificity than 
that of the previous studies (77.2–99.5% in present study vs. 66–73% in previous studies), and the sensitivity of 
our model was as good as the previous studies (78.6–100.0% in present study vs. 86–92% in previous study)46,47. 
Overall, our model for PA classification displays good accuracy and well potential for the myopia research.

This is the first study estimating METs in children below 13 years of age, with results showing high accu-
racy and reliability. In addition, the estimation model for adults in the current study was as good as previous 
 studies26,27,43,44,48. Recently, Wu et al.26 presented a new equation to improve adult METs estimation using the 
activPAL device. The overall MAPE for the new equation and the built-in equation was 14.6% and 23.4%, 
respectively. Another study found a MAPE of 18% for adults in the comparison between activPAL and indirect 
 calorimetry27. Our MAPE for adults was 25.05%. This discrepancy may be explained by the differing conditions 
under which the respective studies are performed, with former studies undertaken in a laboratory environment 
with strict speed conditions, compared to the flexible, free-living conditions in our current study. Santos et al.48 
proposed some new equations to estimate METs with the GT3X accelerometer for youth and adults, yielding 
RMSEs ranging from 1.20 to 1.55. The RMSE of our model was 1.21 and 1.21 for adults and children, respectively, 
suggesting good precision of the model. The correlation coefficients between the estimated METs and true METs 
in previous studies ranged from 0.78 to 0.93 for  adults26,43,44. In the current study, our results matched that with a 
Spearman coefficient of 0.87. Moreover, our agreement analysis indicated good reliability of the estimated METs 
with 0.89 of ICC and − 0.36 of the mean METs bias.

The wearable smartwatch basing machine learning algorithm provides a more accurate method for measuring 
PA intensity in comparison with questionnaires. Questionnaires were the most popular measurement for PA in 
studies of relationship between myopia and PA. However, among these studies, some had found the association 
between PA and  myopia49–51, while others had  not5,8. Many myopia studies used accelerators to measure PA, 
but most of the devices were placed on the hip of  participants11,12,52,53, and all the studies measured PA for only 
1–2  weeks11,12,46,52,53. Compared to a smartwatch, the hip-worn accelerometer was less convenient for long-term 
daily use. Moreover, the smartwatch has strengths of simple operation, small size, little cost, and more accessible 
in comparing with the traditional accelerometers. Besides, the smartwatch shows the outdoor time and steps, 
which contributes to promoting the outdoor activity of children. Conspicuously, there is a noteworthy lack of 
research that distinguished PA from outdoor time. The confounding protective factors of PA and outdoor time 
have impeded the understanding of myopia prevention. Notably, our smartwatch could gather data on both 
outdoor state and PA in real-time. In that way, the effects of outdoor time and PA against myopia could be 
quantified independently and accurately.

This study developed and validated a new model to classify PA intensities, based on estimated METs for adults 
and children. The model exhibited excellent accuracy (AUC = 0.96–0.98) for classifying SED and LPA or above 
and good accuracy for distinguishing MVPA and VPA (AUC = 0.85–0.89) in adults and children. Moreover, 
the estimated METs exhibited good accuracy (MAE = 0.75–0.80 METs) and agreement (ICC = 0.84–0.89) when 
compared with measured METs. Equipped with a highly accurate PA estimation model and an outdoor state 
discrimination algorithm developed by our team  formerly15, the smartwatch could be applied to large-scale 
research, to analyze the role of PA and the outdoor time for myopia protection independently.

Our study aims to apply this model to investigate the relationship between physical activity intensity and the 
incidence and progression of myopia. The smartwatch developed by our team is equipped with an illuminance 
sensor and a tri-axial accelerometer, which, along with our previously developed outdoor-indoor state algorithm 
and the physical activity estimation algorithm from this study, enables us to independently analyze the impact 
of physical activity on myopia, separate from outdoor time. Furthermore, our smartwatch can potentially be 
applied to other research areas, such as green space studies, where distinguishing between outdoor activities 
and overall physical activity is also essential. By enabling such multifaceted applications, our research not only 
offers a new perspective for understanding and preventing myopia but also lays the groundwork for practical 
applications of physical activity research in broader contexts.
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In this study, we have assessed a diverse population of adults and children aged 9–13, inclusive of both gen-
ders, various BMI categories, and a spectrum of physical activities ranging from sedentary to vigorous intensities. 
Our model has been adjusted for age, gender, and BMI to enhance its applicability across different demographic 
groups. The data collection was designed to mimic naturalistic settings, incorporating common physical activities 
such as walking and running, which reflect typical daily exercise patterns. However, the model has its limitations; 
it was tested and developed exclusively on a Chinese population. Moreover, everyday life activities like writing 
and sweeping were not included in the data collection, thus limiting its applicability to these types of activities.

There were several limitations in our study. First, although a total of 42 participants completed the activity 
trial, the sample size for adults and children was relatively small since the children and adults were trained and 
tested separately in the model. Moreover, the study only focused on children aged 9–13 years and young adults, 
this results in certain limitations of the model’s applicability to a broader range of ages and BMI categories. 
Accordingly, additional studies are needed to further validate the model with a larger number. Accordingly, 
additional studies are needed to further validate the model with a larger number of participants. Secondly, PA 
estimation was less accurate in children than in adults. The reason may be that the sample size of children was 
smaller than that of adults. Another possible cause might be greater heterogeneity across children compared to 
adults. Thirdly, although the activity trials were flexible, the accuracy of low-impact free-living activities such as 
handwriting, sweeping floor, were not evaluated. Nevertheless, the model’s wide spectrum of intensity ranging 
from SED to VPA may encapsulate the intensity of some of these free-living activities. There are strengths in the 
study as well. This study estimated the energy expenditure, measured by METs for children from 9 to 13 years 
old in the first time, whereas the previous study only classified the intensity levels for estimating PA. In addition, 
the study expressed the estimated PA intensity as a numerical variable as well as a categorical variable. By apply-
ing the model, the relationship between PA and myopia can be analyzed both qualitatively and quantitatively.

Conclusions
Our smartwatch machine learning based model can estimate and classify PA intensity with high accuracy in both 
adults and children. With the addition of the outdoor state discrimination algorithm, the effect of PA intensity 
and outdoor time on myopia can be investigated independently by using the smartwatch. So far, the smartwatch 
has been applied in large-scale research to investigate the relationship between daily activities and  myopia25,54. 
Based on the device-based method and large quantity of data, these studies can optimize our understanding of 
behavioral interventions in myopia onset and progression.

Data availability
All data generated or analyzed during this study are included in this published article and its additional infor-
mation files.
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