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Machine learning approach 
for recognition and morphological 
analysis of isolated astrocytes 
in phase contrast microscopy
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Ivan N. Shishkov 1, Diana E. Narzaeva 1,2, Alla B. Salmina 1,2, Stanislav O. Yurchenko 1 & 
Nikita P. Kryuchkov 1*

Astrocytes are glycolytically active cells in the central nervous system playing a crucial role in various 
brain processes from homeostasis to neurotransmission. Astrocytes possess a complex branched 
morphology, frequently examined by fluorescent microscopy. However, staining and fixation may 
impact the properties of astrocytes, thereby affecting the accuracy of the experimental data of 
astrocytes dynamics and morphology. On the other hand, phase contrast microscopy can be used to 
study astrocytes morphology without affecting them, but the post-processing of the resulting low-
contrast images is challenging. The main result of this work is a novel approach for recognition and 
morphological analysis of unstained astrocytes based on machine-learning recognition of microscopic 
images. We conducted a series of experiments involving the cultivation of isolated astrocytes 
from the rat brain cortex followed by microscopy. Using the proposed approach, we tracked the 
temporal evolution of the average total length of branches, branching, and area per astrocyte in our 
experiments. We believe that the proposed approach and the obtained experimental data will be of 
interest and benefit to the scientific communities in cell biology, biophysics, and machine learning.

Astrocytes that are star-like glial cells widely distributed in the central nervous system (CNS), play a crucial 
role in various CNS functions, including brain development and plasticity, synaptic transmission, blood flow 
regulation, metabolic control within the neurovascular unit1. Particularly, glycolytically active astrocytes ensure 
neuron-astroglial metabolic coupling meeting the metabolic needs of stimulated neuronal cells, control local 
microcirculation and permeability of the blood–brain barrier2. The role of astrocytes in neuroinflammation and 
regulation of neurogenesis in also well-known. Thus, it is not surprising that altered astroglial structure and func-
tional activity is always seen in brain injury, stroke, neurodevelopmental disorders and neurodegeneration1,3–7. 
The morphology of astrocytes reflects their metabolic and developmental status8,9. The activation of astrocytes is 
usually associated with the rise in the cytosolic free calcium which triggers the activity or numerous signaling cas-
cades. Some of them result in fast and transient or postponed and long-lasting changes in astroglial morphology 
required for astroglial adaptation to the microenvironment, migration, and interaction with other cells. Therefore, 
astroglial morphology is different in various brain regions (e.g. protoplasmic vs fibrous astrocytes), in loci of 
inflammation (resting vs polarized astrocytes), within the so-called astroglial synticium (when connexon-coupled 
astrocytes may simultaneously respond to extracelllular stimuli), and in a close vicinity to synaptically coupled 
neurons or microvessels (more branched astrocytes migth produce more contacts with activated neuronal cells 
or endothelial cells). Thus, detecting, counting, and tracking astrocyte growth dynamics and their morphology 
are critical for better understanding astroglial contribution to the regulation of brain functions.

The morphology features of astrocytes can be studied experimentally, for example, using microfluidic chips10,11 
various in situ12 and in vivo13 methods, as well as using computer modeling (in silico)14–22. Despite the fact 
that time-reducing experimental methods based on Generative adversarial network were developed23, cellular 
dynamics simulation methods significantly reduce time and costs and could lead to improved experiment quality, 
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enhancing our understanding of processes occurring at the cellular and subcellular levels24. Moreover, it enables 
the study of phenomena that are inaccessible experimentally. Similar situation occurred, for example, in the field 
of condensed matter physics when computational modeling methods such as classical or quantum molecular 
dynamics significantly improved our understanding of processes occurring at the atomic level. Computational 
modeling methods have already been successfully applied for studying blood-brain barrier permeability21, creat-
ing detailed mesh models for visual analysis22, reconstructing and exploring various types of astroglia15, astrocytic 
signal transduction through cytosolic Ca2+ dynamics16, diffusion-weighted signaling17, the impact of different 
substances (in this case, glutamate) on astrocytic signal transduction20, interaction between neuronal and astro-
cytic networks18. Besides, using computer cell modeling25,26, it is possible to study tumor growth27, study the 
formation of blood vessels during angiogenesis and vasculogenesis28–35. However, any computer model must be 
validated based on experimental data, and in the case of living systems, this data should arise from various mul-
tiomics approaches. The morphology data is one of many types used to verify computer models17,18. Considering 
the significant variability within living systems (such as cellular noise), this data should be averaged across a 
substantial representative sample. This imposes significant requirements for the scalability of experiments that 
verify computer models.

For the experimental study of astroglial morphology various types of microscopy are utilized, including 
phase contrast36, electronic37, fluorescent38, etc. These methods were used to study the interaction of astro-
cytes within the astroglial network37,39, the role of astrocytes in cerebral metabolic interactions40, mitochondrial 
metabolism41, differences in ensembles of astrocytes in the cortex42 and other brain regions43. Microscopy is 
always used to observe brain cells exposed to the action of neurotransmitters, gliotransmitters, cytokines44 or 
cytotoxic substances45 either in vitro or in vivo, as well as in affected brain regions in vivo, e.g. in brain injury or 
neurodegeneration46–49. The role of astrocytes in the formation and maintenance of synapses was also studied 
using microscopy50–53. The most common method of visualizing cells is fluorescence microscopy, that usually 
requires fixation and staining of cells. This method allows for more accurate visualization of cells and orga-
nelles. However, these techniques mainly deal with non-viable cells due to procedure of fixation (excluding 
the application of protocols with fluorescent probes added to alive cells in culture or in the tissue). As a result, 
the accuracy of estimation of astroglial structure might be greatly compromised. In the conditions in vitro, the 
morphology of astrocytes might be additionally affected by their adhesion to the the surface with high stiffness 
(glass or plastics) and establishment of non-physiological monolayers in 2D cultures, or by their inappropriate 
positioning within 3D polymers. Therefore, if it is necessary to study the parameters and properties of cells in a 
long-term experiment and at different points in their life cycle, this method will not be suitable. Another solution 
is the use of phase contrast microscopy, which does not require cell fixation and staining, but it has a drawback 
of low-contrast images (compared to fluorescence microscopy), thereby making post-processing challenging. 
Note that despite the lower resolving power of phase contrast microscopy compared to staining methods, the 
corresponding data still hold significant value for various research purposes.

At present, various approaches for cell image analysis exist, with one of the most commonly used being 
machine learning. Particularly, the open-source tool ilastik54 is actively used for interactive image classification, 
segmentation, and analysis. However, although modern machine-learning approaches could handle hetero-
geneity by combining multiple ML models trained on each single cell sub-track55 and using peer prediction 
paradigm56, traditional machine learning methods are not suitable for astrocytes detection due to their complex 
morphology57. It was also demonstrated how to derive deep learning-based features to characterize cell mor-
phodynamics by combining time-lapse microscopy with resilient deep learning software designs58. Additionally, 
methods were outlined showing that these descriptors remain largely unaffected by common sources of artifacts 
in bioimaging analysis59.

Using deep learning methods, especially considering advances of deep convolutional neural networks 
(DCNN) in pattern recognition and image classification problems60,61, would be more appropriate. In last few 
years, a lot of different DCNN models were created62–67, which has been used in different fields, for instance 
biomedical images analysis66,68–71, physisc and chemistry tasks, etc.72–75. Thus, DCNN can successfully process 
complex morphology because of multiple layers of feature extraction that makes it suitable for detection and 
segmentation76,77.

In the present paper, we propose a new deep learning-based approach for recognition and morphological 
analysis of isolated astrocytes. For this purpose, we conducted a series of experiments involving the culture of 
primary cultures of rat brain cortex astrocytes, followed by the phase contrast microscopy analysis. We labeled 
the astrocytes in the acquired images and used this data to train the DCNN-based model. Using the proposed 
approach, we tracked the time evolution of the average total length of branches, branching, and area covered 
by an astrocyte. The novelty of the proposed approach lies in its ability to recognize morphological data from 
unstained cell microscopic images. We believe that the proposed approach and the obtained experimental data 
will be of interest and benefit to the scientific communities in cell biology, biophysics, and machine learning.

Results
Astrocyte detection methods with an accuracy (precision P = 0.86) comparable to that of human experts already 
exist57,78. However, these methods were created for the detection of immunohistochemically stained astrocytes 
in high-contrast images, and are not suitable for our experiments. For this reason, the Mask R-CNN neural 
network79, designed for segmentation80, was used to solve the problem of segmentation of living astrocytes. We 
used a Mask R-CNN model pre-trained on the COCO dataset with Inception Resnet v281 on 1024x1024 pixel 
images. We chose Mask-RCNN over the popular Segment Anything Model82 for the following reasons. Firstly, the 
pre-trained model Mask R-CNN show high performance when trained in segmentation living cells83. Secondly, 
the authors84 showed that they were able to outperform the segmentation accuracy of the latest SAM model 
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using improvements to the existing MASK-RCNN model. Thirdly, it was concluded85 that SAM’s zero-shot 
segmentation performance is considerably inferior to that of traditional deep learning-based methods. Thus, the 
selection of the most accurate segmentation model with the fitting of hyperparameters deserves a separate study.

The Mask-RCNN model can process images up to a resolution of 1024 by 1024 pixels. However, to reduce 
computational efforts, we used resized images for model training. The final size of the input images is shown 
in Table 1.

The neural network was trained on images labeled using LabelMe86; examples are shown in Fig. 1. For training, 
microscopic images were pre-processed. They were divided into fragments of 1024x1024 pixels (160x160 µm), 
with each fragment containing up to 6 astrocytes. The image size of 1024 × 1024 pixels for raw images determined 
by equipment (video camera). Fragments in which astrocytes were not detected were discarded. As a result, 
we obtained 221 images of 1024 × 1024 pixels, containing in total 332 labeled astrocytes recorded on different 
days of time evolution. All labeled images were divided into three datasets: 75% were included in the training 
dataset, 15% in the validation dataset, and 10% in the test dataset. To improve the detection of astrocytes87, the 
training and validation dataset were artificially expanded using the following methods: (i) X-axis flip, random 
adjustment, (ii), contrast, (iii) brightness, and (iv) random cropping. The dataset size increased to 1105 images 
by augmentation.

We utilized the acquired datasets to train three models, and the corresponding information is summarized in 
Table 1. For training the following parameters were adjusted: total steps, warm steps, image resizing. The main 
difference among the models lay in the resolution of the resized images used during training: (i) Model 20 cor-
respond to 256 × 256 px, (ii) Model 30 correspond to 512 × 512 px, and (iii) Model 50 correspond to 700 × 700 
px. We found that Model 50 achieved the highest segmentation accuracy (dice coefficient) on the test set (see 
Table 1). This is attributed to the high resolution of the input images used for training. However, the training of 
this model required the greate number of steps and computational efforts. The model trained on 256 × 256 px 
images without augmentation (Model 20) has fewer false positive (FP) detection results than the model trained on 
700 × 700 px images with augmentation (Model 50). Meanwhile, the model trained on 512 × 512 px images with 
augmentation (Model 30) also has fewer FP detection results than Model 50. It can be concluded that by increas-
ing the training dataset, one can achieve a reduction in FP detection results for Model 50. Based on the data from 
Table 1, we concluded that Model 20 has the worst characteristics, and therefore, it was not further considered.

The comparison between the segmentation obtained by models 30 and 50, using images that were not included 
in either the training or test sets, is depicted in Fig. 2. It can be observed that Model 50 detects a higher number 
of branches compared to Model 30, as evident in the second and third rows of Fig. 2. Additionally, in the second 
row of Fig. 2, the branches segmented by Model 30 are longer than those segmented by Model 50, but the masks 
have slight distortions along them. As previously discussed, this discrepancy is associated with the difference in 

Figure 1.   Example of a labeled image of an astrocyte from the rat brain cortex obtained with phase contrast 
microscopy in our experiments.

Table 1.   Summarized parameters of the models trained in this study.

Model comparison

Parameter Model 20 Model 30 Model 50

Total steps 20,000 30,000 50,000

Warm steps 700 700 1000

Learning rate base 0.008 0.008 0.008

Image resize (px × px) 256 × 256 512 × 512 700 × 700

Augmentation Only horizontal flip (after dataset formation) All of the aforementioned All of the aforementioned

True positive 16 16 15

False positive 5 3 6

False negative 29 29 30

Segmentation accuracy (dice coefficient) 0.61 0.68 0.72
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the resolutions of the input images (512 × 512 pixels in Model 30 versus 700 × 700 pixels in Model 50) used during 
training. Note that although Model 50 achieves better segmentation, Model 30 exhibits superior performance 
in minimizing false positives results. It is important, since FP results contribute significant error to the overall 
statistics as they detect an area that was not labeled as an astrocyte. The high number of false negatives (FN) 
across all models (astrocyte was labeled but not detected) can be explained by potential errors in cell annotation. 
In Fig. 3, the model erroneously segmented the intercellular space instead of an astrocyte.

Then, we used Models 30 and 50 for post-processing all available experimental data to assess the morpho-
logical characteristics of isolated astrocytes during their time evolution. In particular, we focused on three char-
acteristics: the total length of branches, the number of branchings, and the area of the astrocyte (including its 
branches). To detect astrocyte branches, we extract their soma based on the local isotropy of the image88–90. The 
directional ratio ranges from low values for vessel-like structures to 1 for drop-shaped structures. This approach 
has been shown to be very effective in separating soma from branches in fluorescent imaging of neurons91. In 
contrast to work91, we used masks obtained through a neural network rather than fluorescent images. Example 
of soma identification is shown in Fig. 4a–c.

After extracting the soma, we separated it from the whole astrocyte body, keeping only the branches. For this 
purpose, we subtracted the Boolean mask of the soma from the Boolean mask of the segmented astrocyte. The 
obtained branch masks underwent skeletonization using the scikit-image library function. The border pixels of 
the astrocyte branches were identified and removed under the condition that their removal did not disrupt the 
connectivity of the respective object. After skeletonization, the thickness of the astrocyte branch became one pixel 
(each pixel has two neighboring pixels except begining or end of the branch). Each branch consists of nodes and 
branch segments coming out of them. Search of segments was developed using a modernized deep-first search 

Figure 2.   The region of interest (ROI) in the detection of the morphology of an astrocyte. The first column 
represents the image of an astrocyte, the second column represents the detection by the neural network Model 
30, and the third column represents the detection by the neural network Model 50.

Figure 3.   False positive (FP) results of astrocyte detection by Model 30. The segmented mask is highlighted in 
red.
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graph method: the number of neighboring pixels in skeletonized branch is sequentially calculated and in cases 
where the number of neighboring pixels exceeds 2 and the previous pixel is not a node, it indicates that this 
particular pixel serves as a node because more than one segment comes out from it, as shown in Fig. 4d. Note, if 
a border segment had a length less than 10 pixels (below the typical thickness of branches), we excluded it from 
consideration. The total length of the branch was calculated by summing the lengths of all segments between 
the nodes for each astrocyte. Based on this result, we identified nodes, branches and segments of the branches, 
allowing us to measure the dynamics of cell growth in the experiment.

The dependency of the number of detected astrocytes by Models 30 and 50 in experimental images across 
different days of astrocyte cultivation are shown in Fig. 5. The maximum number of astrocytes is reached around 
days 5-6, but by day 10, the count of astrocytes significantly decreases. We attribute this to the fact that after the 
6th day, astrocytes form a monolayer with a confluence of approximately 95%, that make them indistinguishable. 
Examples of a random set of experimental images obtained on different days are shown in Fig. 6.

Histograms of the lengths of all astrocyte branches, astrocyte areas, and the number of nodes measured on 
the 7th day, during which both models allowed the detection of a sufficient number of astrocytes, are presented 
in Fig. 7. It can be noted that overall both models lead to similar distributions. Finally, Fig. 8. shows the temporal 
dependencies of the mean values of the parameters we measured: total length of astrocyte branches L, number 
of nodes Nb , area S, as well as the corresponding variances D[L], D[Nb] , and D[S]. Orange circles represent data 
obtained using Model 30, while blue diamonds represent data by Model 50, points measured from samples of 
fewer than 20 astrocytes are colored gray. Overall, it can be noted that Model 50 estimates longer branches, 

Figure 4.   Segmentation of the soma in an astrocyte. The (a) is the original microscope image, the (b) is the 
image colored according to the directional ratio, the (c) is the segmented soma and the (d) is the segmented 
mask of an astrocyte and its skeletonized branches, different colors correspond to the recognized segments.
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Figure 5.   Number of detected astrocytes. Blue and orange symbols correspond to Models 50 and 30, 
respectively, with lines added for better visibility.
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recognizes a greater number of nodes, and consequently identifies a larger area of the astrocyte (which is con-
sidered along with the area of its branches). As noted earlier, this is because Model 50 segments astrocytes with 
high accuracy. At the same time, both models provide similar values of the investigated parameters dispersion. 
Important to note that the lengths and number of branchings we measure are notably lower compared to those 
measured when using cell staining92. This is due to limitations imposed by phase contrast microscopy, which 
does not allow resolving branches with a diameter of less than � 0.8 micrometers, consequently restricting the 
observation of smaller branching networks. The question of the possibility of reconciling data from phase contrast 
microscopy with fluorescent microscopy of stained cells, as well as the development of an extrapolative model 
to estimate the total length of branches based on phase contrast microscopy data, deserves further study. The 
values presented in Fig. 8 are summarized in Table 2 for Model 30 and in Table 3 for Model 50.

For in vitro studies, the method should be sensitive enough to various changes in cell morphology induced by 
the local microenvironment (such as stressful conditions or paracrine and autocrine signaling). To demonstrate 
the ability of our approach to detect such effects, we run a special series of experiments with Nicotinamide as a 
well-known modulator of intracellular NAD+ metabolism. Physiology and morphology of astrocytes could be 
easily affected by altered NAD+ levels (e.g. in aging, ischemia, or neurodegeneration) because glycolytic activity 
and NAD+-dependent enzymes control their activation, migration and interactions with neurons. Nicotinamide 

Figure 6.   Images of astrocytes recorded on 2nd, 6th, 10th, 14th day respectively. The images represent a 
random set from microscopic data taken on the respective days. The red circles indicate the astrocytes that fell 
within the imaged area.

model 50

model 30(a) (b) (c)

Figure 7.   The histograms of astrocyte parameters, as measured on the 7th day of experiments. (a) The 
distribution by lengths, (b) the distribution by areas, and (c) the distribution by the number of nodes. The 
orange bars represent the results of Model 30, while the blue bars represent the results of Model 50. The 
touching blue and red bars refer to the same value.
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(0.1 mmol) was added to astrocytes on the second day of their culture. Morphological parameters of astrocytes 
at different time points of nicotinamide exposure are presented in Table 4 for Model 30 and in Table 5 for Model 
50. Note that our method allows us to identify noticeable deviations in the mean values and variances of the 
tested morphological characteristics in the astroglial culture exposed to Nicotinamide.

It is worth noting that the problem of analyzing the evolution of morphological parameters has also been 
addressed in other studies, for example in93, where the NeuriTES platform was developed to track the dynamic 
evolution of neurons. This method requires manually labeling the neuron whose evolution is to be tracked and 
using a measure of transfer entropy to study the relationships between parameters relevant to the evolving system. 
In contrast, in our work, we proposed to collect statistics of morphological features by days. That is, by imag-
ing a large region, automatically recognizing astrocytes, and extracting morphological parameters of interest.

Figure 8.   The temporal dependencies of astrocyte parameters are shown: (a) illustrates the average length of 
branches L, (b) shows the average number of nodes per astrocyte Nb , and (c) presents the average area S of the 
astrocyte. (d–f) The dependencies of dispersion of the considered characteristics, normalized to the mean value 
squared, D[L]/L2 , D[Nb]/N

2

b
 , and D[S]/S2 respectively. The orange symbols represent the results of Model 30, 

while blue symbols represent the results of Model 50. Data points calculated from samples of fewer than 20 
astrocytes are colored gray.

Table 2.   The tabulated values of the parameters presented in Fig. 8 and calculated using Model 30.

Distribution parameters, Model 30

Number of the day Mean length, M[L], µm
Length dispersion, 
D[L]/L2

Mean branch nodes, 
M[Nb ], µm

Branch nodes 
dispersion, D[Nb]/N2

b
Mean area, M[S], µm2

Area dispersion, 
D[S]/S2

2 36.54 0.2516 2.70 0.3855 241.76 0.0658

3 32.50 0.3773 2.90 0.3999 247.70 0.1130

4 41.40 0.4241 3.98 0.3257 282.01 0.1530

5 37.25 0.4386 3.78 0.3704 243.82 0.1100

6 46.87 0.5066 4.37 0.4380 271.25 0.0998

7 46.82 0.4052 4.54 0.3846 275.25 0.1200

8 46.83 0.2850 4.74 0.3032 279.72 0.1210

9 45.47 0.4884 4.78 0.2996 390.09 0.1100

10 43.01 0.3956 4.84 0.3289 367.22 0.1900

11 25.74 0.0403 3.00 0.2963 323.78 0.0942

12 38.50 0.3148 4.47 0.2185 333.82 0.1270

13 50.17 0.3953 5.61 0.3781 376.97 0.1800

14 64.27 0.2832 6.24 0.2727 392.93 0.1230

15 54.23 0.2269 5.04 0.1936 393.28 0.1160

16 53.05 0.3015 5.65 0.2515 433.39 0.1320

17 50.70 0.3123 5.67 0.2607 442.24 0.0758
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Table 3.   The tabulated values of the parameters presented in Fig. 8 and calculated using Model 50.

Distribution parameters, Model 50

Number of the day Mean length, M[L], µm
Length dispersion, 
D[L]/L2

Mean branch nodes, 
M[Nb ], µm

Branch nodes 
dispersion, D[Nb]/N2

b
Mean area, M[S], µm2

Area dispersion, 
D[S]/S2

2 39.47 0.4540 3.75 0.5111 327.09 0.1100

3 45.58 0.3508 4.06 0.4335 334.39 0.1190

4 54.31 0.2511 5.10 0.2224 345.26 0.1090

5 47.09 0.3691 4.79 0.3085 306.27 0.1420

6 58.47 0.4524 5.56 0.5303 329.11 0.1440

7 50.88 0.3230 4.99 0.3035 309.91 0.1270

8 52.81 0.2777 5.37 0.2418 337.92 0.1310

9 48.85 0.4969 5.40 0.3146 384.74 0.1660

10 68.12 0.3063 7.23 0.3153 450.27 0.1260

11 32.60 0.1334 3.33 0.0200 219.12 0.0810

12 38.06 0.3319 3.67 0.3967 424.16 0.0702

13 56.35 0.5203 7.00 0.4082 414.26 0.1540

14 64.32 0.3154 6.29 0.2705 466.93 0.1840

15 64.07 0.3867 6.83 0.3628 459.02 0.1650

16 54.66 0.3816 5.75 0.3807 468.14 0.2660

17 64.82 0.5046 6.26 0.2924 530.76 0.1360

Table 4.   The tabulated values of the parameters after nicotinamide addition calculated using Model 30.

Distribution parameters, Model 30

Number of the day Mean length, M[L], µm
Length dispersion, 
D[L]/L2

Mean branch nodes, 
M[Nb ], µm

Branch nodes 
dispersion, D[Nb]/N2

b
Mean area, M[S], µm2

Area dispersion, 
D[S]/S2

2 71.71 0.1998 1.00 0.0000 372.10 0.1168

3 62.91 0.0663 1.00 0.0000 301.00 0.0786

4 48.20 0.0000 1.00 0.0000 318.05 0.0000

5 100.37 0.0660 0.00 0.0000 497.73 0.0389

6 53.98 0.0429 0.00 0.0000 256.15 0.1041

7 92.40 0.1394 1.50 0.0494 436.06 0.0766

8 78.16 0.04943 1.00 0.0000 441.23 0.0552

9 57.64 0.2668 0.00 0.0000 327.14 0.0192

10 60.76 0.3004 2.00 0.0000 495.03 0.0423

11 29.11 0.1803 0.00 0.0000 315.42 0.0555

Table 5.   The tabulated values of the parameters after nicotinamide addition calculated using Model 50.

Distribution parameters, Model 50

Number of the day Mean length, M[L], µm
Length dispersion, 
D[L]/L2

Mean branch nodes, 
M[Nb ], µm

Branch nodes 
dispersion, D[Nb]/N2

b
Mean area, M[S], µm2

Area dispersion, 
D[S]/S2

2 70.08 0.1506 1.00 0.0000 373.26 0.0552

3 64.67 0.0873 2.00 0.0000 275.57 0.1146

4 – – – – – –

5 99.81 0.0054 1.00 0.0000 528.81 0.1024

6 – – – – – –

7 110.35 0.0997 2.00 0.0000 552.09 0.1205

8 107.41 0.0559 1.00 0.0000 431.73 0.1020

9 45.45 0.0791 0.00 0.0000 281.46 0.0384

10 29.95 0.0000 0.00 0.0000 521.52 0.0000

11 33.26 0.1325 1.00 0.0000 266.84 0.1161
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Conclusion
We performed the experiments with primary cultures of rat brain cortical astrocytes visualized with phase 
contrast microscopy at different time points of their growth in vitro. We labeled the data and trained three 
models based on deep convolutional neural networks that enable the recognition of astrocytes in low-contrast 
images (obtained without using cell staining) and the analysis of their morphology. Using the obtained models, 
we measured how morphological characteristics such as total branch length, branching count, and overall size 
of an astrocyte are changed along their growth in the culture. The results of our study show that the application 
of a neural network to process experimental data with the study of astrocyte growth dynamics can significantly 
improve the speed of analysis. The novelty of the proposed approach lies in its ability to recognize morphological 
data from unstained cell microscopic images. Our approach allows us to automate the data processing, making 
it more efficient. We have demonstrated that training of the neural network with the data obtained in samples 
that have been thoroughly analyzed by qualified neuroscientists allows achieving good results in predicting 
the outcomes of astroglia branching. Our results significantly extend the potential use of neural networks in 
neurobiology and represent an important contribution to the development of experimental data processing 
methods in this field.

In the conclusion, it is possible to formulate a series of problems and directions for further studies, in which 
the obtained results and methods can serve as a basis. Firstly, by augmenting the training dataset with data con-
taining a priori known other cell types, the proposed approach can be generalized for the recognition of various 
cell types in phase-contrast microscopy data. Furthermore, having sufficient datasets for cell morphology analysis 
based on phase contrast and fluorescence methods, it may be possible to establish accurate correspondences 
between them, potentially speeding up and reducing the cost of a range of cell morphology studies by eliminat-
ing the need for staining. Furthermore, when properly generalized and integrated with a system for automatic 
periodic scanning of plates with cell culture, our method can enable the development of a system capable of 
tracking and analyzing the morphology of each individual cell during its cultivation. Finally, the analysis of 
three-dimensional cellular structures is of great interest, which requires the development of separate methods 
and algorithms. One possible approach to developing such methods is the synthesis of computer-generated 3D 
structures based on a series of two-dimensional images, which is actively used in solving similar tasks in the 
field of soft matter physics. It is worth noting that the proposed method, as well as possible extensions to 3D 
structures, tracking individual cells, and identifying their types, will be useful for the development of digital 
twins of individual cells and organoids. For example, these digital twins could be based on cellular Potts mod-
els and implemented in packages such as CompuCell3D or other agent-based approaches. In particular, such 
models require significant statistics of the morphological parameters of cells under different conditions for 
parameterizing the models or their final verification. In turn, digital twins will allow us to better understand the 
mechanisms of various processes occurring in cell systems, as well as reduce the number of experiments. All 
of the above indicates the potential benefit of the proposed method for the scientific communities in biology, 
biophysics, medicine, neuroscience, and bioimaging.

Materials and methods
Isolation and cultivation of astrocytes from the rat brain cortex
A dissociated culture of astrocytes was obtained from newborn Wistar rats using the method of enzymatic-
mechanical dissociation according to a previously described method94,95. The isolated structures were rinsed 
with calcium and magnesium-free phosphate-buffered saline (PBS, pH 7.4, Gibco Life Technologies, USA), 
minced with a scalpel, and incubated for 15 min at 37 ◦ C in a 0.05% trypsin and 0.02% EDTA solution (Gibco 
Life Technologies, USA). After two washes with phosphate buffer, the structures were mechanically dissociated 
in culture medium using stepwise pipetting. The culture medium consisted of 90% minimum essential medium 
(MEM Gibco, UK), 10% fetal bovine serum (FBS), 2 mM glutamax (Gibco, UK), 10 mM HEPES buffer (Sigma, 
USA), pH 7.2–7.4. The cell suspension was centrifuged for 3 minutes at 1000 rpm, the pellet was resuspended 
in the culture medium, and cells were seeded into two T-25 culture flasks. Cultures were maintained in a CO2 
incubator (RWD Life Science, China) at 37 ◦ C, 5 % CO2 , and 98% relative humidity. On the second day of 
cultivation, a complete change of the culture medium was performed to a medium containing 10% FBS. Upon 
monolayer formation, astrocytic cultures were transferred to 96-well plastic plates (Servicebio, China) with 100 
µ l of a suspension containing 2× 106 cells per ml. This two actions also serves as a step in purifying the astro-
cyte culture. Cell counting and viability assessment were performed using the Countess automated cell counter 
(Invitrogen), which recorded total cell count, live and dead cells, survival percentage, and cell size distribution. 
All experimental protocols were approved by the Ethical Committee of the “Research Center of Neurology”.
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Immunofluorescence assay
The isolated primary culture cells were transferred onto cover slides and incubated in a 10% FBS culture medium 
upon monolayer formation. The media was discarded, and cells were washed in PBS. The cells were further fixed 
with fresh 5 % paraformaldehyde (PFA) for 15 min, samples were treated with 0.1% TritonX-100 (Calbiochem 
Biochemicals, USA) and blocked with 5 % bovine serum albumin (BSA, Sigma, Germany). The primary antibodies 
were diluted in the IHCDiluent (Leica), placed on cover slides, incubated at 4 ◦ C for 6 h. The selected antibod-
ies were rabbit anti-GFAP antibody (1:250, Abcam, ab68428), rabbit anti-NeuN antibody (1:200, ABclonal, 
A19086), rabbit anti- IBA1 antibody (1:200, Affinity Biosciences, DF6442), rabbit anti-PDGFRB antibody (1:300, 
Elabscience, E-AB-32531). After five washes with PBS, the cells were incubated with Goat Anti-Rabit IgG(H+L) 
Alexa Fluor 594-cojugated (1:250, Elabscience, E-AB1060) or Alexa Fluor 594-conjugated Donkey Anti-Rabit 
IgG(H+L) (1:200, Fine Test, FNSA-0063), FITC Goat Anti-Rabbit IgG (H+L) (1:200, ABclonal, AS011) or FITC-
linked Guinea pig Anti-Rabbit IgG Polyclonal antibody (1:1000, Cloud-Clone, SAA544Rb58) secondary anti-
bodies for 2 h at room temperature. Then cells were washed with PBS twice and stained with Fluoroshield and 
DAPI (Sigma). The slides proceeded without primary antibodies were used as a negative control. Images were 
captured using EVOS M7000 system (ThermoFisher Scientific).

Identification of culture cells
Immunophenotyping of neuronal, astroglial and microglial cells was performed to confirm the purity of the pri-
mary culture. As shown in Fig. 9a, the majority of isolated cells was positively stained with the astrocyte marker 
GFAP. Negative results have been obtained in immunostaining with NeuN antibodies that recognize mature 
neurons, thereby confirming the absence of neuronal cells in the primary culture. The cells in the primary culture 
were positively stained with a microglial marker Iba1 (Fig. 9b), but not more than 10% of Iba1-immunopositive 
cells have been found. Also, cells in the primary culture were positively stained with a pericyte marker PDGFRB, 
the number of PDGFRB-positive cells was no more than 8 % (Fig. 9c). Thus, we confirm that astrocytes are the 
predominant type of cells within the primary culture which was further used for the application of machine 
learning algorithms to recognize astrocytes in phase-contrast images.

Phase‑contrast microscopy
To study morphology of astrocytes in their native state, we applied the phase contrast microscopy which does 
not require any staining and fixation. Live observations were conducted using phase-contrast microscopy with 
the “EVOS M7000” imaging system (Thermo Fisher Scientific, USA). Experimental work was carried out to 
visualize rat astrocyte cells during their growth. An EVOS M7000 phase contrast microscope with an AMC1000 
stage incubator was used for observation. A 96-well plate with cells was installed inside a built-in incubator 
with motorized stages. We conducted a series of experiments over a duration of 18 days. Microphotography of 
cells was carried out daily and included photographic recording of a 4x4 frame field in each well of the plate at a 
magnification of 40x starting from the second day of cultivation. Note that the study area was selected randomly, 
without preliminary analysis for the presence of astrocytes. Since the microscope has motorized stage movers, 
it was possible to track the position of the frame according to coordinates in the XY plane throughout the entire 
well area. This approach allowed the same area of each well to be recorded daily. Thus, as a result of the experi-
ments, photographs of astrocytes were obtained at different moments of their growth. The experimental work 
involved capturing photographic records of astrocytes through microscopy of 6 wells within the plate. In total, 
over 1100 astrocytes were recorded at various growth stages. The results of the experiment are low-contrast 
images of astrocytes, which are subsequently the object of analysis for neural networks. In Fig. 10. we show 
images acquired during the same experiment (on the same day and on an identical setup) to check for possible 
bias between experiments under nominally identical conditions.

Figure 9.   Identification of culture cells: (a) astrocytes in the primary culture: the cell bodies and processes are 
stained with GFAP antibody (red), the nuclei are stained with DAPI (blue), (b) microglia in the primary culture: 
cell bodies and processes are stained with Iba1 antibody (red), the nuclei are stained with DAPI (blue), (c) 
pericytes in the primary culture: the cell bodies and processes are stained with PDGFRB antibody (green), the 
nuclei are stained with DAPI (blue).
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 27 December 2023; Accepted: 15 April 2024

References
	 1.	 Cabezas, R. et al. Growth factors and astrocytes metabolism: Possible roles for platelet derived growth factor. Med. Chem. 12, 

204–210. https://​doi.​org/​10.​2174/​15734​06411​66615​10191​20444 (2016).
	 2.	 Nag, S. & Walker, J. The Blood–Brain and Other Neural Barriers: Reviews and Protocols (Humana Press, 2011).
	 3.	 Siracusa, R., Fusco, R. & Cuzzocrea, S. Astrocytes: Role and functions in brain pathologies. Front. Pharmacol.https://​doi.​org/​10.​

3389/​fphar.​2019.​01114 (2019).
	 4.	 Freeman, M. R. Specification and morphogenesis of astrocytes. Science 330, 774–778. https://​doi.​org/​10.​1126/​scien​ce.​11909​28 

(2010).
	 5.	 Guillamon-Vivancos, T., Gomez-Pinedo, U. & Matias-Guiu, J. Astrocytes in neurodegenerative diseases (I): Function and molecular 

description. Neurologia (English Edition) 30, 119–129. https://​doi.​org/​10.​1016/j.​nrleng.​2014.​12.​005 (2015).
	 6.	 Zhou, Y. et al. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun. Signal.https://​

doi.​org/​10.​1186/​s12964-​020-​00549-2 (2020).
	 7.	 Sloan, S. A. & Barres, B. A. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr. 

Opin. Neurobiol. 27, 75–81. https://​doi.​org/​10.​1016/j.​conb.​2014.​03.​005 (2014).
	 8.	 Zhou, B., Zuo, Y.-X. & Jiang, R.-T. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci. 

Ther. 25, 665–673. https://​doi.​org/​10.​1111/​cns.​13123 (2019).
	 9.	 Wang, S.S.-H. et al. Functional trade-offs in white matter axonal scaling. J. Neurosci. 28, 4047–4056. https://​doi.​org/​10.​1523/​jneur​

osci.​5559-​05.​2008 (2008).
	10.	 Middelkamp, H. H. T. et al. Cell type-specific changes in transcriptomic profiles of endothelial cells, IPSC-derived neurons and 

astrocytes cultured on microfluidic chips. Sci. Rep.https://​doi.​org/​10.​1038/​s41598-​021-​81933-x (2021).
	11.	 Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain 

barrier on a chip. PLOS ONE 11, e0150360. https://​doi.​org/​10.​1371/​journ​al.​pone.​01503​60 (2016).
	12.	 Oudart, M. et al. Astrodot: A new method for studying the spatial distribution of mRNA in astrocytes. J. Cell Sci.https://​doi.​org/​

10.​1242/​jcs.​239756 (2020).
	13.	 Yu, X., Nagai, J. & Khakh, B. S. Improved tools to study astrocytes. Nat. Rev. Neurosci. 21, 121–138. https://​doi.​org/​10.​1038/​s41583-​

020-​0264-8 (2020).
	14.	 Oschmann, F., Berry, H., Obermayer, K. & Lenk, K. From in silico astrocyte cell models to neuron-astrocyte network models: A 

review. Brain Res. Bull. 136, 76–84. https://​doi.​org/​10.​1016/j.​brain​resbu​ll.​2017.​01.​027 (2018).
	15.	 Savtchenko, L. P. et al. Disentangling astroglial physiology with a realistic cell model in silico. Nat. Commun.https://​doi.​org/​10.​

1038/​s41467-​018-​05896-w (2018).
	16.	 Verisokin, A. Y., Verveyko, D. V., Postnov, D. E. & Brazhe, A. R. Modeling of astrocyte networks: Toward realistic topology and 

dynamics. Front. Cell. Neurosci.https://​doi.​org/​10.​3389/​fncel.​2021.​645068 (2021).
	17.	 Nguyen, K.-V., Hernandez-Garzon, E. & Valette, J. Efficient GPU-based Monte-Carlo simulation of diffusion in real astrocytes 

reconstructed from confocal microscopy. J. Magnet. Reson. 296, 188–199. https://​doi.​org/​10.​1016/j.​jmr.​2018.​09.​013 (2018).
	18.	 Lenk, K. et al. A computational model of interactions between neuronal and astrocytic networks: The role of astrocytes in the 

stability of the neuronal firing rate. Front. Comput. Neurosci.https://​doi.​org/​10.​3389/​fncom.​2019.​00092 (2020).
	19.	 Hines, M. L. & Carnevale, N. T. The neuron simulation environment. Neural Comput. 9, 1179–1209. https://​doi.​org/​10.​1162/​neco.​

1997.9.​6.​1179 (1997).

Figure 10.   Images acquired during the same experiment (on the same day and on an identical setup) to check 
for possible bias between experiments under nominally identical conditions.

https://doi.org/10.2174/1573406411666151019120444
https://doi.org/10.3389/fphar.2019.01114
https://doi.org/10.3389/fphar.2019.01114
https://doi.org/10.1126/science.1190928
https://doi.org/10.1016/j.nrleng.2014.12.005
https://doi.org/10.1186/s12964-020-00549-2
https://doi.org/10.1186/s12964-020-00549-2
https://doi.org/10.1016/j.conb.2014.03.005
https://doi.org/10.1111/cns.13123
https://doi.org/10.1523/jneurosci.5559-05.2008
https://doi.org/10.1523/jneurosci.5559-05.2008
https://doi.org/10.1038/s41598-021-81933-x
https://doi.org/10.1371/journal.pone.0150360
https://doi.org/10.1242/jcs.239756
https://doi.org/10.1242/jcs.239756
https://doi.org/10.1038/s41583-020-0264-8
https://doi.org/10.1038/s41583-020-0264-8
https://doi.org/10.1016/j.brainresbull.2017.01.027
https://doi.org/10.1038/s41467-018-05896-w
https://doi.org/10.1038/s41467-018-05896-w
https://doi.org/10.3389/fncel.2021.645068
https://doi.org/10.1016/j.jmr.2018.09.013
https://doi.org/10.3389/fncom.2019.00092
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1162/neco.1997.9.6.1179


12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9846  | https://doi.org/10.1038/s41598-024-59773-2

www.nature.com/scientificreports/

	20.	 Allam, S. L. et al. A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neu-
ronal spiking. Front. Comput. Neurosci.https://​doi.​org/​10.​3389/​fncom.​2012.​00070 (2012).

	21.	 Radan, M., Djikic, T., Obradovic, D. & Nikolic, K. Application of in vitro pampa technique and in silico computational methods 
for blood-brain barrier permeability prediction of novel cns drug candidates. Eur. J. Pharmaceut. Sci. 168, 106056. https://​doi.​org/​
10.​1016/j.​ejps.​2021.​106056 (2022).

	22.	 Abdellah, M. et al. Metaball skinning of synthetic astroglial morphologies into realistic mesh models for in silico simulations and 
visual analytics. Bioinformatics 37, i426–i433. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btab2​80 (2021).

	23.	 Comes, M. C. et al. Accelerating the experimental responses on cell behaviors: A long-term prediction of cell trajectories using 
social generative adversarial network. Sci. Rep.https://​doi.​org/​10.​1038/​s41598-​020-​72605-3 (2020).

	24.	 Goncalves Seabra, A. C., Silva, A. F. D., Stieglitz, T. & Amado-Rey, A. B. In silico blood pressure models comparison. IEEE Sens. 
J. 22, 23486–23493. https://​doi.​org/​10.​1109/​jsen.​2022.​32155​97 (2022).

	25.	 Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M. & Macklin, P. Physicell: An open source physics-based cell 
simulator for 3-D multicellular systems. PLOS Comput. Biol. 14, e1005991. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10059​91 (2018).

	26.	 Swat, M. H. et al. Multi-Scale Modeling of Tissues Using CompuCell3D. 325–366 (Elsevier, 2012).
	27.	 Roy, M. & Finley, S. D. Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model. 

PLOS Comput. Biol. 15, e1007053. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10070​53 (2019).
	28.	 Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674. https://​doi.​org/​10.​1038/​38667​1a0 (1997).
	29.	 Ferozepurwalla, Z., Merzah, J., Thielemans, L. & Birdsey, G. Molecular and Cellular Mechanisms of Angiogenesis. 219–226 (Springer, 

2019).
	30.	 Villa, C., Chaplain, M. A. J., Gerisch, A. & Lorenzi, T. Mechanical models of pattern and form in biological tissues: The role of 

stress-strain constitutive equations. Bull. Math. Biol.https://​doi.​org/​10.​1007/​s11538-​021-​00912-5 (2021).
	31.	 Tosin, A., Ambrosi, D. & Preziosi, L. Mechanics and chemotaxis in the morphogenesis of vascular networks. Bull. Math. Biol. 68, 

1819–1836. https://​doi.​org/​10.​1007/​s11538-​006-​9071-2 (2006).
	32.	 Manoussaki, D. A mechanochemical model of angiogenesis and vasculogenesis. ESAIM Math. Model. Numer. Anal. 37, 581–599 

https://​doi.​org/​10.​1051/​m2an:​20030​46 (2003).
	33.	 Nakazawa, T., Tasaki, S., Nakai, K. & Suzuki, T. Multicellular model of angiogenesis. AIMS Bioeng. 9, 44–60. https://​doi.​org/​10.​

3934/​bioeng.​20220​04 (2022).
	34.	 Wang, Y. et al. On-chip-angiogenesis based on a high-throughput biomimetic three-dimensional cell spheroid culture system. 

Analyst 148, 3870–3875. https://​doi.​org/​10.​1039/​d3an0​0817g (2023).
	35.	 Mada, J. & Tokihiro, T. Pattern formation of vascular network in a mathematical model of angiogenesis. Jpn. J. Indus. Appl. Math. 

39, 351–384. https://​doi.​org/​10.​1007/​s13160-​021-​00493-9 (2021).
	36.	 Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-b in vitro and in situ. Nat. Med. 9, 453–457. https://​doi.​org/​10.​1038/​

nm838 (2003).
	37.	 Ogata, K. & Kosaka, T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113, 221–233. 

https://​doi.​org/​10.​1016/​s0306-​4522(02)​00041-6 (2002).
	38.	 Zhuo, L. et al. Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev. Biol. 187, 36–42. https://​doi.​org/​10.​

1006/​dbio.​1997.​8601 (1997).
	39.	 Aten, S. et al. Ultrastructural view of astrocyte arborization, astrocyte-astrocyte and astrocyte-synapse contacts, intracellular 

vesicle-like structures, and mitochondrial network. Prog. Neurobiol. 213, 102264. https://​doi.​org/​10.​1016/j.​pneur​obio.​2022.​102264 
(2022).

	40.	 Kacem, K., Lacombe, P., Seylaz, J. & Bonvento, G. Structural organization of the perivascular astrocyte endfeet and their relation-
ship with the endothelial glucose transporter: A confocal microscopy study. Glia 23, 1–10. https://​doi.​org/​10.​1002/​(sici)​1098-​
1136(199805)​23:​1<​1::​aid-​glia1​>3.​0.​co;2-b (1998).

	41.	 Jackson, J. G. & Robinson, M. B. Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns. 
Glia 66, 1213–1234. https://​doi.​org/​10.​1002/​glia.​23252 (2017).

	42.	 Lanjakornsiripan, D. et al. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence 
on neuronal layers. Nat. Commun.https://​doi.​org/​10.​1038/​s41467-​018-​03940-3 (2018).

	43.	 Chai, H. et al. Neural circuit-specialized astrocytes: Transcriptomic, proteomic, morphological, and functional evidence. Neuron 
95, 531-549.e9. https://​doi.​org/​10.​1016/j.​neuron.​2017.​06.​029 (2017).

	44.	 Beretta, C. et al. Extracellular vesicles from amyloid-b exposed cell cultures induce severe dysfunction in cortical neurons. Sci. 
Rep.https://​doi.​org/​10.​1038/​s41598-​020-​72355-2 (2020).

	45.	 Zhang, C. et al. Effects of dimethyl sulfoxide on the morphology and viability of primary cultured neurons and astrocytes. Brain 
Res. Bull. 128, 34–39. https://​doi.​org/​10.​1016/j.​brain​resbu​ll.​2016.​11.​004 (2017).

	46.	 Wakida, N. M. et al. Phagocytic response of astrocytes to damaged neighboring cells. PLOS ONE 13, e0196153. https://​doi.​org/​
10.​1371/​journ​al.​pone.​01961​53 (2018).

	47.	 Wakida, N. M., Cruz, G. M. S., Pouladian, P., Berns, M. W. & Preece, D. Fluid shear stress enhances the phagocytic response of 
astrocytes. Front. Bioeng. Biotechnol.https://​doi.​org/​10.​3389/​fbioe.​2020.​596577 (2020).

	48.	 Teh, D. B. L. et al. Transcriptome analysis reveals neuroprotective aspects of human reactive astrocytes induced by interleukin 1b. 
Sci. Rep.https://​doi.​org/​10.​1038/​s41598-​017-​13174-w (2017).

	49.	 Allahyari, R. V., Clark, K. L., Shepard, K. A. & Garcia, A. D. R. Sonic hedgehog signaling is negatively regulated in reactive astrocytes 
after forebrain stab injury. Sci. Rep.https://​doi.​org/​10.​1038/​s41598-​018-​37555-x (2019).

	50.	 Farhy-Tselnicker, I. & Allen, N. J. Astrocytes, neurons, synapses: A tripartite view on cortical circuit development. Neural 
Dev.https://​doi.​org/​10.​1186/​s13064-​018-​0104-y (2018).

	51.	 Vezzoli, E. et al. Ultrastructural evidence for a role of astrocytes and glycogen-derived lactate in learning-dependent synaptic 
stabilization. Cereb. Cortex 30, 2114–2127. https://​doi.​org/​10.​1093/​cercor/​bhz226 (2019).

	52.	 Gavrilov, N. et al. Astrocytic coverage of dendritic spines, dendritic shafts, and axonal boutons in hippocampal neuropil. Front. 
Cell. Neurosci.https://​doi.​org/​10.​3389/​fncel.​2018.​00248 (2018).

	53.	 Arizono, M. et al. Structural basis of astrocytic Ca2+ signals at tripartite synapses. Nat. Commun.https://​doi.​org/​10.​1038/​s41467-​
020-​15648-4 (2020).

	54.	 Berg, S. et al. Ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232. https://​doi.​org/​10.​1038/​
s41592-​019-​0582-9 (2019).

	55.	 Comes, M. C. et al. A camera sensors-based system to study drug effects on in vitro motility: The case of pc-3 prostate cancer cells. 
Sensors 20, 1531. https://​doi.​org/​10.​3390/​s2005​1531 (2020).

	56.	 D’Orazio, M. et al. Deciphering cancer cell behavior from motility and shape features: Peer prediction and dynamic selection to 
support cancer diagnosis and therapy. Front. Oncol.https://​doi.​org/​10.​3389/​fonc.​2020.​580698 (2020).

	57.	 Suleymanova, I. et al. A deep convolutional neural network approach for astrocyte detection. Sci. Rep.https://​doi.​org/​10.​1038/​
s41598-​018-​31284-x (2018).

	58.	 D’Orazio, M. et al. Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring 
colorectal adenocarcinoma cells gene expression and drug-response. Sci. Rep.https://​doi.​org/​10.​1038/​s41598-​022-​12364-5 (2022).

	59.	 Mencattini, A. et al. Deep-manager: A versatile tool for optimal feature selection in live-cell imaging analysis. Commun. Biol.https://​
doi.​org/​10.​1038/​s42003-​023-​04585-9 (2023).

https://doi.org/10.3389/fncom.2012.00070
https://doi.org/10.1016/j.ejps.2021.106056
https://doi.org/10.1016/j.ejps.2021.106056
https://doi.org/10.1093/bioinformatics/btab280
https://doi.org/10.1038/s41598-020-72605-3
https://doi.org/10.1109/jsen.2022.3215597
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1371/journal.pcbi.1007053
https://doi.org/10.1038/386671a0
https://doi.org/10.1007/s11538-021-00912-5
https://doi.org/10.1007/s11538-006-9071-2
https://doi.org/10.1051/m2an:2003046
https://doi.org/10.3934/bioeng.2022004
https://doi.org/10.3934/bioeng.2022004
https://doi.org/10.1039/d3an00817g
https://doi.org/10.1007/s13160-021-00493-9
https://doi.org/10.1038/nm838
https://doi.org/10.1038/nm838
https://doi.org/10.1016/s0306-4522(02)00041-6
https://doi.org/10.1006/dbio.1997.8601
https://doi.org/10.1006/dbio.1997.8601
https://doi.org/10.1016/j.pneurobio.2022.102264
https://doi.org/10.1002/(sici)1098-1136(199805)23:1<1::aid-glia1>3.0.co;2-b
https://doi.org/10.1002/(sici)1098-1136(199805)23:1<1::aid-glia1>3.0.co;2-b
https://doi.org/10.1002/glia.23252
https://doi.org/10.1038/s41467-018-03940-3
https://doi.org/10.1016/j.neuron.2017.06.029
https://doi.org/10.1038/s41598-020-72355-2
https://doi.org/10.1016/j.brainresbull.2016.11.004
https://doi.org/10.1371/journal.pone.0196153
https://doi.org/10.1371/journal.pone.0196153
https://doi.org/10.3389/fbioe.2020.596577
https://doi.org/10.1038/s41598-017-13174-w
https://doi.org/10.1038/s41598-018-37555-x
https://doi.org/10.1186/s13064-018-0104-y
https://doi.org/10.1093/cercor/bhz226
https://doi.org/10.3389/fncel.2018.00248
https://doi.org/10.1038/s41467-020-15648-4
https://doi.org/10.1038/s41467-020-15648-4
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.3390/s20051531
https://doi.org/10.3389/fonc.2020.580698
https://doi.org/10.1038/s41598-018-31284-x
https://doi.org/10.1038/s41598-018-31284-x
https://doi.org/10.1038/s41598-022-12364-5
https://doi.org/10.1038/s42003-023-04585-9
https://doi.org/10.1038/s42003-023-04585-9


13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9846  | https://doi.org/10.1038/s41598-024-59773-2

www.nature.com/scientificreports/

	60.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https://​doi.​org/​10.​1038/​natur​e14539 (2015).
	61.	 Guo, Y. et al. Deep learning for visual understanding: A review. Neurocomputing 187, 27–48. https://​doi.​org/​10.​1016/j.​neucom.​

2015.​09.​116 (2016).
	62.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inform. 

Process. Syst. 25, 133 (2012).
	63.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. https://​doi.​org/​10.​48550/​

ARXIV.​1409.​1556 (2014).
	64.	 Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks. In Computer Vision—ECCV 2014: 13th European 

Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part I 13. 818–833 (Springer, 2014).
	65.	 Szegedy, C. et al. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion. 1–9 (2015).
	66.	 Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image 

Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 
2015, Proceedings, Part III 18. 234–241 (Springer, 2015).

	67.	 Xia, X. & Kulis, B. W-net: A deep model for fully unsupervised image segmentation. arXiv preprint arXiv:​1711.​08506 (2017).
	68.	 Ciresan, D., Giusti, A., Gambardella, L. & Schmidhuber, J. Deep neural networks segment neuronal membranes in electron 

microscopy images. Adv. Neural Inform. Process. Syst. 25, 14 (2012).
	69.	 Jung, C. et al. W-net: A CNN-based architecture for white blood cells image classification. arXiv preprint arXiv:​1910.​01091 (2019).
	70.	 Shanthi, T. & Sabeenian, R. Modified alexnet architecture for classification of diabetic retinopathy images. Comput. Electr. Eng. 

76, 56–64. https://​doi.​org/​10.​1016/j.​compe​leceng.​2019.​03.​004 (2019).
	71.	 Kaur, T. & Gandhi, T. K. Automated brain image classification based on VGG-16 and transfer learning. In 2019 International 

Conference on Information Technology (ICIT). https://​doi.​org/​10.​1109/​icit4​8102.​2019.​00023 (IEEE, 2019).
	72.	 Lu, T., Han, B. & Yu, F. Detection and classification of marine mammal sounds using alexnet with transfer learning. Ecol. Inform. 

62, 101277. https://​doi.​org/​10.​1016/j.​ecoinf.​2021.​101277 (2021).
	73.	 Mashrur, F. R., Dutta Roy, A. & Saha, D. K. Automatic identification of arrhythmia from ECG using Alexnet convolutional neural 

network. In 2019 4th International Conference on Electrical Information and Communication Technology (EICT). https://​doi.​org/​
10.​1109/​eict4​8899.​2019.​90688​06 (IEEE, 2019).

	74.	 Lu, X., Duan, X., Mao, X., Li, Y. & Zhang, X. Feature extraction and fusion using deep convolutional neural networks for face 
detection. Math. Probl. Eng. 1–9, 2017. https://​doi.​org/​10.​1155/​2017/​13767​26 (2017).

	75.	 Yu, B., Yin, H. & Zhu, Z. St-unet: A spatio-temporal u-network for graph-structured time series modeling. arXiv preprint arXiv:​
1903.​05631 (2019).

	76.	 Jiang, Y., Yang, M., Wang, S., Li, X. & Sun, Y. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer 
Commun. 40, 154–166. https://​doi.​org/​10.​1002/​cac2.​12012 (2020).

	77.	 Chen, T. & Chefd’hotel, C. Deep Learning Based Automatic Immune Cell Detection for Immunohistochemistry Images. 17–24 
(Springer, 2014).

	78.	 Labate, D. & Kayasandik, C. Advances in quantitative analysis of astrocytes using machine learning. Neural Regener. Res. 18, 313. 
https://​doi.​org/​10.​4103/​1673-​5374.​346474 (2023).

	79.	 He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-CNN. In Proceedings of the IEEE International Conference on Computer Vision. 
2961–2969 (2017).

	80.	 Tsai, H.-F., Gajda, J., Sloan, T. F., Rares, A. & Shen, A. Q. Usiigaci: Instance-aware cell tracking in stain-free phase contrast micros-
copy enabled by machine learning. SoftwareX 9, 230–237 (2019).

	81.	 Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P. & He, K. Detectron. https://​github.​com/​faceb​ookre​search/​detec​tron (2018).
	82.	 Kirillov, A. et al. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 4015–4026 

(2023).
	83.	 Edlund, C. et al. Livecell—A large-scale dataset for label-free live cell segmentation. Nat. Methods 18, 1038–1045 (2021).
	84.	 Zhang, W. et al. Tobacco leaf segmentation based on improved mask RCNN algorithm and SAM model. IEEE Access (2023).
	85.	 He, S., Bao, R., Li, J., Grant, P. E. & Ou, Y. Accuracy of segment-anything model (SAM) in medical image segmentation tasks. arXiv 

preprint arXiv:​2304.​09324 (2023).
	86.	 Russell, B. C., Torralba, A., Murphy, K. P. & Freeman, W. T. Labelme: A database and web-based tool for image annotation. Int. J. 

Comput. Vis. 77, 157–173 (2008).
	87.	 Shijie, J., Ping, W., Peiyi, J. & Siping, H. Research on data augmentation for image classification based on convolution neural 

networks. In 2017 Chinese Automation Congress (CAC). 4165–4170 (IEEE, 2017).
	88.	 Kayasandik, C. B. & Labate, D. Improved detection of soma location and morphology in fluorescence microscopy images of 

neurons. J. Neurosci. Methods 274, 61–70 (2016).
	89.	 Labate, D., Laezza, F., Negi, P., Ozcan, B. & Papadakis, M. Efficient processing of fluorescence images using directional multiscale 

representations. Math. Model. Nat. Phenomena 9, 177–193 (2014).
	90.	 Ozcan, B., Labate, D., Jiménez, D. & Papadakis, M. Directional and non-directional representations for the characterization of 

neuronal morphology. In Wavelets and Sparsity XV. Vol. 8858. 12–22 (SPIE, 2013).
	91.	 Ozcan, B., Negi, P., Laezza, F., Papadakis, M. & Labate, D. Automated detection of soma location and morphology in neuronal 

network cultures. PloS one 10, e0121886 (2015).
	92.	 Hayashi, M. K., Sato, K. & Sekino, Y. Neurons induce tiled astrocytes with branches that avoid each other. Int. J. Mol. Sci. 23, 4161. 

https://​doi.​org/​10.​3390/​ijms2​30841​61 (2022).
	93.	 Mencattini, A. et al. Neurites. monitoring neurite changes through transfer entropy and semantic segmentation in bright-field 

time-lapse microscopy. Patterns 2 (2021).
	94.	 Weikert, S. et al. Rapid Ca2+-dependent no-production from central nervous system cells in culture measured by no-nitrite/ozone 

chemoluminescence. Brain Res. 748, 1–11. https://​doi.​org/​10.​1016/​s0006-​8993(96)​01241-3 (1997).
	95.	 Stel’mashuk, E. V. et al. Vliianie induktora neirovospaleniia na komponenty neirovaskuliarnoi edinitsy golovnogo mozga in vitro. 

Rossiiskii Fiziol. Zh. IM Sechenova 108, 686–696 (2022).

Acknowledgements
The post-processing and analysis of experiments was supported by the Russian Science Foundation, Grant 
No. 22-72-10128.

Author contributions
E.V.Y, N.P.K. and N.A.K. developed experimental work; I.V.S. developed an approach for recognition and mor-
phological analysis; N.A.K., S.V.N., A.A.S., D.E.N., E.V.Y. conducted the experiments; N.A.K., S.V.N. obtained and 
cultivated cells; I.V.S., A.A.S., D.E.N., I.R.D., K.D.G., I.N.S., S.V.N. created the dataset for training a neural net-
work; I.V.S., K.D.G., N.P.K. post-processed experimental data; N.P.K., E.V.Y., A.D.N. I.V.S., wrote the manuscript; 

https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.48550/ARXIV.1409.1556
http://arxiv.org/abs/1711.08506
http://arxiv.org/abs/1910.01091
https://doi.org/10.1016/j.compeleceng.2019.03.004
https://doi.org/10.1109/icit48102.2019.00023
https://doi.org/10.1016/j.ecoinf.2021.101277
https://doi.org/10.1109/eict48899.2019.9068806
https://doi.org/10.1109/eict48899.2019.9068806
https://doi.org/10.1155/2017/1376726
http://arxiv.org/abs/1903.05631
http://arxiv.org/abs/1903.05631
https://doi.org/10.1002/cac2.12012
https://doi.org/10.4103/1673-5374.346474
https://github.com/facebookresearch/detectron
http://arxiv.org/abs/2304.09324
https://doi.org/10.3390/ijms23084161
https://doi.org/10.1016/s0006-8993(96)01241-3


14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9846  | https://doi.org/10.1038/s41598-024-59773-2

www.nature.com/scientificreports/

N.P.K., E.V.Y., I.V.S., I.N.S., I.R.D. prepared the figures; N.P.K., E.V.Y., I.V.S., N.A.K., A.B.S., S.O.Y. discussed the 
results; N.P.K. and E.V.Y. conceived, developed, and directed the study. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to E.V.Y. or N.P.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine learning approach for recognition and morphological analysis of isolated astrocytes in phase contrast microscopy
	Results
	Conclusion
	Materials and methods
	Isolation and cultivation of astrocytes from the rat brain cortex
	Immunofluorescence assay
	Identification of culture cells
	Phase-contrast microscopy

	References
	Acknowledgements


