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A clustering approach to improve 
our understanding of the genetic 
and phenotypic complexity 
of chronic kidney disease
A. Eoli 1,2,6,7*, S. Ibing 1,2,6,7, C. Schurmann 1,2,6, G. N. Nadkarni 4,5, H. O. Heyne 1,2,4,6 & 
E. Böttinger 1,2,3,4,6

Chronic kidney disease (CKD) is a complex disorder that causes a gradual loss of kidney function, 
affecting approximately 9.1% of the world’s population. Here, we use a soft-clustering algorithm to 
deconstruct its genetic heterogeneity. First, we selected 322 CKD-associated independent genetic 
variants from published genome-wide association studies (GWAS) and added association results 
for 229 traits from the GWAS catalog. We then applied nonnegative matrix factorization (NMF) to 
discover overlapping clusters of related traits and variants. We computed cluster-specific polygenic 
scores and validated each cluster with a phenome-wide association study (PheWAS) on the BioMe 
biobank (n = 31,701). NMF identified nine clusters that reflect different aspects of CKD, with the top-
weighted traits signifying areas such as kidney function, type 2 diabetes (T2D), and body weight. For 
most clusters, the top-weighted traits were confirmed in the PheWAS analysis. Results were found to 
be more significant in the cross-ancestry analysis, although significant ancestry-specific associations 
were also identified. While all alleles were associated with a decreased kidney function, associations 
with CKD-related diseases (e.g., T2D) were found only for a smaller subset of variants and differed 
across genetic ancestry groups. Our findings leverage genetics to gain insights into the underlying 
biology of CKD and investigate population-specific associations.

Chronic kidney disease (CKD) is a primarily asymptomatic disease characterized by a gradual loss of kidney 
function over a period extending from several months to  years1. CKD affects approximately 9.1% of the global 
population, with a higher prevalence in high-income  countries2. The leading risk factors for developing CKD are 
diabetes (40% of cases) and hypertension (29% of cases), followed by heart disease, family history of CKD, and 
 obesity3. Other factors, such as exposure to HIV and contaminants, are additionally important in low-income 
 countries4,5. Genetic ancestry also plays a crucial role, with increased risk rates of kidney failure in Black/Afri-
can Americans and Hispanics/Latinos compared to individuals of European  ancestry6. If left untreated, CKD 
increases the mortality risk for individuals with cardiovascular disease (CVD) and can result in the complete 
loss of kidney  function7. Therefore, early detection is critical for improving quality of life and life expectancy. 
During the early stages of CKD, cost-effective treatment options are available and can be tailored to the cause 
of the  disease8.

CKD is defined by a reduced functionality of the kidneys, which limits its filtering capability over a period 
of at least three  months9. The main biomarkers for CKD detection include the urinary albumin/creatinine ratio 
(ACR) and the estimated glomerular filtration rate (eGFR)1. While ACR facilitated diagnosing albuminuria—an 
indicator of kidney damage characterized by an elevated excretion of urinary albumin—the eGFR estimates 
the filter volume of the glomerulus per unit of time using different biomarkers such as serum  creatinine1. An 
abnormal kidney activity is indicated by high ACR values, reduced eGFR, or both.
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Over the past few decades, many large-scale genomic studies, such as genome-wide association studies 
(GWAS), have successfully identified more than 500 independent genetic variants associated with reduced kid-
ney  function10–12. The association between genetic variants and various phenotypes has been studied, and the 
results are often shared in publicly available databases, like the GWAS  Catalog13. The association of one genetic 
variant with multiple traits can be considered to identify secondary traits associated with a phenotype. This 
understanding can help elucidate potentially shared disease mechanisms, assuming that genetic variants affect-
ing a shared pathway have a similar impact on the associated traits.

Soft-clustering methods provide a means to reduce the genetic complexity of a heterogeneous disease while 
also accounting for shared disease mechanisms. In contrast to hard-clustering approaches like K-means or hier-
archical clustering, soft-clustering enables the factorization of high-dimensional data by identifying overlapping 
 clusters14. Non-negative matrix factorization (NMF) is a family of algorithms within multivariate analysis that 
addresses the dimensionality challenge by extracting meaningful features from a given data  set15,16. Using this 
approach, different genetically driven subtypes have been identified for Type 2 Diabetes in the past and were 
even associated with differences in the clinical  outcomes17–20.

In this study, we aimed to deconstruct the heterogeneity of CKD by identifying its genetic subtypes. First, we 
collect all published variant-trait associations for variants associated with reduced kidney function and apply 
soft-clustering using NMF. We used the algorithm’s weights to calculate cluster-specific polygenic scores (cPGS) 
within the BioMe biobank. Finally, we use a phenome-wide association study (cPGS-PheWAS) to validate and 
interpret the clusters. By deconstructing the complexity of CKD, this methodology contributes new insights 
into the disease pathways of CKD and enhances our understanding of population-specific differences for CKD.

Results
NMF identified nine clusters of CKD-associated variants
We identified 508 independent genetic variants associated with decreased kidney function from the literature. 
Then, we retrieved all proxy SNPs in linkage disequilibrium with the identified variants and linked them to 805 
associated traits using the GWAS Catalog database. After multiple filtering steps, including GWAS sample size 
thresholds and correction of GWAS p-values for multiple associations, we constructed a final matrix of trait-
variant associations, which included 322 variants and 229 associated traits. We applied NMF to factorize the 
variants-traits association matrix X into a traits matrix W and variants matrix H with a shared number of clusters, 
k (Fig. 1). We identified nine clusters of CKD-associated variants using a hypothesis-free approach.

The most frequent CKD-associated secondary traits retrieved from the GWAS Catalog are related to kidney 
function (e.g., blood urea nitrogen, urea, uric acid, and cystatin C measurements), hemoglobin levels (e.g., 
hemoglobin measurements, hematocrit, and erythrocyte counts), T2D, body weight (e.g., body height, appen-
dicular lean mass, BMI, BMI-adjusted waist-hip ratio), and pulse pressure (systolic and diastolic blood pressure 
measurements), among others (see Fig. S1). CKD-associated traits and their associated CKD variants were 
factorized into nine partly overlapping clusters by conducting NMF. To ensure the results were robust, we 
repeated the clustering with Bayesian NMF (bNMF) and got comparable results (Table S1). The top seven traits 
per cluster are summarised in Fig. 2. The ‘Reduced lipids’ cluster is associated with decreasing blood lipid levels 
(triglycerides, total cholesterol, use of lipid-lowering medications) and liver enzymes. The top traits of the cluster 
‘Increased body mass’ show a positive association with body weight (appendicular lean mass, body height, and 
body weight). The clusters ‘Increased blood volume’ and ’Reduced blood volume’ are positively and negatively 
associated with volemic traits (e.g., mean corpuscular volume and mean corpuscular hemoglobin), respectively.

Similarly, clusters ‘Increased/Reduced hematocrit’ show opposite associations with hemoglobin content 
(e.g., hematocrit, hemoglobin measurements, red blood cell density, erythrocyte count), and clusters ‘Increased/
Reduced inflammation’ convey opposite associations with markers of inflammation (C-reactive protein) and 
blood lipids. Lastly, cluster ‘Increased urate’ is positively associated with kidney function biomarkers like urate, 
blood/serum urea nitrogen, blood proteins, and Cystatin C. The complete lists of the top features and variants 
per cluster, defined as traits and variants in the top decile of the cluster weights of the matrices H and W, are 
listed in Table S2. The matrices H and W are also available as supplementary material. Figure S2 summarises 
how the variants are distributed in each cluster, showing their overlaps.

Comparing three different pathway analysis approaches, we could identify significantly enriched pathways 
(q-value < 0.05) based on Ingenuity Pathway Analysis (IPA) for four of the nine identified clusters (Fig. S3). 
Overall, only two of the 22 identified enriched clusters were enriched in more than one of the clusters, namely, 
the myelination signaling pathway (enriched for the ‘Increased hematocrit’ and ‘Reduced urate’ clusters) and the 
estrogen receptor signaling pathway (enriched for the ‘Reduced hematocrit’ and ‘Reduced urate’ clusters). For 
some of the enriched pathways, we could identify an association with the top-weighted traits of the corresponding 
clusters, suggesting their biological plausibility. For instance, the IL-12 Signaling and Production in Macrophages 
is significantly enriched (q-value = 0.02) for the top-weighted genes of the increased inflammation cluster. IL-12 
is a pro-inflammatory cytokine that, in the past, has been associated with multiple immune-mediated  diseases21. 
For the ‘Increased hematocrit’ cluster, characterized by increased hematocrit, hemoglobin, red blood cell density 
measures, and erythrocyte count, BMP signaling was one of the significantly enriched pathways (q-value = 0.03). 
Bone Morphogenic Protein (BMP) has been implicated with  hematopoiesis22. The top associated genes of the 
‘Increased urate cluster’ suggest alterations of the metabolomic and renal functions. These suggestions can be 
validated by the Xenobiotic Metabolism AHR Signaling pathway, which can be activated in CKD patients due 
to the accumulation of uremic toxins and can promote renal  fibrosis23.
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PheWAS validated biological pathways of most clusters across ancestries
Each cluster was examined by conducting a cPGS-PheWAS with 988 quantitative traits and 832 binary traits on 
the four BioMe cohorts (ALL, AFR, AMR, EUR). Except for the ‘Increased body mass’ (abbreviated as ‘IBM’), 
‘Reduced lipids’, and the ‘Reduced inflammation’ clusters, we validated at least 2 of the clusters’ top 5 traits (Fig. 3). 
The level of significance was reached more frequently across ancestries (ALL) than when validating on the indi-
vidual ones (AMR, AFR, EUR) (Table S3). In addition to the validated traits, significant associations with decreas-
ing eGFR were seen in clusters ‘Increased urate’ (β = − 0.04 [− 0.06 to − 0.03], p-value = 6.7e−09) and ‘Reduced 

Figure 1.  Methods overview. (a) We selected 508,322 independent CKD-associated variants from the 
summary statistics of published GWAS. For each of them, we retrieved all independent proxy SNPs in linkage 
disequilibrium  (r2 > = 0.6) and (from the GWAS Catalog) 805,229 proxy-associated traits with their respective 
effect size (B). (b) After multiple filtering steps, Wwe standardised the effect sizes across all GWAS (β) and 
generated an association matrix X of dimensions 229 × 322. NMF factorizes X into a matrix of traits (W) and 
one of variants (H), which share a dimension K (i.e., the number of clusters). (c) We extracted the weights of 
each cluster from the H matrix and used them to calculate cluster-specific polygenic scores (cPGS) of 31,701 
BioMe participants. After standardizing the cPGS, we conducted a cPGS-PheWAS for each cluster to validate 
their respective top traits, which were extracted from the W matrix.
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hematocrit’ (β = − 0.05 [− 0.07 to − 0.04], p-value = 4.0e−12) (Table S3). ‘Reduced hematocrit’ was also nominally 
associated with an increased risk for chronic renal failure (OR = 1.11 [1.05–1.16], p-value = 1.2e−04) and with the 
curated phenotype ‘diabetic and hypertensive CKD’ (OR = 1.27 [1.11–1.46], p-value = 6.6e−04). Besides showing 
negative associations with disorders of lipoid metabolism, cluster ‘Increased inflammation’ shows strong nega-
tive associations with Alzheimer’s disease (OR = 0.60 [0.52–0.7], p-value = 1.5e−11) and dementias (OR = 0.77 
[0.71–0.84], p-value = 1.0e−09) (Fig. S4). Regarding the individual ancestries, EUR showed the strongest associa-
tions when validating on binary traits, with an increased risk for “visual disturbances” (OR = 1.51 [1.27–1.79], 
p-value = 2.1e−06) in the cluster ‘Reduced inflammation,’ while AFR showed the strongest associations when 
validating on quantitative traits, with the strongest association being for the LDL-HDL ratio (β = − 0.14 [− 0.17 to 
− 0.11], p-value = 9.3e−21) in the ‘Increased inflammation’ cluster. Figure 3 summarizes which of the top traits of 
each cluster have been validated, while the complete list of cPGS-PheWAS results by ancestry is stored in Table S3.

Figure 2.  Top seven CKD-associated secondary traits per cluster (also available as LaTeX code). The top 
seven secondary traits per cluster are shown with their effect direction (Effect columns) and respective cluster 
weights (Weight columns). ‘HDL’ is high-density lipoprotein, ‘VLDL’ is very low-density lipoprotein, ‘meas.’ is 
measurement, and ‘conc.’ is concentration.
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Figure 3.  Validation of cluster traits. The table lists traits validated with the PheWAS on the ALL cohort for 
each cluster. ‘Dir’ is the trait effect direction, ‘weight’ is the trait cluster weight, ‘OR’ is the standardized odds 
ratio (binary traits cPGS-PheWAS), ‘Coeff ’ is the standardized coefficient estimate (quantitative traits cPGS-
PheWAS), ‘95% CI’ are the 95% confidence intervals. The last column specifies whether the p-value reaches the 
Bonferroni significance level. ‘HDL’ is high-density lipoprotein, ‘VLDL’ is very low-density lipoprotein, ‘RAS’ is 
the renin-angiotensin system, ‘meas.’ is measurement, and ‘conc.’ is concentration. Regarding the cluster names, 
IBM is ‘increased body mass,’ and BV is the short version for ‘blood volume.’
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cPGSs suggest apparent differences between genetic ancestries
We extracted the cluster weights of the W matrix and used them to calculate cluster-specific polygenic scores 
(cPGS) for participants of the BioMe cohort. Figure 5 shows the standardized polygenic score distributions for all 
NMF clusters across the BioMe cohort (ALL) and the individual continental populations EUR (n = 7447), AMR 
(n = 5336), and AFR (n = 5660). A normal distribution was observed for the cluster ‘Increased urate’ (EUR, AMR, 
and AFR; Anderson–Darling test, all p-values available in Table S5). Although polygenic scores are expected to 
have a normal  distribution24, the other eight clusters present either a skewed tail (e.g., ‘Increased hematocrit’) 
or several peaks in their cPGS distributions (e.g., ‘Reduced inflammation’). As illustrated in Fig. 4, the peaks 
are caused by a few variants with relatively high cluster weights (the complete list of cluster weights for the top 
variants of each cluster is available in Table S2). For example, the top variant in cluster ‘Increased inflammation’ 
(rs429358, mapped gene: APOE) weighs 4.6, while the second one (rs17050272) weighs 0.2. In Fig. 5, we can 
also observe how this variant is more frequent in participants of inferred EUR ancestry. Similarly, the top variant 
of ‘Reduced inflammation’ (rs1260326, mapped gene: GCKR) weighs 5.7 and seems more frequent in the AFR 
population, while the second one (rs4418728) weighs 0.9. This unbalance in weight creates the three peaks of the 
distributions: the lower peak includes the scores of individuals without the top variant (0 copies), the middle one 
the heterozygous (1 copy), and the higher peak includes scores of participants with two copies of the top variant. 
Other ancestry-specific differences are visible in the distributions of four clusters and are significant when testing 
with the Mann–Whitney test (all p-values available in Table S4). This suggests that some variants appear with 
different frequencies in people that do not share similar ancestry: ‘Increased inflammation’ (all combinations), 
‘Reduced inflammation’ (all combinations), ‘Reduced lipids’ (EUR vs. AFR), and ‘Increased body mass’ (EUR 
vs AFR and AFR vs AMR).

Figure 4.  Summary statistics of the weights of each cluster (also available as LaTeX code). ‘SNPs’ indicates 
the number of CKD variants with a weight > 0. The minimum weight in all clusters is 1e-45. ‘Q90 weight’ is the 
minimum weight of the SNPs in the cluster’s top decile.

Figure 5.  Standardized cluster-specific polygenic scores (cPGS) per genetic population. The figure compares 
the standardized cPGS distributions between inferred ancestries of the BioMe participants. The x-axis represents 
the units of standard deviation (or z-scores). AFR, AMR, and EUR refer to the sub-cohorts of individuals with 
inferred African, Ad Mixed American, and European ancestry, respectively.
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Distribution of participants across clusters
As the cPGS are calculated separately per cluster, each BioMe participant might have high polygenic scores in 
multiple clusters. Therefore, to understand the cluster overlap in terms of relative risk, we checked how many 
individuals belonged to the top decile of 1 or more clusters. 58% (18,431/31,701) of the whole BioMe cohort 
(ALL) were at high risk in at least 1 cluster. Of these, 60.2% were in the top decile for only 1 cluster, while 37% 
were at risk for 2–3 clusters (Fig. S5).

Discussion
CKD is typically defined as a progressive loss of kidney function over time. Although numerous genetic variants 
have been identified as associated with CKD, their relationship to disease pathways remains largely unclear. The 
work described here is the most comprehensive assessment of how variants associated with CKD can be grouped 
according to different CKD-related factors. Specifically, we included variant-trait associations of 322 CKD SNPs 
and 229 related metabolic traits from publicly available GWAS datasets. By analyzing these associations with 
NMF, a factorization approach that allows for minimal overlap between groups, we identified 9 clusters of CKD 
variants and associated traits.

CKD is commonly recognized as a heterogeneous condition with various underlying causes and risk factors, 
which are unlikely to represent a single disease process. This complexity is also reflected by the associated traits 
retrieved from published GWAS, which are related to kidney function, hemoglobin levels, T2D, body weight, and 
pulse pressure, among others. Attempting to deconvolute CKD’s genetic heterogeneity and differentially grouping 
these traits, the nine clusters we identified represented different aspects of CKD. For example, the ‘Increased urate’ 
cluster, whose clustering weights represent abnormal levels of urinary metabolites like urate, blood/serum urea 
nitrogen, blood proteins, and Cystatin C, is related to decreasing kidney function. In normal conditions, such 
blood metabolites are excreted by the kidneys, but in CKD, they accumulate and exert a detrimental biological 
 activity25,26. A second cluster, which we summarised as ‘Increased inflammation,’ was strongly clustered around 
rising serum C-reactive protein (CRP) concentrations. CRP is a common inflammatory biomarker in chronic 
diseases like CKD, diabetes, and cardiovascular  diseases27–29. In line with that, patients with CKD commonly 
experience chronic inflammatory  states30. These states tend to worsen as the disease progresses toward end-stage 
renal disease and are reflected, or even  modulated31, by increasing CRP  levels32–34. For these two pathways, we 
identified significantly enriched pathways using the top 25% weighted genes in IPA that are in line with the 
described top-weighted traits. Overall, the difference in significantly enriched pathways between the clusters 
suggests biological differences between them.

We then studied the genotype–phenotype correlation to demonstrate the utility of the clusters. We could 
validate most of the top-weighted features on quantitative traits (i.e., biomarkers), while the validation on binary 
traits (i.e., diagnoses) was less robust and required additional clinical interpretation. For the clusters of ‘Increased 
urate’ and ‘Increased inflammation,’ the top traits were confirmed by the PheWAS. CKD is also associated with 
dyslipidemia, which is comprised of high levels of triglycerides and LDL-cholesterol, and low levels of HDL-
cholesterol and apolipoprotein  A135. We could observe similar associations in clusters ‘Increased inflammation,’ 
‘Reduced lipids,’ and ‘Reduced inflammation.’ Notably, we found multiple significant associations for cluster 
‘Increased inflammation’ with reduced risk of dementias. Glycerophospholipids play an essential role in neural 
 membranes36,37, and their levels are directly correlated with serum triglycerides and inversely correlated with 
total cholesterol and  eGFR38.

A limitation of this study is the need for more genetic diversity in the GWAS Catalog, which mainly consists 
of studies performed on the European population. This European bias is well described in the literature and 
has important implications for disease risk prediction across global  populations39. Despite this lack of genetic 
diversity, which affected the initial selection of variants used in the input matrix, we could still validate our 
results in BioMe, a biobank enriched for populations with non-European ancestries. We were most powered 
when jointly analyzing across ancestries (ALL), while signals validated in different ancestral groups with some 
group-specific differences. This result suggests that ancestry-specific studies are essential although most CKD 
risk factors converge across ancestral groups. Another two limitations are the filtering rules used to select traits 
and variants for the algorithm’s input matrix and the possible existence of non-additive interactions between 
risk factors that we did not consider in this study. Lastly, one of the input CKD studies, the PAGE  study40, was 
also conducted using BioMe data. However, this should not impact the results since we are not looking at CKD 
case/control scenarios but at CKD subtypes.

Understanding the biological pathways that lead to CKD is essential to improve clinical management. For 
example, some clusters group similar traits but with opposite effect directions (e.g., ‘Increased hematocrit’ and 
‘Reduced hematocrit’), while others suggest potentially protective effects (e.g., against dyslipidemia in cluster 
‘Increased inflammation’). This behavior might indicate that CKD can affect the same metabolic pathways dif-
ferently, confirming the genetic complexity of the disease. Additionally, the clusters have a limited degree of 
overlap, and as each represents a specific set of variants, participants might be high risk (i.e., in the top decile of 
the polygenic score) for more than one cluster. This additive disease model, similar to the mutational signatures 
in cancer, suggests a possible interplay of genetic susceptibility to multiple disease-causing  mechanisms41.

In summary, by clustering genetic variants associated with CKD, we identified clusters with distinct trait 
associations, likely representing mechanistic pathways involved in CKD. We confirmed the validity of these clus-
ters phenotypically. Further clinical investigations could explore whether individuals with a common disrupted 
pathway also share similar complications, a comparable rate of disease progression, or a different treatment 
response. In the future, classifying patients with CKD using their genotype may improve care by offering a more 
personalized and genetically informed clinical plan.
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Methods
Trait-variants selection
We identified and aligned the alleles of 508 independent genetic variants associated either with decreased kid-
ney function (defined as low eGFR levels for at least three months) or with CKD (using ICD-9/10 codes) from 
the most recent GWAS and GWAS meta-analyses10–12, 40, 42, 43 (Fig. 1a). We then used the R package LDlinkR (R 
version 4.2.1) to retrieve all proxy SNPs in linkage disequilibrium  (r2 > = 0.6) with the lead variants, across all 
available 1000G human  populations44,45. We used the GWAS Catalog database to link the proxy SNPs to 805 
associated traits (as of July 30th, 2022)13. We excluded gender-specific GWAS and GWAS performed on less 
than 100 individuals. Additionally, as we are interested in secondary features associated with CKD, we excluded 
GWAS of traits directly related to eGFR or CKD (e.g., “Mild to moderate chronic kidney disease,” “Estimated 
Glomerular Filtration Rate”). We kept trait-variant associations with a significance threshold of less than 1 ×  10−6 
using a Bonferroni correction for all 2401 associations in our data set. To reduce sparsity in the data, we excluded 
traits associated with less than five variants; this threshold was empirically defined by comparing the clustering 
results of traits associated with up to 15 CKD variants. We standardized effect sizes across all GWAS by dividing 
the regression coefficient beta (B) by the standard error, using the GWAS summary statistic results. Traits and 
variants were then arranged as a matrix with the standardized effect sizes (β) as values. Table S5 contains, for 
each input CKD variant, the list of CKD-associated secondary traits extracted from the GWAS Catalog and the 
corresponding exclusion criteria for those excluded during the filtering steps.

NMF
NMF factorizes the input matrix of trait-variant associations (X, of dimensions 229 × 322) into a matrix of traits 
(H, 229xK) and one of variants (W, Kx322), so that HxW ≈  X15 (Fig. 1b). The factorization rank K corresponds 
to the number of clusters. We implemented NMF using the R package ButchR with 10,000 iterations, 30 random 
initiations, and the convolution threshold set to  8046. The number of expected clusters was set between 2 and 20. 
ButchR suggests the optimal K based on six cluster evaluation metrics, like the mean silhouette width and the 
Frobenius error. If two or more K were presented, we considered results with the highest mean silhouette width 
and the lowest Frobenius error, as suggested by Alexandrov et al.41. As additional validation, we also performed 
a Bayesian version of  NMF16, using the code provided by Udler et al.17. bNMF was run 1000 times with up to 
200,000 iterations in each run.

Pathway analyses
To identify cluster-specific enriched pathways, we conducted three different pathway analysis approaches using 
the closest genes to the variants (n = 262). For gene set enrichment analysis (GSEA), using the clusterProfiler 
R  package47, we tested for enrichment of the Hallmark, Ractome and  KEGG48–51 gene pathways from MSigDB. 
Ranks of the genes were defined based on the weights from the variant-cluster matrix H. If a gene was anno-
tated to multiple variants, we only considered the highest weights. Using the top 25% weighted SNPs and their 
corresponding annotated genes, we further conducted Ingenuity Pathway  Analysis52 and Overrepresentation 
Analysis using the WEB-based GEne SeT AnaLysis (WebGestalt)  toolkit53, focusing on the KEGG, Reactome, 
Panther, and Wiki pathways.

Cluster-specific polygenic scores
The results of clustering provide cluster-specific weights for each variant and trait. We used PLINK and the variant 
cluster weights to calculate cluster-specific polygenic scores (cPGS) of the BioMe biobank  participants54. cPGS 
were standardized within each cluster. The normality of each cPGS distribution was tested with the Ander-
son–Darling method. Differences between ancestry-specific distributions were tested with the Mann–Whitney 
test.

Validation cohort (BioMe)
We validated our results using the genetic and linked electronic health records (EHR) data of 31,701 BioMe 
biobank  participants55 (Fig. 1c). As a fine-scale population structure can improve the risk prediction of complex 
diseases within genetic  groups56, we inferred the genetic ancestry of the BioMe participants. We then performed 
a Principal Component Analysis (PCA) using PLINK, excluding relatives above 2nd-degree (kinship method, 
estimated using KING57) and variants with minor allele frequency below 0.0554,58. We trained a random forest 
classifier to infer the genetic ancestry of BioMe participants using the 1000 Genomes labels as  reference59. The 
labeled ancestries are Admixed American (AMR, n = 5336), African (AFR, n = 5660), European (EUR, n = 7447), 
South Asian (SAS, n = 613), and East Asian (EAS, n = 728). For sub-population-specific analyses, we removed 
participants with mixed ancestry (defined as having a random forest probability ≤ 0.5) and outliers by only 
including the quantiles 0.25–0.9060 (n = 11,404).

Modeling disease outcomes as a function of cluster-specific polygenic scores
For each cluster, the cPGS were associated with the phenotypes available in the BioMe data set by performing a 
phenome-wide association study (cPGS-PheWAS). We fitted linear regression models to analyze 988 quantita-
tive traits (e.g., laboratory results) and logistic regression models for 832 binary traits with cPGS as independent 
variables, adjusting for sex, age, and the first ten genetic principal components (stats R  package61). Binary traits 
included Phecodes mapped to ICD-9 and ICD-10 codes (a Phecode is considered if at least two relevant diagnos-
tic codes were present in a patient’s EHR)62 and curated  phenotypes63. Controls were identified as the reference 
category. Traits were only considered if present or measured in at least 100 biobank participants. The model 
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parameters were standardized using the effectsize R package (refit method)64. Standardized coefficient estimates 
(linear regression) and odd ratios (logistic regression, defined as change of 1 SD in the PGS) were reported with 
the corresponding 95% confidence intervals. The Bonferroni method was used to adjust for multiple testing, 
and the alpha threshold was defined as 3.1e−06 (0.05/[9 * (988 + 832)]). We then compared the PheWAS results 
with the traits in the top decile of NMF’s trait weights.

Data availability
All publicly available data (input variants, trait-variant associations) used to support the findings of this study 
are included in this published article (and its Supplementary Information files) and are also available from the 
cited publications and GWAS Catalog. Additional data generated for the analysis steps, including source code 
and intermediate results, are available from the corresponding author upon reasonable request. The data used 
to validate the findings of this study are available from BioMe biobank (https:// icahn. mssm. edu/ resea rch/ ipm/ 
progr ams/ biome- bioba nk), but restrictions apply to their availability. To access the data, please reach out to 
biomebiobank@mssm.edu.
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