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Computation and convergence 
of fixed‑point with an RLC‑electric 
circuit model in an extended 
b‑suprametric space
Sumati Kumari Panda 1,5*, Vijayakumar Velusamy 2,5*, Ilyas Khan 3,5* & Shafiullah Niazai 4,5*

This article establishes various fixed-point results and introduces the idea of an extended 
b-suprametric space. We also give several applications pertaining to the existence and uniqueness 
of the solution to the equations concerning RLC electric circuits. At the end of the article, a few open 
questions are posed concerning the distortion of Chua’s circuit and the formulation of the Lagrangian 
for Chua’s circuit.

Background summary and preliminaries
Numerous mathematical challenges incorporating the use of differential equations, and integral equations can 
be solved, and their continual existence is confirmed by the well-known contraction principle. To increase this 
extraordinary principle’s feasibility in numerous different abstract spaces, initiatives are being undertaken to 
explore and extend it1–4. By diminishing the triangle inequality, Bakhtin5 and Czerwik6 extended the configura-
tion of metric space and called it b-metric space. As a result, a number of papers addressing fixed-point hypoth-
eses for both single- and multi-valued mapping in b-metric space have been published.

Within this framework, Maher Berzig7 presented the idea of b-suprametric space by weakening the triangle 
inequality even further, while Kamran et al.8 presented the idea of extended b-metric space. A great deal of atten-
tion and study in this pursuit has been generated by the recent achievement of developing several extended/
modified structures in metric spaces and/or their associated results (see,9–18).

RLC circuits, comprising resistors (R), inductors (L), and capacitors (C), are fundamental components in 
electrical engineering and electronics. These circuits play a pivotal role in various applications, including signal 
processing, power distribution, and filtering. In an RLC circuit, the behavior is governed by the interplay of 
these three passive components, each contributing distinct characteristics. Resistors dissipate energy in the 
form of heat, providing damping in the circuit. Inductors store energy in a magnetic field when current flows 
through them, resisting changes in current. Capacitors store energy in an electric field, resisting changes in volt-
age. Together, they create a complex interconnection of energy storage and dissipation mechanisms, giving rise 
to a rich array of circuit behaviors. RLC circuits exhibit phenomena such as resonance, where energy transfer 
between components reaches its peak efficiency, and transient response, where the circuit’s behavior changes 
over time in response to sudden changes in input. Understanding and analyzing RLC circuits are essential skills 
for electrical engineers, enabling the design and optimization of circuits for various applications in electrical and 
electronic systems. These components interact through the governing equations of Kirchhoff ’s laws, leading to 
differential equations that describe the circuit’s behavior. RLC circuits find applications in various fields, from 
signal processing and filtering to power distribution and electronic devices, underscoring their significance in 
modern technology and engineering endeavors (see,19–22).

The analysis of an RLC circuit typically involves solving a system of linear differential equations rather than 
nonlinear integral equations. However, nonlinear integral equations can arise in certain special cases or when 
considering more complex circuit elements or behaviors. One scenario where a nonlinear integral equation may 
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arise is when dealing with nonlinear elements such as diodes or transistors within the circuit. In these cases, the 
behavior of the circuit may not be describable solely through linear differential equations, and integral equations 
might be needed to model the relationship between voltage and current.

Many mathematical science difficulties, such as integral mathematical problems, can be addressed by restruc-
turing other mathematical problems. Thus, the study of integral equations and the techniques for solving them 
are quite beneficial. Integral equations are used in the domains of science and engineering these days. Numer-
ous scholars have devised several reliable techniques to deal with integral equations. One technique used by 
Rahman23 to solve an integral problem is the Chebyshev polynomials. When evaluating definite integrals, hybrid 
quantification has a greater level of accuracy, which leads to quicker convergence. For individual parameters, 
the linear symmetric formulation of Gaussian-Newtonian kind rules of less accuracy has been used to produce 
a combined quantification with improved accuracy. Both finite-element methods and computational solutions 
of integral equations have recently found effectiveness using combined quantification.

We propose the notion of an extended b-suprametric space in the below-stated formulation.

Definition 1.1  Assume that M be a non-empty set also consider a function γ : M ×M → [1,∞) , and b ≥ 1 . 
A function Es : M ×M → R

+ is said to be an extended b-suprametric if for all ϑ , ̺,ω ∈ M the following 
properties hold: 

(1)	 Es(ϑ , ̺) = 0 iff ϑ = ̺;
(2)	 Es(ϑ , ̺) = Es(̺,ϑ);
(3)	 Es(ϑ , ̺) ≤ b[Es(ϑ ,ω)+ Es(ω, ̺)] + γ (ϑ , ̺)Es(ϑ ,ω)Es(ω, ̺).

An extended b-suprametric space is a pair (M, Es) (shortly, Es-space), where M is a non-empty set and Es is 
an extended b-suprametric.

Example 1.2  Take M = ℓp(R) where as p ∈ (0, 1) , and ℓp(R) = {{ϑn} ⊂ R such that
∑∞

n=1 |ϑn|
p < ∞} and 

Esℓp : M ×M → R
+ is provided that

Then (M, Esℓp) is b-suprametric space with b = 2
1
p.

Let Es : M ×M → R
+ and γ : M ×M → [1,∞) defined by Es(ϑ , ̺) = Esℓp (ϑ , ̺)[Esℓp (ϑ , ̺)+ 1] and 

γ (ϑ , ̺) = 8
1
p ∈ [1,∞), 0 < p < 1 with b = 4

1
p . Then (M, Es) is Es-space.

We give an overview of the generated topology in the next approach.

Definition 1.3  Suppose we have Es-space (M, Es) . The set B (ϑ0, r) = {ϑ ∈ M/Es(ϑ0,ϑ) < r} where r > 0 and 
ϑ0 ∈ M is called open ball. A subset N of M is called open whenever ̺ ∈ N , there is a r > 0 in such a way that 
B (ϑ , r) ⊂ N . τ will stand for the collection of every open subsets of M.

Proposition 1.4  Let (M, Es) be a Es-space. Then each open ball is an open set.

Proposition 1.5  Assume that there is Es-space (M, Es) with γ (ϑ , ̺) = β ∈ [1,∞) , for all ϑ , ̺ ∈ M . If ̺ ∈ B (ϑ , r) , 
for r > 0 , then there exists s > 0 such that B (̺, s) ⊆ B (ϑ , r).

Proof  For all ϑ ∈ M, r > 0 and B (ϑ , r) is non-empty. Now assume that ϑ  =  ̺, then we have Es(ϑ , ̺)  = 0 . 
Choosing s = r−bEs(ϑ ,̺)

b+βEs(ϑ ,̺)
 and let ω ∈ B (̺, s) . Then owing to the property of the Es-space, we have

which yields, ω ∈ B (ϑ , r) . Thus, B (̺, s) ⊆ B (ϑ , r) . Accordingly, an open subset of M is represented by each 
open ball. 	�  �

Proposition 1.6  τ defines a topology on (M, Es) and the family of open balls form a base of the topology τ.

Proof  Let ϑ , ̺ ∈ M with ϑ  =  ̺and r = Es(ϑ , ̺) > 0 . Denote U = B (ϑ , r2 ) and V = B (̺, r(2−b)
2b+βr ) where 

1 ≤ b < 2.
Let us demonstrate that U ∩V = ∅ , if none of the above applies, there is ω ∈ U ∩V , as we have from 

hypothesis Es(ϑ ,ω) < r
2 and Es(̺,ω) < r(2−b)

2b+βr  , we obtain,

Esℓp({ϑn}, {̺n}) =
(

∞
∑

n=1

|ϑn − ̺n|
p
)

1
p
for all {ϑn}, {̺n} ∈ M.

Es(ω,ϑ) ≤ b[Es(ω, ̺)+ Es(̺,ϑ)] + γ (ω,ϑ)Es(ω, ̺)Es(̺,ϑ)

< bs + bEs(̺,ϑ)+ βsEs(̺,ϑ)

= r,
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Hence, U ∩V = ∅ . As a result, M is Hausdorff. 	�  �

Definition 1.7  Let (M, Es) be an Es-space. A sequence {ϑn}n∈N of elements of M Converges to ϑ ∈ M , if for 
every ǫ > 0 the ball B (ϑ , ǫ) contained all that a finite number of terms of the sequence. In this case ϑ is a limit 
point of {ϑn}n∈N and we write limn→∞ Es(ϑn,ϑ) = 0.

Proposition 1.8  Assume that there is Es-space (M, Es) . A sequence is unique if and only if {ϑn}n∈N ⊂ M possesses 
a limit.

Proof  One can easily deduce this result by using Hausdorffness. 	�  �

Definition 1.9  Assume that there is Es-space (M, Es) . A sequence {ϑn}n∈N ∈ M is a Cauchy sequence if, for all 
ǫ > 0 , there exists some κ ∈ N such that for all n,m ≥ κ , Es(ϑn,ϑm) < ǫ.

Remark 1.10  If {ϑn}n∈N is a Cauchy sequence in (M, Es) then there is a q ∈ M in such a way that 
limn→∞ Es(ϑn, q) = 0 and further every subsequence {ϑn(κ)}κ∈N converges to q.

Definition 1.11  An Es-space (M, Es) is called complete if every Cauchy sequence is convergent.

D ef i n it i on  1 . 1 2   L e t  � : S ⊂ M → M  an d  t h e re  i s  ϑ0 ∈ S  i n  su ch  a  w ay  t h at 
O (ϑ0) = {ϑ0,�ϑ0,�

2ϑ0, ....} ⊂ S . An orbit of ϑ0 ∈ S is denoted by the set O (ϑ0) . A function G from S 
into the collection of real numbers is predominantly called �-orbitally lower semicontinuous at t ∈ S whenever 
{ϑn} ⊂ O (ϑ0) and ϑn → t ⇒ G (t) ≤ lim infn→∞ G (ϑn).

We can observe that J. Matkowski24 introduced the concept of comparison functions initially. Subsequently, 
various modifications and extensions of these comparison functions are provided to complete their outcomes 
(see,25–27).

Now, inspired by the above literature, we introduce the below definition.

Definition 1.13  Assume that there is Es-space (M, Es) . A function ψ : R+ → R
+ is an extended b-supra-com-

parison function (shortly, EsC-function) if it is increasing and there exist a mapping � : S ⊂ M → M such 
that for some ϑ0 ∈ S and O (ϑ0) ⊂ S,

converges. Here ϑn = �nϑ0, ∀n = 1, 2, 3... Then, ψ is an EsC-function for � at ϑ0.

Results on E
s
‑space

Theorem 2.1  Let (M, Es) be a complete Es-space and � : M → M be a mapping. Take η ∈ [0, 1) in such a way that

for all ϑ , ̺ ∈ M . Then � has a unique fixed point, and for every ϑ0 ∈ M the iterative sequence defined by 
ϑn = �ϑn−1, ∀n ∈ N converges to this fixed point.

Proof  Let (M, Es) be a complete Es-space. Define the sequence {ϑn} by ϑn = �ϑn−1, ∀n ∈ N for some arbitrary 
ϑ0 ∈ M . Now from (2.1), we deduce that

Thus, regardless of the given integer κ , the sequence {Es(ϑn,ϑn+1)} is non-increasing and meets the following:

r = Es(ϑ , ̺) ≤ b[Es(ϑ ,ω)+ Es(ω, ̺)] + γ (ϑ , ̺)Es(ϑ ,ω)Es(ω, ̺)

< b
[ r

2
+

r(2− b)

2b+ βr

]

+ β
[ r

2

r(2− b)

2b+ βr

]

= r, a contradiction.

∞
∑

n=0

ψn(t)

n
∏

i=1

[

b+ γ (ϑi ,ϑm)ψ
n(t)

]

,

(2.1)Es(�ϑ ,�̺) ≤
η

b
Es(ϑ , ̺),

Es(ϑn,ϑn+1) = Es(�ϑn−1,�ϑn)

≤
η

b
Es(ϑn−1,ϑn)

< Es(ϑn−1,ϑn).
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Therefore, limn→∞ Es(ϑn,ϑn+1) = 0, which yields that for ǫ > 0, κ ∈ N such that for all n ≥ κ , we have

We shall now demonstrate the Cauchy nature of the series {ϑn} . BY utilizing (2.2), (2.3) and triangular inequal-
ity, we have

where,

From the above two inequalities (2.4) and (2.5), we get,

Employing (2.3) in each of the terms in the sum, we can keep proceeding until we get

Since ηb ∈ [0, 1) , it follows that

Now, one can easily verify that the series 
∑∞

i=0 Ui converges by ratio test, where,

Hence we deduce that Es(ϑp,ϑq) → 0 as p,q tends to infinity, thus, {ϑn} is Cauchy. {ϑn} converges to some 
q ∈ M as per the completeness of M , it follows that every subsequence {ϑn(κ)}κ∈N converges to q . Let us now 
assert that q is a fixed point of � . BY using (2.1) and continuity of � , we get,

Therefore, we conclude that q = �q as κ attains infinity.
Hence q is a fixed point of �.
In order to prove uniqueness, assume that ϑ1 and ϑ2 are two fixed points which are distinct. Which yields that 

Es(ϑ1,ϑ2)  = 0 . From (2.1), we obtain,

which is absurd, and therefore ϑ1 = ϑ2 . 	�  �

(2.2)Es(ϑn,ϑn+1) ≤
(η

b

)n−κ

Es(ϑκ ,ϑκ+1), ∀n > κ .

(2.3)Es(ϑn,ϑn+1) < ǫ.

(2.4)

Es(ϑp,ϑq) ≤ b
[

Es(ϑp,ϑp+1)+ Es(ϑp+1,ϑq)
]

+ γ (ϑp,ϑq)Es(ϑp,ϑp+1)Es(ϑp+1,ϑq)

≤ b
[(η

b

)p−κ

Es(ϑp,ϑp+1)+ Es(ϑp+1,ϑq)
]

+ γ (ϑp,ϑq)
(η

b

)p−κ

Es(ϑp,ϑp+1)Es(ϑp+1,ϑq)

≤ b
[(η

b

)p−κ

ǫ + Es(ϑp+1,ϑq)
]

+ γ (ϑp,ϑq)
(η

b

)p−κ

ǫEs(ϑp+1,ϑq)

≤ b
(η

b

)p−κ

ǫ +

[

b+ γ (ϑp,ϑq)
(η

b

)p−κ

ǫ

]

Es(ϑp+1,ϑq),

(2.5)

Es(ϑp+1,ϑq) ≤ b
[

Es(ϑp+1,ϑp+2)+ Es(ϑp+2,ϑq)
]

+ γ (ϑp+1,ϑq)Es(ϑp+1,ϑp+2)Es(ϑp+2,ϑq)

≤ b
[(η

b

)p−κ+1
ǫ + Es(ϑp+2,ϑq)

]

+ γ (ϑp+1,ϑq)
(η

b

)p−κ+1
ǫEs(ϑp+2,ϑq)

≤ b
(η

b

)p−κ+1
ǫ +

[

b+ γ (ϑp+1,ϑq)
(η

b

)p−κ+1
ǫ

]

Es(ϑp+2,ϑq).

Es(ϑp,ϑq) ≤ b
(η

b

)p−κ

ǫ + b
(η

b

)p−κ+1
ǫ
[

b+ γ (ϑp,ϑq)
(η

b

)p−κ

ǫ
]

+
[

b+ γ (ϑp,ϑq)
(η

b

)p−κ

ǫ
][

b+ γ (ϑp+1,ϑq)
(η

b

)p−κ+1
ǫ
]

Es(ϑp+2,ϑq)

Es(ϑp,ϑq) ≤ b
(η

b

)p−κ

ǫ + b
(η

b

)p−κ+1
ǫ
[

b+ γ (ϑp,ϑq)
(η

b

)p−κ

ǫ
]

+ b
(η

b

)p−κ+2
ǫ
[

b+ γ (ϑp,ϑq)
(η

b

)p−κ

ǫ
][

b+ γ (ϑp+1,ϑq)
(η

b

)p−κ+1
ǫ
]

+ · · ·

≤ b
(η

b

)p−κ

ǫ

q−p−1
∑

i=0

(η

b

)i
i−1
∏

j=0

[

b+ ǫγ (ϑp+j ,ϑq)
(η

b

)p−κ+j]

Es(ϑp,ϑq) ≤ b
(η

b

)p−κ

ǫ

q−p−1
∑

i=0

(η

b

)i
i−1
∏

j=0

[

b+ ǫγ (ϑp+j ,ϑq)
(η

b

)j]

.

Ui =
(η

b

)i
i−1
∏

j=0

[

b+ ǫγ (ϑp+j ,ϑq)
(η

b

)j]

.

Es(�ϑn(κ),�q) ≤ ηEs(ϑn(κ), q).

Es(ϑ1,ϑ2) = Es(�ϑ1,�ϑ2) ≤
η

b
Es(ϑ1,ϑ2) < Es(ϑ1,ϑ2),
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Example 2.2  Let M = [0,π ] . Define a mapping Es : M ×M → [0,∞) by Es(ϑ , ̺) = |ϑ − ̺| for all ϑ , ̺ ∈ M 
and γ : M ×M → [1,∞) by γ (ϑ , ̺) = eϑ+̺ + 1 for all ϑ , ̺ ∈ M . Clearly (M, Es) is a complete Es-space.

Define a mapping � : M → M by

Now lets prove that � satisfies (2.1) of Theorem.2.1.
Consider

By using the boundedness of the function sinϑ in the interval [0,π ] , there exists a constant � > 0 such that 
1

(1+sinϑ)(1+sin ̺) ≤ � . Thus from the above inequality (2.6), we obtain

Hence all the conditions of Theorem.2.1 satisfied and 0.9592 is the unique fixed point of � , which is obtained 
with the help of MATLAB with ηb ∈ [0, 1) . Moreover, the comparisons of L.H.S and R.H.S of the contraction (2.1) 
of Theorem.2.1 using MATLAB for this example as shown in the Fig. 1.

Now, we perform a few numerical simulations to estimate � ’s fixed point in Table 1. Additionally, Fig. 2 
illustrates how the aforementioned iterations converge.

Example 2.3  Let M = [0,π ] . Define a mapping Es : M ×M → [0,∞) by Es(ϑ , ̺) =
∣

∣

∣

∣

sin(ϑ−̺)
1+sinϑ

∣

∣

∣

∣

 for all ϑ , ̺ ∈ M 

and γ : M ×M → [1,∞) by γ (ϑ , ̺) = eϑ+̺ for all ϑ , ̺ ∈ M . Clearly (M, Es) is a complete Es-space.

Define a mapping � : M → M by

�ϑ =
1

2
sinϑ +

1

1+ sinϑ
, for all ϑ ∈ M.

(2.6)

|�(ϑ)−�(̺)| =

∣

∣

∣

1

2
(sinϑ − sin ̺)+

1

1+ sinϑ
−

1

1+ sin ̺

∣

∣

∣

=

∣

∣

∣

1

2
(sinϑ − sin ̺)+

sin ̺ − sinϑ

(1+ sinϑ)(1+ sin ̺)

∣

∣

∣

≤
1

2
|ϑ − ̺| +

|ϑ − ̺|

(1+ sinϑ)(1+ sin ̺)

|�(ϑ)−�(̺)| ≤
1

2
|ϑ − ̺| +�|ϑ − ̺|

≤

[

1

2
+�

]

| − ̺|

=
η

b
|ϑ − ̺|, where

η

b
=

1

2
+� < 1 for sufficiently small�.

�ϑ =
1

2
sinϑ +

1

1+ sinϑ
, for all ϑ ∈ M.

Figure 1.   Comparison of L.H.S and R.H.S of Inequality (2.1) of Theorem.2.1.
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Table 1.   Picard iterations.

ϑ0 ϑ0 = 0.3 ϑ0 = 0.4 ϑ0 = 0.5 ϑ0 = 0.6 ϑ0 = 0.7

ϑ1 0.919651 0.914435 0.915651 0.921445 0.930301

ϑ2 0.954677 0.954077 0.954217 0.954883 0.955901

ϑ3 0.958674 0.958618 0.958633 0.962096 0.958825

ϑ4 0.95914 0.959134 0.959135 0.959528 0.959157

ϑ5 0.959193 0.959192 0.959192 0.959237 0.959195

ϑ6 0.959199 0.959199 0.959199 0.959204 0.959199

ϑ7 0.9592 0.9592 0.9592 0.9592 0.9592

ϑ8 0.9592 0.9592 0.9592 0.9592 0.9592

Figure 2.   Convergence behavior for Example 2.2.

Figure 3.   Comparison of L.H.S and R.H.S of Inequality (2.1) of Theorem.2.1.
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By following the same pattern as above, we can easily deduce that �(ϑ) satisfies Eq. (2.1) of Theorem 2.1. By 
using the numerical method in MATLAB, we obtain the unique fixed point of � which is 0.9592 lies in the 
interval [0,π ] . Thus, this example illustrates our Theorem 2.1. Moreover, the comparisons of L.H.S and R.H.S of 
the contraction (2.1) of Theorem 2.1 using MATLAB for this example are shown in the Fig. 3.

Theorem  2.4  Let (M, Es) be a complete Es-space such that Es is continuous. Consider the mapping 
� : S ⊂ M → M such that O (ϑ0) ⊂ S . Assume that,

for each ϑ ∈ O (ϑ0) , where ψ is an EsC-function for � at ϑ0 . Then �nϑ0 → δ ∈ M . Furthermore, δ is a fixed point 
of � iff G (ϑ) = Es(ϑ ,�ϑ) is �-orbitally lower semicontinuous at δ.

Proof  Assume that (M, Es) is a complete Es-space. Define the iterative sequence {ϑn} by 
ϑ0,ψϑ0 = ϑ1,ϑ2 = �ϑ1 = �(�ϑ0) = �2(ϑ0)....ϑn = �n(ϑ0)... ∀n ∈ N and ϑ0 ∈ M.

In the remaining portions of the convincing proof we attempt to streamline the idea Esm,n = Es(ϑm,ϑn) and 
γm,n = γ (ϑm,ϑn) for all m, n ∈ N.

By successively applying inequality (2.7), we obtain,

By triangular inequality and (2.8), for p > q we have

where

By combining the previous two inequalities (2.9) and (2.10), we obtain

By continuing this process until we obtain

The series

converges for each p,q ∈ N . Thus, we conclude that {ϑn} is Cauchy since Esp,q → 0 as p,q → ∞ . Since M is 
complete then ϑn = �nϑ0 → δ ∈ M . Given the assumption the fact that G is semicontinuous at δ ∈ M , implies 
that,

Conversely, let δ = �δ and ϑn ∈ O (ϑ) with ϑn → δ.
Then

(2.7)Es(�ϑ ,�2ϑ) ≤ ψ(Es(ϑ ,�ϑ)),

(2.8)Esn,n+1 ≤ ψn(Es0,1).

(2.9)

Esp,q ≤ b[Esp,p+1 + Esp+1,q] + γp,qEsp,p+1Esp+1,q

≤ bψp(Es0,1)+ bEsp+1,q + γp,qψ
p(Es0,1)Esp+1,q

≤ bψp(Es0,1)+ [b+ γp,qψ
p(Es0,1)]Esp+1,q

(2.10)
Esp+1,q ≤ b[Esp+1,p+2 + Esp+2,q] + γp+1,qEsp+1,p+2Esp+2,q

≤ bψp+1(Es0,1)+ [b+ γp+1,qψ
p+1(Es0,1)]Esp+2,q

(2.11)
Esp,q ≤ bψp(Es0,1)+ bψp+1(Es0,1)+ [b+ γp,qψ

p(Es0,1)]

+ [b+ γp,qψ
p(Es0,1)][b+ γp+1,qψ

p+1(Es0,1)]Esp+2,q

Esp,q ≤ bψp(Es0,1)+ bψp+1(Es0,1)+ [b+ γp,qψ
p(Es0,1)]

+ bψp+2(Es0,1)[b+ γp,qψ
p(Es0,1)][b+ γp+1,qψ

p+1(Es0,1)] + · · ·

· · · + bψq−1(Es0,1)[b+ γp,qψ
p(Es0,1)][b+ γp+1,qψ

p+1(Es0,1)] · · · [b+ γq−2,qψ
q−2(Es0,1)]

≤ b

q−p−1
∑

i=0

ψp+i(Es0,1)

i−1
∏

j=0

[b+ γp+j,qψ
p+j(Es0,1)]

≤ b

∞
∑

i=0

ψp+i(Es0,1)

i−1
∏

j=0

[b+ γp+j,qψ
p+j(Es0,1)].

∞
∑

i=0

ψp+i(Es0,1)

i−1
∏

j=0

[

b+ γp+j,qψ
p+j(Es0,1)

]

,

Es(δ,�δ) ≤ lim inf
n→∞

Es(�
nϑ0,�

n+1ϑ0)

≤ lim inf
n→∞

ψn(Es0,1)

= 0.
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This completes the proof. 	�  �

An RLC‑electric circuit problem via fixed‑point method
Most natural events can be mathematically explained, which typically results in an analysis of the challenges in 
terms of nonlinear differential equations. Being able to demonstrate that numerous traditional hypotheses from 
various scientific disciplines could be expressed in the context of linear differential equations demonstrates that, 
in quite a large number of essential instances, the mathematical formula in question can be linearized without 
losing any of its key components. However, to clarify and anticipate the observed behavior, some phenomena 
cannot be explained by linearizing the equations that characterize them. In these cases, a solution to the relevant 
nonlinear differential equations must be found. The study of nonlinear differential equations is becoming more 
and more important with the various subfields within multidisciplinary domains.

There has been a global interest in creating analytical techniques to solve nonlinear differential equations. In 
recent years, a number of literature works that provide an overview of the numerous approaches used to solve 
nonlinear differential equations have been established (see28–31). There aren’t many approaches developed for 
solving nonlinear problems that occur in real-world situations, according to a review of the literature on non-
linear differential equation solutions. The presented paper aims to use our main result of relevance in electrical 
circuits and to propose a method of solving nonlinear differential equations that is centered on the theory of 
nonlinear integral equations.

An RLC circuit typically refers to a circuit composed of a resistor (R), inductor (L), and capacitor (C), where 
the dynamics are governed by linear differential equations. However, when nonlinearities are introduced, such 
as nonlinear components or nonlinear behavior in the circuit elements, the analysis becomes more complex. In 
the case of nonlinear integral equations with Green’s functions, the analysis likely involves studying the response 
of the circuit to time-varying inputs or initial conditions, where the behavior of the circuit elements may not 
be adequately described by linear models. Green’s functions are useful for solving integral equations and can 
provide insight into the behavior of the system. Nonlinear integral equations can arise in various contexts within 
electrical engineering, such as in modeling nonlinear elements like diodes or transistors, or in describing complex 
behaviors like hysteresis or saturation effects in magnetic components.

The solution to such equations often requires numerical methods due to their complexity, and techniques like 
finite difference methods, finite element methods, or numerical integration may be employed to approximate 
the solutions.

Example 3.1  Consider a simple series RLC circuit consisting of a resistor (R), an inductor (L), and a capacitor 
(C) connected in series to an AC voltage source. The general equation governing the behavior of this circuit is:

Consider a specific example with R = 50 ohms, L = 0.1 Henry, C = 100 microfarads and V(t) = 10sin(100t) 
volts. Now, We want to find the current flowing through the circuit I(t).

We can solve this problem using differential equations, but let’s use a numerical method, such as the Euler 
method, for simplicity.

The Euler method is a basic numerical technique to approximate solutions of ordinary differential equations. 
Here’s how it works: Start with an initial condition: 

(A)	 Start with an initial condition: I(0) = 0 (assuming no initial current).
(B)	 Use the differential equation to find the rate of change of the current at each time step.
(C)	 Update the current using the rate of change and a small time step.

 Now, perform this calculation for a small time step, say �t = 0.01 seconds, from t = 0 to t = 2 seconds.
Above Fig. 4 shows how the current in the circuit varies with time. We can observe the transient behavior as 

the circuit responds to the sinusoidal input voltage. Eventually, the current will stabilize to a sinusoidal waveform 
due to the balance between the inductive and capacitive reactance with the resistance.

Existence of solution for the integral equation associated with an RLC electrical circuit 
equation
As a consequence of our results, the existence of solution for the integral equation associated with the electrical 
circuits equation problem described as below:

Consider an electrical circuit containing a resistor R, an inductor L, a capacitor C and total electro motive 
force V(t) as shown in Fig. 5

By Kirchoff ’s voltage law, we obtain

G (δ) = Es(δ,�δ) = 0

≤ lim inf
n→∞

G (ϑn)

= Es(�
nϑ0,�

n+1ϑ0).

V(t) = I(t)R + L
dI(t)

dt
+

1

C

∫

I(t)dt.
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where I is the current, and q is the charge.
Equation (3.1) can be written as a initial value problem

The associated Green function is,

in which R and L are used to determine the constant τ > 0.
Assume that the collection that includes all continuous real-valued functions constructed on [0, 1] is 

M = (C[0, 1],R) . Let us define Es : M ×M → R by Es(ϑ(t), ̺(t)) = sup
t∈[0,1]{|ϑ(t)− ̺(t)|2e−|τt|}.

Note that (M, Es) is a complete Es-space with b = 2 and γ (ϑ(t), ̺(t)) = eϑ(t)+̺(t) for all ϑ(t), ̺(t) ∈ M , 
where γ : M ×M → [1,∞).

The integral equation can be used to the problem mentioned above:

Theorem 3.2  Let M = (C[0, 1],R) and let H : M → M be the operator defined as

(3.1)IR +
q

c
+ L

dI

dt
= V(t),

(3.2)IR +
q

c
+ L

dI

dt
= V(t), where q(0) = 0,

(dq

dt

)

t=0
= 0.

G (t, ς) =

{

−ςeτ(ς−t), if 0 ≤ ς ≤ t ≤ 1,

−teτ(t−ς), if 0 ≤ t ≤ ς ≤ 1.

(3.3)ϑ(t) =

∫ 1

0
G (t, ς)κ(t,ϑ(ς))dς , where t ∈ [0, 1].

Hϑ(t) =

∫ 1

0
G (t, ς)κ(t,ϑ(ς))dς , for t, ς ∈ [0, 1],

Figure 4.   Current vs Time in an RLC Circuit.

Figure 5.   RLC-electrical circuit.
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where κ : [0, 1] × R → R a continuous and non-decreasing function for all t ∈ [0, 1] . Thus the problem (3.2) has 
a unique solution if the following assumptions hold. 

(1)	 |κ(t,ϑ)− κ(t, ̺)| ≤ τ 2e−τ(1− t
2 )|ϑ − ̺| for all ϑ , ̺ ∈ M and t ∈ [0, 1] and τ > 0;

(2)	 For all ϑ(t) ≤
∫ 1
0 G (t, ς)κ(t,ϑ(ς))dς , for all t ∈ [0, 1].

Proof  Let ϑ(t), ̺(t) ∈ (C[0, 1],R) . Consider,

which yields that,

Therefore all the conditions of Theorem.2.1 satisfied, H has a fixed point. Consequently the differential equation 
arising in an RLC-electric circuit (3.2) guarantees the existence and uniqueness of the solution. 	�  �

Existence of solution for the integral equation associated with an RLC electrical circuit equa‑
tion with a nonlinear element
Consider an RLC circuit with a nonlinear element, such as a diode. The diode’s current-voltage characteristic is 
typically described by a nonlinear equation, such as the Shockley diode equation.

The Shockley diode equation relates the current (I) through a diode to the voltage (V) across it and is given by:

where, I is the diode current, Is is the reverse saturation current, V is the voltage across the diode, n is the ideality 
factor, and Vt is the thermal voltage, approximately 26mV at room temperature.

Now, let’s consider an RLC circuit with a voltage source Vs(t) , a resistor R, an inductor L, a capacitor C, and 
a diode D connected in series. The voltage across the diode VD(t) can be expressed as:

The current-voltage relation for the diode gives us:

Substituting this expression for I(R) into the equation for VD(t) , which yields,

|Hϑ(t)−H̺(t)| =

∣

∣

∣

∫ 1

0
G (t, ς)κ(t,ϑ(ς))dς −

∫ 1

0
G (t, ς)κ(t, ̺(ς))dς

∣

∣

∣

≤

∫ 1

0
G (t, ς)|κ(t,ϑ(ς))− κ(t, ̺(ς))|dς

≤

∫ 1

0
G (t, ς) sup

t∈[0,1]
|κ(t,ϑ(t))− κ(t, ̺(t))|dς

= sup
t∈[0,1]

|κ(t,ϑ(t))− κ(t, ̺(t))|

∫ 1

0
G (t, ς)dς

≤ τ 2e−τ(1− t
2 )|ϑ(t)− ̺(t)|

∫ 1

0
G (t, ς)dς

≤ e−τ(1− t
2 )|ϑ(t)− ̺(t)|

[

1− 2tτ − e−tτ + τ teτ(t−1)
]

≤ e−τ(1− t
2 )|ϑ(t)− ̺(t)|e−|τt|

[

(1− 2tτ)eτ t − 1+ τ teτ(2t−1)
]

≤ e−τ(1− t
2 )|ϑ(t)− ̺(t)|e−

∣

∣
τ t
2

∣

∣

,

as
[

(1− 2tτ)eτ t − 1+ τ teτ(2t−1)
]

≤ 1

= e−τ(1− t
2 )e−

∣

∣
τ t
2

∣

∣

|ϑ(t)− ̺(t)|,

|Hϑ(t)−H̺(t)|e−
∣

∣
τ t
2

∣

∣

≤ e−τ e

∣

∣
−τ t
2

∣

∣

|ϑ(t)− ̺(t)|.

|Hϑ(t)−H̺(t)|2e−|τt| ≤ e−2τ e−|τt||ϑ(t)− ̺(t)|2.

sup
t∈[0,1]

|Hϑ(t)−H̺(t)|2e−|τt| ≤ e−2τ sup
t∈[0,1]

|ϑ(t)− ̺(t)|2e−|τt|.

⇒ Es(Hϑ(t),H̺(t)) ≤
1

e2τ
Es(ϑ(t), ̺(t))

⇒ Es(Hϑ(t),H̺(t)) ≤ ρEs(ϑ(t), ̺(t)).

I = Is

(

e
V

nVt − 1
)

;

VD(t) = Vs(t)− I(R)R − L
dI

dt
.

I(R) = Is

(

e
VD(t)

nVt − 1
)

.
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By Faraday’s law of electromagnetic induction, we know that the voltage across an inductor is given by the rate 
of change of current with respect to time multiplied by the inductance.

Therefore, we can rewrite L dI
dt as VL(t) , the voltage across the inductor:

Now, the problem is to solve for VD(t) in terms of an integral equation. We can rewrite the equation in integral 
form by expressing VL(t) as an integral operator:

This integral equation represents the voltage across the diode in terms of an integral of its own voltage over time, 
along with the input voltage Vs(t) and the nonlinear term involving the diode current.

Let M be the space of continuous function on a closed interval [0, T]. Let us define Es : M ×M → R by 
Es(ϑ(t), ̺(t)) = sup

t∈[0,T]{|ϑ(t)− ̺(t)|}.
Note that (M, Es) is a complete Es-space with b = 2 and γ (ϑ(t), ̺(t)) = eϑ(t)+̺(t) for all ϑ(t), ̺(t) ∈ M , 

where γ : M ×M → [1,∞).

Theorem 3.3  Let H : M → M be the operator defined as

Then the Eq. (3.5) admits a unique solution if the following assumptions hold:

•	 If we choose δ such that, |VD − V ′
D| < δ;

•	 e
δ

nVt − 1 <
1− T

L
IsR

.

Proof  Let ϑ(t), ̺(t) ∈ M . Now consider

Now, let’s define k(= η
b ) such that:

VD(t) = Vs(t)− Is

(

e
VD(t)

nVt − 1
)

R − L
dI

dt
.

i.e., VL(t) = L
dI

dt
.

VD(t) = Vs(t)− Is

(

e
VD(t)

nVt − 1
)

R − VL(t).

(3.4)VD(t) = Vs(t)− Is

(

e
VD(t)

nVt − 1
)

R −

∫ t

0

VD(τ )

L
dτ .

(3.5)HVD(t) = Vs(t)− Is

(

e
VD(t)

nVt − 1
)

R −

∫ t

0

VD(τ )

L
dτ .

|Hϑ(t)−H̺(t)| = |H(VD)−H(V ′
D)|

= sup
t∈[0,T]

|H(VD)(t)−H(V ′
D)(t)|

= sup
t∈[0,T]

∣

∣

∣

∣

Vs(t)− Is

(

e
VD(t)

nVt − 1
)

R −

∫ t

0

VD(τ )

L
dτ −

(

Vs(t)− Is

(

e
V ′
D(t)

nVt − 1
)

R −

∫ t

0

V ′
D(τ )

L
dτ

)

∣

∣

∣

∣

= sup
t∈[0,T]

∣

∣

∣

∣

Is

(

e
VD(t)

nVt − e
V ′
D (t)

nVt

)

R −

∫ t

0

VD(τ )− V ′
D(τ )

L
dτ

∣

∣

∣

∣

≤ sup
t∈[0,T]

∣

∣

∣

∣

IsR

∣

∣

∣

∣

e
VD(t)

nVt − e
V ′
D(t)

nVt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

VD(τ )− V ′
D(τ )

L
dτ

∣

∣

∣

∣

∣

∣

∣

∣

≤ sup
t∈[0,T]

∣

∣

∣

∣

IsR
∣

∣

∣
e

∣

∣VD(t)−V ′
D(t)

∣

∣

nVt − 1
∣

∣

∣
+

1

L

∣

∣

∣

∣

∫ t

0
VD(τ )− V ′

D(τ )dτ

∣

∣

∣

∣

∣

∣

∣

∣

≤ IsR

(

e
supt∈[0,T]

∣

∣VD(t)−V ′
D(t)

∣

∣

nVt − 1

)

+
1

L
|VD − V ′

D|

∫ T

0
dτ

= IsR

(

e

∣

∣VD−V ′
D

∣

∣

nVt − 1

)

+
T

L
|VD − V ′

D|

≤ IsR

(

e

∣

∣VD−V ′
D

∣

∣

nVt − 1

)

+
T

L
|VD − V ′

D|

<

(

IsR

(

e

∣

∣VD−V ′
D

∣

∣

nVt − 1

)

+
T

L

)

|VD − V ′
D|

k = IsR

(

e

∣

∣VD−V ′
D

∣

∣

nVt − 1

)

+
T

L
.
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For k < 1 , we need,

Now if |VD − V ′
D| < δ , where δ is such that e

δ
nVt − 1 <

1− T
L

IsR
 , then k < 1 , and thus H satisfies Eq. (2.1). Therefore, 

if we choose δ such that e
δ

nVt − 1 <
1− T

L
IsR

 , then H satisfies Eq. (2.1), and Theorem.2.1 guarantees the existence 
and uniqueness of the solution to the integral equation (3.5) associated with an RLC electrical circuit equation 
with a nonlinear elements 	�  �

Open questions

•	 What are the additional conditions required in order to prove the existence of a solution and estimation of 
distortion of Chua’s circuit32 for the above-obtained results in Es-space?

•	 Prove or disprove Lagrangian for Chua’s circuit through distance space.

Data availibility
The data sets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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