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Immunotherapy and drug 
sensitivity predictive roles 
of a novel prognostic model 
in hepatocellular carcinoma
Xiaoge Gao 1,8, Xin Ren 1,2,8, Feitong Wang 3, Xinxin Ren 4, Mengchen liu 5, Guozhen Cui 5 & 
Xiangye Liu 6,7*

Hepatocellular carcinoma (HCC) is one of the most significant causes of cancer-related deaths in the 
worldwide. Currently, predicting the survival of patients with HCC and developing treatment drugs 
still remain a significant challenge. In this study, we employed prognosis-related genes to develop and 
externally validate a predictive risk model. Furthermore, the correlation between signaling pathways, 
immune cell infiltration, immunotherapy response, drug sensitivity, and risk score was investigated 
using different algorithm platforms in HCC. Our results showed that 11 differentially expressed genes 
including UBE2C, PTTG1, TOP2A, SPP1, FCN3, SLC22A1, ADH4, CYP2C8, SLC10A1, F9, and FBP1 
were identified as being related to prognosis, which were integrated to construct a prediction model. 
Our model could accurately predict patients’ overall survival using both internal and external datasets. 
Moreover, a strong correlation was revealed between the signaling pathway, immune cell infiltration, 
immunotherapy response, and risk score. Importantly, a novel potential drug candidate for HCC 
treatment was discovered based on the risk score and also validated through ex vivo experiments. Our 
finds offer a novel perspective on prognosis prediction and drug exploration for cancer patients.
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FBP1	� Fructose-1,6-biphosphatase
FCN3	� Ficolin 3
FDR	� False discovery rate
GEO	� Gene expression omnibus
GO	� Gene Ontology
GPX4	� Glutathione peroxidase 4
GSEA	� Gene set enrichment analysis
GSVA	� Gene set variation analysis
GTEx	� Genotype tissue expression
HCC	� Hepatocellular carcinoma
HPA	� Human protein atlas
ICGC​	� International cancer genome consortium
IFNG	� Interferon gamma
KEEG	� Kyoto encyclopedia of genes and genomes
KM	� Kaplan–Meier
MDSC	� Myeloid-derived suppressor cells
MF	� Molecular functions
MOE	� Molecular operating environment
OS	� Overall survival
PFS	� Progression-free survival
PTTG1	� Pituitary tumor transforming gene 1
ROC	� Receiver operating characteristic
SLC10A1	� Solute carrier family 10 member 1
SLC22A1	� Solute carrier family 22 member 1
SPP1	� Secreted phosphoprotein 1
ssGSEA	� Single-sample gene set enrichment analysis
TAM	� Tumor associated macrophage
TCGA​	� The cancer genome atlas
TIDE	� Tumor immune dysfunction and exclusion
TOP2A	� Topoisomerase II alpha
UBE2C	� Ubiquitin-conjugating enzyme E2C

In 2020, primary liver cancer is the third lethal cause of cancer-related deaths in the worldwide1. Most currently, 
a predictive study showed that 1.3 million people could die from liver cancer in 2040, which is a 56.4% increase 
compared to the number in 20202. Therefore, liver cancer will be significant leading cause of deaths in the future. 
Prognosis prediction and drug treatment recommendation for liver cancer are mainly based on tumor burden, 
liver function, and physical status of cancer patients3. In recent years, the role of tumor biomarkers in diagnosis 
and prognosis for liver cancer has gradually been recognized. Satisfactorily, risk models established with tumor 
biomarkers have been used to predict survival, metastasis, or recurrence of cancer patients4,5. Therefore, it will be 
significant to develop a predictive risk model to predict survival of patients with hepatocellular carcinoma (HCC).

Compared to normal tissues, a series of genes exhibited differential expression in tumors, which act as 
oncogene or tumor-suppressor and play an essential role in the progression of cancer. Interestingly, a number 
of differentially expressed genes (DEGs) act as biomarkers to predict the survival of cancer patients. Currently, 
public datasets including the cancer genome atlas (TCGA), international cancer genome consortium (ICGC), 
gene expression omnibus (GEO), clinical proteomic tumor analysis consortium (CPTAC), human protein atlas 
(HPA), and genotype tissue expression (GTEx) have brought significant convenience to compare gene expres-
sion and achieve individual clinicopathological variables. Based on these datasets, several studies showed that 
DEGs could be used to develop prognosis risk model for predicting the survival of cancer patients6–8. Of note, 
these models could also be applied to evaluate the response of cancer patients to immune therapy and drug 
sensitivity4,8,9. Unfortunately, most studies mainly focused on oncogenes but ignored tumor-suppressors. For this 
reason, we integrated up- and down-regulated genes in HCC to develop a novel prognosis risk model predicting 
survival of cancer patients.

In this work, we primarily integrated four oncogenes and seven tumor-suppressors to develop a prognosis 
risk model based on TCGA dataset. Furthermore, the correlation between signaling pathways, immune cell 
infiltration, immune checkpoint inhibitors, and risk score were characterized in HCC individuals. Subsequently, 
the response of HCC patients to immunotherapy was also assessed based on the risk score. Moreover, a cluster 
of six drug candidates were screened for HCC, their function was further verified in hepatoma cells through 
ex vivo experiments. Finally, the antitumor activity and mechanism of Brilanestrant, a drug candidate, in HCC 
was preliminary investigated. In conclusion, this work demonstrated the antitumor activity of a drug candidate 
screened through our prognosis risk model in HCC, which provide a novel perspective in the area of drug 
exploration for cancer patients.

Materials and methods
Cell culture and reagents
HCC cells including HepG2, Huh7, PLC/PRF/5, and SK-Hep-1 were purchased from Cell Bank of Type Culture 
Collection of Chinese Academy of Sciences (Shanghai, China). Cells were cultured in DMEM supplemented with 
10% FBS (SenBeiJia Biological Technology Co., Ltd, Nanjing, China) at 37 ℃ in a humidified chamber with 5% 
CO2. FastPure cell/tissue total RNA isolation kit (Cat# RC-112), HiScript II 1st strand cDNA synthesis kit (Cat# 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9509  | https://doi.org/10.1038/s41598-024-59877-9

www.nature.com/scientificreports/

RC-312), and ChamQ SYBR qPCR Master Mix (Cat# Q-311) were purchased from Vazyme (Nanjing, China). 
Drugs including ML-323 (Cat# T1757), Adavosertib (Cat# T2077), Sepantronium bromide (Cat# T2111), Cer-
alasertib (Cat# T3338), Paclitaxel (Cat# T0968), and Brilanestrant (Cat# T5118) were purchased from Topscience 
(Shanghai, China). Ferrostatin-1 (Cat# HY-100579) was purchased from MedChemExpress (Shanghai, China). 
PE annexin V apoptosis detection kit (Cat# 559763) was purchased from BD Biosciences (Shanghai, China). 
Reactive oxygen species (ROS) assay kit (Cat# S0033S) was purchased from Beyotime (Shanghai, China). MTT 
assay kit (Cat# VIC292) was purchased from Vicmed (Xuzhou, China).

Patient specimens
Tumor and matched para-carcinoma tissues were collected from HCC patients who had undergone surgical 
resection procedure at the Affiliated Hospital of Xuzhou Medical University, and restored at – 80 °C for further 
RNA extraction. All procedures in this study involving human participants were in accordance with the ethical 
standards of the institutional and/or national research committees and with the 1964 Declaration of Helsinki and 
its later amendments or comparable ethical standards. The use of human biological materials was approved by the 
Ethics Committee of Affiliated Hospital of Xuzhou Medical University (Permit Number: XYFY2023-KL246-01).

Publicly available data acquisition
The raw data of RNA-sequencing (level 3) and corresponding clinical information of HCC patients were obtained 
from TCGA dataset (TCGA_LH, https://​portal.​gdc.​cancer.​gov) and ICGC dataset (ICGC_LH_JP, https://​dcc.​
icgc.​org/​relea​ses/​curre​nt/​Proje​cts). The sequencing data of HCC patients were retrieved for further analysis and 
the samples without survival time were not included, which yield a number of samples from TCGA (LH_370, 
normal liver samples_50) and ICGC (LH_240, normal liver sampels_202). The gene expression data of normal 
liver samples were obtained from GTEx dataset (Version 8, https://​www.​gtexp​ortal.​org/​home/​datas​ets). The 
microarray data of GSE76427 was downloaded from GEO dataset (http://​www.​ncbi.​nih.​gov/​geo), and normal-
ized by the normalize quantiles function of preprocessCore package in R software, which yield 115 HCC and 
52 normal liver samples.

Selection of prognosis‑related genes
The DEGs in HCC compared to normal liver samples were generated using limma package in R software with 
TCGA, ICGC, and GSE74627 datasets. The threshold was cut off with adjusted p values < 0.05 and | log2(fold 
change) |> 1. The survival analysis of DEGs between high and low expression patients was performed via 
Kaplan–Meier (KM) analysis using survival and survminer package in R software. The p value and hazard ratio 
(HR) with 95% confidence interval (CI) were calculated by log-rank tests and univariate Cox proportional 
hazards regression. The candidate prognosis-related genes were primarily selected relying on the intersection 
of DEGs, which occupied at the top 100 upregulated and downregulated expression in TCGA, ICGC, and GEO 
cohorts. In the meantime, the survival analysis including overall survival (OS), progression-free survival (PFS), 
disease-specific survival (DSS), and disease-free survival (DFS) of candidate prognosis-related genes should 
also be significant (p values < 0.05) for HCC patients. Finally, 11 genes were selected as prognosis-related genes 
for further analysis.

Signature construction and expression verification of prognosis‑related genes
The chromosomal positions of prognosis-related genes were visualized using OmicCircos package in R software. 
The mutation profiles in HCC patients were carried out with TCGA dataset, the mutation data were downloaded 
and visualized with maftools package in R software. The verification of prognosis-related genes at mRNA levels 
was performed with TCGA and GTEx datasets. Moreover, the validation of prognosis-related genes at protein 
levels was performed with CPTAC dataset at UALCAN data analysis portal (http://​ualcan.​path.​uab.​edu.). The 
representative immunohistochemistry images of prognosis-related genes at protein levels in normal and liver 
cancer tissues were obtained from HPA dataset (https://​www.​prote​inatl​as.​org/).

Quantitative polymerase chain reaction
The verification of prognosis-related genes at mRNA levels was also performed in our collected human speci-
mens. In brief, total RNA was isolated from tumor and matched para-carcinoma tissues using a total RNA 
isolation kit according to manufacturer’s instructions. After synthesized cDNA with a synthesis kit, qPCR was 
performed using ChamQ SYBR qPCR Master Mix on Roche LightCycler® 480 system following manufacturer’s 
instructions. qPCR data was normalized to β-actin housekeeping control. Primer sequences were referenced from 
ORIGENE (https://​www.​orige​ne.​com). Relative gene expression values were calculated following 2−ΔΔCt method10.

Construction and validation of prognosis risk model
In order to establish prediction risk model with prognosis-related genes, TCGA_LH dataset was used to train the 
model, and ICGC_LH_JP dataset was chosen to externally validate the model. Primarily, 11 prognosis-related 
genes were subjected to multivariate Cox regression analysis to achieve the coefficients in R software. The risk-
score formula was established as: risk score = 

∑
11

i=1
(Expi × Coei) . The Expi was the expression value of prognosis-

related genes, and the Coei was the coefficient of multivariate Cox regression analysis. The patients were divided 
into low- and high-risk groups based on the median risk score cutoff value. The KM analysis with log-rank test 
was used to compare overall survival between low- and high-risk groups. Receiver operating characteristic (ROC) 
analysis was performed to evaluate the accuracy of our risk model using survivalROC package in R software. 
Furthermore, the univariate and multivariate Cox proportional-hazards analyses were used to investigate the 

https://portal.gdc.cancer.gov
https://dcc.icgc.org/releases/current/Projects
https://dcc.icgc.org/releases/current/Projects
https://www.gtexportal.org/home/datasets
http://www.ncbi.nih.gov/geo
http://ualcan.path.uab.edu
https://www.proteinatlas.org/
https://www.origene.com
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correlation between risk score and patients’ clinical characteristics. Then, a nomogram with c-index value was 
established based on risk score and patients’ clinical characteristics with survival and rms package in R software.

For external validation, the risk score of each patient was calculated with the expression level of each gene and 
the coefficients generated by training model. Then, the patients were stratified into low- and high-risk groups 
based on the median risk score cutoff value. The KM survival and ROC analyses were also performed as above 
described.

Functional enrichment and pathway correlation analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) including biological processes 
(BP), cellular components (CC), and molecular functions (MF) enrichment analyses on prognosis-related genes 
were performed with clusterProfiler package in R software on the platform Sangerbox11,12. A p value < 0.05 and 
false discovery rate (FDR) < 0.1 were considered statistically significant. Gene set enrichment analysis (GSEA) 
of significant biological pathways in low- and high-risk groups was carried out using multiGSEA package in R 
software. The validated gene signatures contributing to several pathways were primarily collected13, then gene set 
variation analysis (GSVA) package with ’ssgsea’ method in R software was performed to calculate the correlation 
between gene expression and pathway. Furthermore, the correlation between risk score and pathway, as well as 
the correlation between gene and pathway score, was analyzed by Spearman correlation.

Immune infiltration and checkpoint blockade analyses
The immune cell infiltration levels in individual HCC samples were quantified using single-sample gene set 
enrichment analysis (ssGSEA) with ’gsva’ package in R software. The correlation between prognosis-related genes, 
risk score, and tumor infiltrating immune cells was evaluated with CIBERSORT algorithm14. The response of 
individual HCC samples to immune checkpoint blockade was predicted with tumor immune dysfunction and 
exclusion (TIDE) algorithm15.

Drug sensitivity analysis
The half-maximal inhibitory concentration (IC50) area under curve (AUC) values of potential drug responses 
were predicted with pRRophetic package in R software based on gene expression proliferation of HCC patients16. 
The IC50 AUC values of each corresponding drug in low- and high-risk groups were compared under student’s t 
test. The correlation between risk score and predicted sensitivity values was calculated with Spearman correlation 
analysis. The drug candidates were selected according to a criteria of p values < 0.05 (students’ t test), log2(fold 
change) value <  − 0.10, and correlation coefficient with risk score <  − 0.50. Furthermore, cell toxicity of drug 
candidates was quantified in various human HCC cells inducing HepG2, Huh7, PLC/PRF/5, and Sk-Hep-1.

Cell proliferation and colony formation analyses
Cells were seeded onto 96-well plates, then medium was replaced with drug solutions in the next day. After incu-
bated for a further 48 h, cell viability was evaluated with an MTT assay kit following manufacturer’s instructions. 
Finally, IC50 values response curves were generated with GraphPad Prism 9.0 (GraphPad Software, Inc., USA). 
Colony formation analysis was performed following our previous study17. Briefly, cells were transferred onto 
24-well plates, then treated with Brilanestrant (Bril, 30 μM) and/or Ferrostatin-1 (Ferr-1, 5 μM). After further 
cultured for one week, the cells were fixed with 4% formaldehyde and stained with 0.1% crystal violet.

Cell apoptosis and ROS analysis
After treated with Bril (30 μM) for 48 h, cells were collected with trypsin and washed twice with pre-cold PBS. 
Then cells were stained with a PE annexin V apoptosis detection kit or ROS assay kit according to the manufac-
turer’s instructions. Finally, flow cytometry was used to detect cell apoptosis and ROS levels.

Molecule docking
Three-dimensional (3D) crystallographic structure of human glutathione peroxidase 4 (GPX4) protein was 
retrieved from Protein Data Bank (PDB ID: 6HKQ)18. Molecular docking simulations were conducted to explore 
the binding interaction between GPX4 and Brilanestrant. The simulations utilized molecular operating environ-
ment (MOE) software (version 2020.09) according to a previously described method19.

Etics apprval and consnt to partiipate
All procedures in this study involving human participants were in accordance with the ethical standards of 
the institutional and/or national research committees and with the 1964 Declaration of Helsinki and its later 
amendments or comparable ethical standards. All participants signed informed consent forms. The use of human 
biological materials was approved by the Ethics Committee of Affiliated Hospital of Xuzhou Medical University 
(Permit Number: XYFY2023-KL246-01).

Results
Identification of prognosis‑related genes in HCC patients
To compare gene expression levels between tumor and normal or adjacent tumor tissues in the liver, DEGs were 
explored within TCGA_LH, ICGC_LH_JP, and GSE76427 datasets using “limma” package in R software. The 
results showed that 2897 genes were identified as DEGs (2451 upregulated and 446 downregulated) in TCGA 
cohort (Fig. 1A), 966 genes were identified as DEGs (544 upregulated and 422 downregulated) in ICGC cohort 
(Fig. 1B), and 10,755 genes were identified as DEGs (8024 upregulated and 2731 downregulated) in GSE76427 
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cohort (Fig. 1C). Furthermore, the intersection of top 100 DEGs among TCGA, ICGC, and GSE76427 was per-
formed to yield a total of 55 genes including 18 upregulated and 37 downregulated ones (Fig. 1D,E). After that, 
the survival analysis related to the 55 genes were performed with KM analysis based on TCGA dataset. The results 
showed that 11 genes (4 upregulated and 7 downregulated) were significantly associated with OS, PFS, DSS, and 
DFS in patients with HCC (Fig. 1F–J). Accordingly, UBE2C, PTTG1, TOP2A, SPP1, FCN3, SLC22A1, ADH4, 
CYP2C8, SLC10A1, F9, and FBP1 were selected as prognosis-related genes in HCC patients for further analysis.

Variation and expression verification of 11 selected genes in HCC patients
To identify genome distribution of 11 prognosis-related genes, chromosome mapping was performed with 
genomic location of each gene. The results revealed a wide-genome distribution of 11 prognosis-related genes, 
which UBE2C, PTTG1, TOP2A, SPP1, FCN3, SLC22A1, ADH4, CYP2C8, SLC10A1 and FBP1 respectively 
located at chromosomes 20, 5, 17, 4, 1, 6, 4, 10, 14, and 9. F9 located at chromosome X (Fig. 2A). Furthermore, 
gene mutations in HCC patients were evaluated and visualized by using “maftools” package in R software based 
on TCGA dataset. The results showed that the top 10 high mutation frequency genes in HCC patients were TP53 
(28%), TTN (25%), CTNNB1 (24%), MUC16 (16%), PCLO (11%), ALB (11%), MUC4 (10%), ABCA13 (9%), 
RYR2 (9%), and APOB (9%) (Fig. 2B). Moreover, missense mutation, single nucleotide polymorphism (SNP), and 
C > T single nucleotide variants (SNV) class were the predominant type of mutation or variant in HCC patients 
(Fig. 2C). Interestingly, among 11 prognosis-related genes, PTTG1 (0.28%), TOP2A (1.12%), FCN3 (0.28%), 
ADH4 (0.84%), CYP2C8 (1.4%), and SLC10A1 (0.84%) exhibited mutations, such as nonsense mutation, mis-
sense mutation, frame shift insertion, and frame shift deletion in HCC patients (Fig. 2B,D). However, there was 
no mutations for UBE2C, SPP1, SLC22A1, F9, and FBP1.

To confirm the expression of 11 prognosis-related genes at both mRNA and protein levels, TCGA, GTEx, 
CPTAC, and HPA datasets were retrieved and used for further analysis. Moreover, their expression levels were 

Figure 1.   Identification of prognosis-related genes in HCC patients. (A–C) The volcano plot of DEGs in HCC 
samples compared to normal liver samples in TCGA_LH, ICGC_LH_JP, and GSE76427 datasets. Red dots 
represent upregulated genes, blue dots represent downregulated genes, and gray dots represent no changing 
ones. (D,E) The venn diagram of top 100 upregulated and downregulated expression genes in HCC. (F) The 
venn diagram of prognosis-related genes derived from the intersection top 100 upregulated and downregulated 
expression genes in HCC. (G–J) The p-value and hazard ratio of Kaplan–Meier survival analysis including OS, 
PFS, DSS and DFS for 11 prognosis-related genes in HCC patients based on TCGA dataset.
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Figure 2.   Signature construction and expression verification of 11 prognosis-related genes in HCC patients. 
(A) The chromosomal position visualization of 11 prognosis-related genes. (B) The mutation landscape in HCC 
samples based on TCGA dataset. The waterfall plot showed the mutation information of each gene (top 10 and 
6 prognosis-related genes) in the sample. (C) The distribution of variants according to variant classification, 
type and single nucleotide variants (SNV) class in HCC samples. (D) The mutation distribution of 6 prognosis-
related genes in HCC samples. (E) The expression verification of 11 prognosis-related genes in TCGA dataset 
(Normal: n = 50, HCC: n = 371) and GTEx dataset (Normal: n = 226) at mRNA levels. Data shown represent 
box and whisker plots (bar = median, box = interquartile range, whiskers = min to max all points), unpaired 
students’ t test was used to investigate the statistical difference. (F) The expression verification of 10 prognosis-
related genes in CPTAC dataset (Normal: n = 165, HCC: n = 165) at protein levels. Data shown represent box and 
whisker plots (bar = median, box = interquartile range, whiskers = min to max all points), unpaired students’ t 
test was used to investigate the statistical difference. Data for PTTG1was not found. (G) The representative IHC 
staining images of 10 prognosis-related genes in liver cancer were from HPA dataset. Data for F9 was not found. 
(H) The expression verification of 11 prognosis-related genes using qPCR in our collected human specimens 
(Normal: n = 11, HCC: n = 11) at mRNA levels. Paired students’ t test was used to investigate the statistical 
difference.
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also investigated in our collected human specimens through qPCR. In TCGA and GTEx datasets, the results 
showed that UBE2C, PTTG1, TOP2A, and SPP1 were significantly upregulated in HCC samples compared to 
normal liver samples. Whereas, FCN3, SLC22A1, ADH4, CYP2C8, SLC10A1, F9, and FBP1 were significantly 
downregulated (Fig. 2E). Consistent with mRNA levels, the z-value corresponding to protein levels from CPTAC 
dataset of UBE2C, TOP2A, and SPP1 was higher. However, FCN3, SLC22A1, ADH4, CYP2C8, SLC10A1, F9, 
and FBP1 exhibited the opposite trend in HCC compared to normal liver tissues (Fig. 2F). Moreover, protein 
expression levels of 10 prognosis-related genes were also identified in human samples using IHC based on HPA 
dataset. The results showed that UBE2C, PTTG1, TOP2A and SPP1 were positive, FCN3, SLC22A1, ADH4, 
CYP2C8, SLC10A1, and FBP1 were negative in liver cancer tissues (Fig. 2G). Furthermore, our qPCR results 
revealed that UBE2C, PTTG1, TOP2A, and SPP1 were significantly upregulated. However, FCN3, SLC22A1, 
ADH4, CYP2C8, SLC10A1, F9, and FBP1 were significantly downregulated in HCC tissue compared to the 
matched para-carcinoma tissue (Fig. 2H). In a word, the expression levels of 11 prognosis-related genes were 
well verified in several datasets.

Construction of a survival prediction risk model
The survival prediction risk model with 11 prognosis-related genes was established with multivariate Cox regres-
sion to generate a formula with risk score = (−0.057)× Exp(UBE2C)+ (0.2302)× Exp(PTTG1)+ (0.0557)×

Exp(TOP2A)+ (0.0971)× Exp(SPP1)+ (−0.0531)× Exp(FCN3)+ (−0.0679)× Exp(SLC22A1)+ (−0.0692)

×Exp(ADH4)+ (0.0462)× Exp(CYP2C8)+ (−0.0138)× Exp(SLC10A1)+ (0.1151)× Exp(F9)+ (−0.0124)

×Exp(FBP1) based on TCGA dataset. After calculated the risk score, HCC patients were divided into low-risk 
group (n = 185) and high-risk group (n = 185) based on the median risk score cutoff value (Fig. 3A). Survival 
status and time of each HCC patient in low- and high-risk groups were shown in Fig. 3B. Moreover, the relative 
expression levels of 11 prognosis-related genes for each HCC patient were shown in Fig. 3C. The KM survival 

Figure 3.   Construction of prediction risk model for HCC patients with TCGA dataset. (A) The distribution of 
risk score for each HCC patient based on prediction risk model. (B) The survival status of HCC patients based 
on risk score. (C) The heat map of 11 prognosis-related genes’ expression in low- and high-risk groups. (D) 
The KM overall survival analysis for HCC patients in low- and high-risk groups based on risk score. (E,F) The 
time-dependent ROC curves and AUC of 11 prognosis-related genes at 3- and 5-year based on prediction risk 
model. (G) The expression of 11 prognosis-related genes in low- and high-risk groups. Data shown represent 
box and whisker plots (bar = median, box = interquartile range, whiskers = 10–90 percentile), unpaired students’ 
t test was used to investigate the statistical difference between low- and high-risk groups, which generated 
a p value < 0.0001 for each gene. (H,I) The univariate and multivariate COX regression analyses of clinical 
characteristics related to HCC patients’ survival. (J) The Nomogram consisted of pathologic T stage and risk 
score for overall survival in HCC patients. The C-index of Nomogram is 0.748 with 95% CI (0.684–0.812) and p 
value = 2.56e−14.
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analysis results showed that the overall survival time of HCC patients in low-risk group was significantly longer 
than that in high-risk group (Fig. 3D). Furthermore, the ROC was performed to evaluate the predictive effi-
ciency of risk signature in 3- and 5-year survival rate. The results showed that the AUC was 0.707 with 95% CI 
(0.646–0.769) at 3-year and 0.689 with 95% CI (0.631–0.747) at 5-year, indicating a better predictive ability of 
our risk model (Fig. 3E,F). Furthermore, the expression levels of 11 prognosis-related genes in low- and high-risk 
groups were compared, showing that UBE2C, PTTG1, TOP2A, and SPP1 were upregulated; contrarily, FCN3, 
SLC22A1, ADH4, CYP2C8, SLC10A1, F9, and FBP1were downregulated in high-risk group (Fig. 3G).

Moreover, Cox regression analyses were performed to investigate the correlation between clinicopathological 
characteristics, risk score, and overall survival of HCC patients. Univariate Cox regression analysis results showed 
that pathologic M (HR 3.954, 95% CI 1.238–12.633, p = 0.020), pathologic T (HR 1.763, 95% CI 1.395–2.229, 
p = 0.000), and risk score (HR 3.017, 95% CI 1.998–4.555, p = 0.000) were significantly associated with overall 
survival of HCC patients based on TCGA dataset (Fig. 3H). Multivariate Cox regression analysis results showed 
that pathologic T (HR 1.571, 95% CI 1.204–2.050, p = 0.001), and risk score (HR 2.783, 95% CI 1.825–4.234, 
p = 0.000) were significantly associated with overall survival of HCC patients based on TCGA dataset (Fig. 3I). 
Then, a nomogram was constructed based on multivariate Cox repression analysis results to predict 1-, 3-, 
and 5-year survival rate for HCC patients (Fig. 3J). The c-index of our nomogram was 0.748 with 95% CI 
(0.684–0.812) corresponding to a p value of 2.56e-14, which suggested that our risk model had a good value for 
predicting the prognosis of HCC patients.

Validation of the prediction risk model
To investigate the reliability of our prediction risk model, verification was performed with ICGC dataset. After 
calculated the risk score based on above mentioned formula, HCC patients were divided into low-risk group 
(n = 120) and high-risk group (n = 120) based on the median risk score (Fig. 4A). The survival status, survival 
time, and relative expression levels of 11 prognosis-related genes for each HCC patient in low- and high-risk 
groups were shown in Fig. 4B and 4C, respectively. Moreover, the KM survival analysis results showed that the 
overall survival rate of low-risk group was remarkedly higher than that in high-risk group (Fig. 4D). The AUC 
values were 0.682 with 95% CI (0.589–0.776) and 0.693 with 95% CI (0.612–0.775) at 3- and 5-year survival 
rate in HCC patients, respectively (Fig. 4E). In addition, the expression tendency of 11 prognosis-related genes 
in low- and high-risk groups was consistent with that in TCGA dataset (Fig. 4F). In summary, the external 
validation results based on ICGC dataset confirmed the reliability of our predictive risk model established with 
TCGA dataset.

Figure 4.   External validation of prediction risk model for HCC patients with ICGC dataset. (A) The 
distribution of risk score for each HCC patient based on prediction risk model. (B) The survival status of HCC 
patients based on risk score. (C) The heat map of 11 prognosis-related genes’ expression in low- and high-risk 
groups. (D) The KM overall survival analysis for HCC patients in low- and high-risk groups based on risk 
score. (E) The time-dependent ROC curves and AUC of 11 prognosis-related genes at 3- and 5-year based on 
prediction risk model. (F) The expression of 11 prognosis-related genes in low- and high-risk groups. Data 
shown represent box and whisker plots (bar = median, box = interquartile range, whiskers = 10–90 percentile), 
unpaired students’ t test was used to investigate the statistical difference between low- and high-risk groups, 
which generated a p value < 0.0001 for each gene.
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Enrichment analysis of 11 prognosis‑related genes in HCC patients
To explore the functions of 11prognosis-related genes, KEEG pathway and GO terms analyses were carried out 
using clusterProfiler package in R software. The results showed that retinol metabolism, glycolysis/gluconeo-
genesis, drug metabolism cytochrome P450, bile secretion, and chemical carcinogenesis were the key KEEG 
pathways (Fig. 5A). The biological process of cellular hormone metabolic process, chromosome separation, 
response to drug, and sister chromatid segregation were closely associated with the prognosis-related genes 
(Fig. 5B). The cellular component of basolateral plasma membrane, basal part of cell, endoplasmic reticulum 
lumen, and anaphase promoting complex were primarily enriched (Fig. 5C). The molecular functions were 
enriched in organic hydroxy compound transmembrane transporter activity, solute sodium symporter activity, 
solute cation symporter activity, bile acid sodium symporter activity, and so on (Fig. 5D).

Subsequently, GSEA was performed to identify the main enrichment pathways in two different risk groups. 
The results showed that the hallmark of PI3K_AKT_mTOR signaling, protein secretion, mTORC1 signaling, 
DNA repair, mitotic spindle, unfolded protein response, MYC targets v2, G2M checkpoint, MYC targets v1, and 
E2F targets were enriched in low-risk group (Fig. 5E). The reactome of cell cycle, activation of ATR in response 
to replication stress, cell cycle mitotic, DNA replication, mRNA processing, mitotic M M G1 phases, mRNA 
splicing, DNA strand elongation, mitotic prometaphase, and processing of capped intron containing pre-mRNA 
were also enriched in low-risk group (Fig. 5F).

Furthermore, the prognosis-related genes’ signatures contributing to collected pathways were carried out 
using GSVA analysis based on TCGA dataset13. The relative GSVA score of collected pathways for each HCC 
patient was shown in Fig. 5G. As expected, tumor proliferation signature, G2M checkpoint, and MYC targets 
were positively correlated with risk score. However, fatty acid degradation, primary bile acid biosynthesis, and 
caffein metabolism were negatively correlated with risk score (Fig. 5H,I).

Immune response between low‑ and high‑risk groups in HCC patients
To investigate the response of low- and high-risk to immune infiltration cells, the CIBERSORT algorithm was 
used to evaluate the correlations based on TCGA dataset. The results showed that the risk score was positively 
correlated with T cells CD4 memory activated (Spearman r = 0.20, p = 0.0002), T cells follicular helper (Spearman 

Figure 5.   Functional enrichment and pathway correlation analyses associated with low- and high-risk in 
HCC patients. (A–D) The KEEG pathway, GO biological process, GO cellular component, and GO molecular 
function enrichment of 11 prognosis-related genes in HCC patients. (E,F) The GSEA enrichment analysis of 
hallmark and reactome associated with low- and high-risk in HCC patients based on TCGA dataset. (G) The 
heat map of pathways associated with low- and high-risk in HCC patients based on TCGA dataset. (H) The 
volcano plot of significant differential pathways associated with low- and high-risk (under unpaired students’ 
t test p value < 0.05) in HCC patients based on TCGA dataset. (I) The correlation network among significant 
differential pathways and risk score (|Spearman r |> 0.4 and p value < 0.05) in HCC patients based on TCGA 
dataset.
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r = 0.23, p = 6.56e−06), B cells memory (Spearman r = 0.25, p = 1.30e−06), T cells regulatory (Tregs)(Spearman 
r = 0.27, p = 1.56e−07), and macrophages M0 (Spearman r = 0.46, p = 1.73e−20). However, it was negatively cor-
related with monocytes (Spearman r = − 0.20, p = 0.0001), B cells naïve (Spearman r = − 0.26, p = 2.13e−07), 
and mast cells resting (Spearman r = − 0.29, p = 1.57e−08) (Fig. 6A,D). Moreover, the expression of UBE2C was 
positively correlated with eosinophils (Mantel r = 0.38, p < 0.05), B cells memory (Mantel r = 0.18, p < 0.05), and 
macrophages M0 (Mantel r = 0.17, p < 0.05). The expression of TOP2A was positively correlated with dendritic 
cells resting (Mantel r = 0.29, p < 0.05) and T cells follicular helper (Mantel r = 0.16, p < 0.05). The expression 

Figure 6.   Immune cell infiltration and immunotherapy analyses associated with low- and high-risk in HCC 
patients. (A) The heat map of 22 kinds of immune infiltration cell associated low- and high-risk in HCC patients 
based on TCGA dataset. (B) The correlation of 22 kinds of immune infiltration cells (pairwise comparison 
with the Spearman’s correlation coefficients) and expression levels of 11 prognosis-related genes (curve width 
with the partial Mantel tests coefficients) in HCC patients based on TCGA dataset. (C) The comparison of 
immune infiltration cells between low- and high-risk groups. Data shown represent box and whisker plots 
(bar = median, box = interquartile range, whiskers = 10–90 percentile), unpaired students’ t test was used to 
investigate the statistical difference, the significant difference was denoted as *p < 0.05, **p < 0.01, ***p < 0.0001. 
(D) The correlation network among significant immune infiltration cells and risk score (|Spearman r|> 0.2 and 
p value < 0.05) in HCC patients based on TCGA dataset. (E) The response of low- and high-risk HCC patients 
to immune checkpoint blockade based on TIDE dataset. Unpaired students’ t test was used to investigate the 
statistical difference.
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of PTTG1 was positively correlated with B cells memory (Mantel r = 0.20, p < 0.05), macrophages M0 (Mantel 
r = 0.18, p < 0.05), and eosinophils (Mantel r = 0.15, p < 0.05). The expression of SLC10A1 was positively corre-
lated with mast cells resting(Mantel r = 0.18, p < 0.05) (Fig. 6B). In addition, B cells naïve, T cells CD4 memory 
resting, NK cells resting, macrophages M1, macrophages M2, and mast cells resting were significantly more acti-
vated in low-risk group compared to high-risk group. However, B cells memory, T cells CD4 memory activated, 
T cells regulatory (Tregs), and macrophages M0 were significantly more activated in high-risk group compared 
to low-risk group (Fig. 6C).

Furthermore, to predict the response of low- and high-risk to immune checkpoint blockade (ICB), TIDE 
score of HCC patients was calculated based on TCGA dataset. Subsequently, the comparison between low- and 
high-risk group was performed. The results showed that the TIDE and T cell dysfunction scores were signifi-
cantly higher in low-risk group than that in high-risk group (Fig. 6E). Besides, other markers including CD274, 
Merck18, IFNG, CD8, T cell exclusion, MDSC, and TAM M2 were significantly more activated in high-risk 
group than that in low-risk group (Fig. 6E).

Drug candidate prediction and verification for HCC
To search effective drug candidates for HCC, a screening criterion was carried out following previous studies’ 
descriptions based on our predictive risk model16,20. Primarily, drug sensitivity was predicted using pRRophetic 
package in R software based on TCGA dataset. Then, log2 fold change of mean predicted sensitivity value of 
drug in high-risk group versus that in low-risk group less than − 0.10 and the correlation coefficients of risk 
score less than − 0.50 were set as cut-off value to predict drug candidates (Fig. 7A). Eventually, six drug candi-
dates including Adavosertib, Brilanestrant, Ceralasertib, ML-323, Paclitaxel, and Sepantronium bromide were 
predicted (Fig. 7B). Interestingly, the IC50 AUC values of them were remarkedly lower in high-risk group than 
that in low-risk group (Fig. 7C).

In order to evaluate the inhibitory effects of drug candidates on HCC, hepatoma cells including Huh7, HepG2, 
PLC/PRF/5, SK-Hep-1 were selected for further investigations. After treated 48 h with individual drug candidates 
under indicated concentrations, the IC50 values were calculated based on cell viability. The results showed that 
Paclitaxel and Sepantronium bromide exhibited strongest inhibitory effects to hepatoma cells corresponding to 
the lowest IC50 value. Moreover, Adavosertib and Ceralasertib showed half inhibitory effects to hepatoma cells 

Figure 7.   Drug sensitivity signature prediction and verification in HCC. (A) The workflow of drug sensitivity 
prediction in HCC patients based on TCGA dataset. (B) The scatterplot of predicted sensitivity of drug. The 
x axes represent log2 fold change of mean predicted sensitivity value of each drug in high-risk group versus 
that in low-risk group, the y axes represent the Spearman correlation coefficients between predicted sensitivity 
value of each drug and risk score in HCC patients. The drug candidates were marked in red color. (C) The 
sensitivity (IC50 AUC value) comparison of drug candidates in low- and high-risk groups, unpaired students’ 
t test was used to investigate the statistical difference. (D–G) The cell survival curve and IC50 value for HCC 
cells including Huh7, HepG2, PLC/PRF/5, and SK-Hep-1 after treated for 48 h with drug candidates. Data are 
presented as mean ± SEM in cell survival curve, IC50 values are presented with 95% CI and R squared value.
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around 0.5 ~ 4.0 μM. However, Brilanestrant and ML-323 occupied a high concentration for half inhibitory 
effects to hepatoma cells (Fig. 7D–G). Interestingly, reports have previously revealed the inhibitory effects of 
drug candidates on HCC without Brilanestrant21–25, which was selected for further analysis.

Ferroptosis is the potential target of Brilanestrant in HCC
In order to clarify the molecular mechanism of Brilanestrant in inhibiting HCC cells, cell apoptosis that is a 
normal process of cell death in cancer induced by drugs was investigated following Brilanestrant (Bril) treatment. 
Our results showed that Bril treatment (30 μM for 48 h) could not induce apoptosis in hepatoma cells (Fig. 8A,B). 
Interestingly, Bril treatment could significantly increase intracellular ROS levels (Fig. 8C,D). Furthermore, the 
IC50 AUC value of Bril was remarkedly lower in high-ferroptosis associated HCC patients than that in low 
ones (Fig. 8E). Surprisingly, Ferrostatin-1 (Ferr-1, a potent and selective ferroptosis inhibitor) treatment could 
effectively reverse Bril induced cell death in HCC cells (Fig. 8F). Moreover, molecular docking simulations have 
revealed a binding affinity between Bril and GPX4, which is quantified by a free energy of − 4.7 kcal/mol. The 
analysis has identified a hydrogen bond wherein the carboxyl oxygen of Bril forms an interaction with the lysine 
residue Lys48 of GPX4 (Fig. 8G). This specific interaction is postulated to contribute for the modulation of the 
biological activity of GPX4.

Discussion
Over the past few decades, bioinformatics has been widely applied in the area of HCC research. Currently, a series 
of studies have developed the prognosis prediction model for HCC patients based on bioinformatics analysis. 
Recently, He Q. et al. constructed a prognostic and diagnostic model related to transcatheter arterial chemoem-
bolization (TACE) refractoriness for HCC patients9. Yang T. et al. established a model for predicting the prognosis 
and immune status of HCC patients26. Here, we developed a novel prediction model with 11 prognosis-related 

Figure 8.   Ferroptosis is the potential target of Brilanestrant in HCC. (A,B) The cell apoptosis analysis in 
HepG2 and SK-Hep-1 cells after treated for 48 h with 30 μM of Brilanestrant (Bril). (C,D) The ROS detection 
in HepG2 and SK-Hep-1 cells after treated for 48 h with 30 μM of Bril. (E) The sensitivity (IC50 AUC value) 
comparison of Bril in low- and high-ferroptosis associated patients with HCC. (F) The representative images of 
colony formation in HepG2 and SK-Hep-1 cells after treated with Bril (30 μM) and Ferrostatin-1 (Ferr-1, 5 μM). 
(G) Molecular docking between Bril and GPX4. The graph includes the 3D conformation and 2D depiction of 
interactions. The binding free energy predictions of Bril to GPX4 was − 4.7 kcal/mol. All in vitro experiments 
were performed in triplicate, and unpaired students’ t test was used to investigate the statistical difference.
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genes in liver cancer, which could significantly predict the clinical outcome of cancer patients. Importantly, our 
prediction model could also effectively evaluate the immunotherapy and drug treatment responsiveness for the 
patients.

In our research, to explore factors contributing to the malignancy of liver cancer, DEGs were identified 
in TCGA_LH, ICGC_LH, and GSE76427 datasets. The intersection of top 100 DEGs in three datasets were 
performed to yield 55 genes including 18 upregulated and 37 downregulated. Using TCGA dataset, 11 genes 
(UBE2C, PTTG1, TOP2A, SPP1, FCN3, SLC22A1, ADH4, CYP2C8, SLC10A1, F9, and FBP1) were significantly 
identified to associate with OS, PFS, DSS and DFS in HCC patients. In the present study, gene signature analysis 
showed that the 11 genes without F9 widely located at different euchromosomes, 6/11 genes exhibited low fre-
quency mutations including PTTG1, TOP2A, FCN3, ADH4, CYP2C8, and SLC10A1(Fig. 2).

In previous studies, ubiquitin-conjugating enzyme E2C (UBE2C), pituitary tumor transforming gene 1 
(PTTG1), topoisomerase II alpha (TOP2A), and secreted phosphoprotein 1 (SPP1) have been recognized as 
oncogenes promoting the progression of HCC. Here, the expression level of them were also well confirmed in 
public datasets and our collected human specimens (Fig. 2). It has been revealed that UBE2C could enhance cell 
proliferation, migration, invasion, and drug resistance in HCC cells27,28. PTTG1 is remarkedly overexpressed in 
HCC samples and involved in angiogenesis, proliferation, metastasis and metabolism reprogramming of HCC, 
which serves as a therapeutic and diagnostic target29–31. Overexpression TOP2A is positively correlated with 
poor prognosis of HCC. It could enhance the proliferation, metastasis, invasion and epithelial-mesenchymal 
transition process of HCC32–34. In addition, expression of SPP1 is closely associated with tumor cell evolution 
and microenvironmental reprogramming. It functions as an enhancer of cell growth in HCC35,36.

Whereas, to be tumor suppressors, ficolin 3 (FCN3), cytochrome P450 family 2 subfamily C member 8 
(CYP2C8), and fructose-1,6-biphosphatase (FBP1) have been reported to be downregulated in HCC and inhib-
ited the progression of HCC. Ma D. et al. revealed that high-expression of FCN3 was positively associated with 
a good prognosis for liver cancer patient. It could induce cell apoptosis and inhibit cell proliferation in HCC37. 
CYP2C8 has been revealed to enhance the anticancer activity of sorafenib and inhibit HCC cell malignant phe-
notypes including proliferation, clonality, migration, invasion and cell cycle38. Moreover, FBP1 appears to be a 
tumor suppressor in HCC progression though negatively regulating the Warburg effect39. In addition, studies 
have demonstrated that the expression of solute carrier family 22 member 1 (SLC22A1), alcohol dehydrogenase 
4 (ADH4), solute carrier family 10 member 1 (SLC10A1), and coagulation factor IX (F9) was related to the 
progression and survival of HCC6,40–42. However, there is no reference regarding the integration of these genes 
for the prognosis of patients with HCC.

Herein, we created a 11 prognosis-related genes prediction risk model using machine learning algorithm 
based on TCGA dataset. Satisfactorily, the model could well divide HCC patients into low- and high-risk groups. 
Moreover, the patients with low-risk score showed a significant better overall survival probability than high-risk 
ones. The AUC values of 3- and 5-year were respectively 0.707 and 0.689 (p < 0.0001) (Fig. 3). Recently, numerous 
models were established to evaluate the prognosis of HCC patients. Gao S. et al. developed a prognostic model 
utilizing 10 genes, with corresponding AUC values of 0.67 and 0.66 for 3- and 5-year time points, respectively43. 
Moreover, Gao Q. et al. built a prognostic model with 8 genes, achieving AUC values of 0.645 and 0.630 at 3- 
and 5-year, respectively44. According to multivariate Cox repression analyses results, a nomogram model with 
c-index value of 0.748 was further established to predict 1-, 3-, and 5-year survival of HCC patients (Fig. 3), 
which is higher than previous ones26,45. Moreover, the scoring system was also externally validated with ICGC 
dataset (Fig. 4). All of which indicate that our prognosis risk model has a better predictive power, suggesting its 
application value in clinic and practice.

Studies show that sustaining proliferative signaling and deregulating cellular metabolism are the hallmarks 
of cancer, and lipid metabolism is aberrantly activated in most cancers46,47. Here, our results revealed that the 
risk score was positively correlated with tumor proliferation signature, but negatively correlated with fatty acid 
degradation (Fig. 5), indicating that HCC patients with high-risk score maintain stronger malignant progression. 
In other words, these findings further prove the reliability of our model in another way.

Liver reserves abundant immune cells that participate in tumorigenesis, metastasis, and drug resistance of 
cancer48. Macrophages M0 is the only resting state of macrophages. It has been reported that high infiltration of 
macrophages M0 showed a poor overall survival in HCC patients49,50. In this work, our results showed that the 
risk score was most positively correlated with infiltrated macrophages M0 (Fig. 6), revealing that high infiltra-
tion of macrophages M0 is unfavorable factor for HCC patients. Mast cells are the major contributors to allergic 
disease, also associated with reduced survival rates in colorectal cancer51. Here, we found that mast cells resting 
was most negatively associated with the risk score (Fig. 6), indicating that the unfavorable role of mast cells in 
HCC. The primary mechanism of tumor immune evasion is to induce T cell dysfunction and prevent T cell 
infiltration in tumors, TIDE score is a suitable rule to investigate factors underlying this mechanism15. In our 
study, TIDE score was significantly higher in low-risk group, indicating that HCC patients with low-risk score 
could receive a poor immune checkpoint inhibition treatment.

At present, sorafenib and lenvatinib are approved by U. S. Food and Drug Administration as the first-line 
option for targeted therapy of advanced liver cancer52. However, novel additional therapeutics are required to 
explore for HCC patients due to drug-resistance. In this study, a prediction method was developed to screen 
potential drug candidates using integrating patients’ risk score and drug IC50 values. Accordingly, six potential 
drugs were identified as candidates for HCC treatment, drug inhibitory activity to HCC cells was investigated 
through  ex vivo experiments (Fig. 7). Interestingly, previous results exhibited the inhibitory effects of adavosertib, 
ceralasertib, ML-323, paclitaxel, and sepantronium bromide to HCC cells21–25. It seems reasonable to conclude 
that our drug screening model is reliable and effective. Brilanestrant, an orally bioavailable selective estrogen 
receptor degrader, has strong anti-tumor activity in human breast cancer both in vitro and in vivo53,54. Moreover, 
it has been evaluated in Phase II clinical studies in breast cancer55. However, rare studies reveal its anti-tumor 
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activity in liver cancer. Here, our results showed that Brilanestrant could obviously increase intracellular ROS 
level, which is a pivotal biomarker of ferroptosis56. Importantly, Ferrostatin-1 (the ferroptosis inhibitor) could 
effectively reverse Brilanestrant induced cell death in HCC cells. In addition, Brilanestrant is able to bind to and 
inhibit the activity of GPX4 (Fig. 8), which is the center molecular of ferroptosis regulation56,57. In summary, 
these results indicate that ferroptosis is a potential target of Birlanestrant in HCC, but the mechanism should 
be further elucidated in the future.

However, some limitations should be recognized in this study. First, the prognostic predictive capability of our 
risk model should be further validated by more external datasets. Second, our model’s function for identifying 
the cancer stage of HCC should be developed in the future. Moreover, further in vitro and in vivo experiments 
should be performed to investigate the roles of prognosis-related genes and drug candidates in the progression 
of HCC. Taken together, more studies are needed to verify our model.

Conclusion
In conclusion, our research developed and validated a prediction risk model of HCC based on 11 prognosis-
related genes. This risk model could effectively evaluate the overall survival, immune cell infiltration, and immu-
notherapy response of HCC patients. Importantly, a potential anti-liver cancer drug candidate, Brilanestrant, was 
identified relying on our risk model and primarilyvalidated through in vitro experiments. Overall, our findings 
have great significance for prognosis and treatment of the patients with HCC.

Data availability
The datasets analyzed in this study are available in the TCGA, ICGC, GEO, GTEx, HPA, and CPTAC repository.

Received: 20 February 2024; Accepted: 16 April 2024

References
	 1.	 Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. CA Cancer J. Clin. 71(3), 209–249 (2021).
	 2.	 Rumgay, H. et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 77(6), 1598–1606 (2022).
	 3.	 Reig, M. et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 76(3), 681–693 

(2022).
	 4.	 Cheng, Z. et al. Lactylation-related gene signature effectively predicts prognosis and treatment responsiveness in hepatocellular 

carcinoma. Pharmaceuticals 16(5), 644 (2023).
	 5.	 Jeong, S. H. et al. Nomogram for predicting gastric cancer recurrence using biomarker gene expression. Eur. J. Surg. Oncol. 46(1), 

195–201 (2020).
	 6.	 Zhu, Y., Wang, Y., Hu, M., Lu, X. & Sun, G. Identification of oncogenes and tumor-suppressor genes with hepatocellular carcinoma: 

a comprehensive analysis based on TCGA and GEO datasets. Front. Genet. 13, 934883 (2022).
	 7.	 Li, Q. et al. Analysis of a new therapeutic target and construction of a prognostic model for breast cancer based on ferroptosis 

genes. Comput. Biol. Med. 165, 107370 (2023).
	 8.	 Chen, Y., Huang, W., Ouyang, J., Wang, J. & Xie, Z. Identification of anoikis-related subgroups and prognosis model in liver hepa-

tocellular carcinoma. Int. J. Mol. Sci. 24(3), 2862 (2023).
	 9.	 He, Q., Yang, J. & Jin, Y. Development and validation of TACE refractoriness-related diagnostic and prognostic scores and char-

acterization of tumor microenvironment infiltration in hepatocellular carcinoma. Front. Immunol. 13, 869993 (2022).
	10.	 Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta 

C(T)) Method. Methods 25(4), 402–408 (2001).
	11.	 Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways 

and genomes. Nucleic Acids Res. 51(D1), D587–D592 (2023).
	12.	 Shen, W. et al. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta 1(3), e36 (2022).
	13.	 Wei, J. et al. Characterization of glycolysis-associated molecules in the tumor microenvironment revealed by pan-cancer tissues 

and lung cancer single cell data. Cancers 12(7), 1788 (2020).
	14.	 Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 

37(7), 773–782 (2019).
	15.	 Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24(10), 1550–1558 

(2018).
	16.	 Geeleher, P., Cox, N. J. & Huang, R. S. Clinical drug response can be predicted using baseline gene expression levels and in vitro 

drug sensitivity in cell lines. Genome Biol. 15(3), R47 (2014).
	17.	 Liu, X. et al. Cellular retinol binding protein-1 inhibits cancer stemness via upregulating WIF1 to suppress Wnt/beta-catenin 

pathway in hepatocellular carcinoma. BMC Cancer 21(1), 1224 (2021).
	18.	 Moosmayer, D. et al. Crystal structures of the selenoprotein glutathione peroxidase 4 in its apo form and in complex with the 

covalently bound inhibitor ML162. Acta Crystallogr. D Struct Biol 77(Pt 2), 237–248 (2021).
	19.	 Shi, W. et al. Identification of dihydrotanshinone I as an ERp57 inhibitor with anti-breast cancer properties via the UPR pathway. 

Biochem. Pharmacol. 190, 114637 (2021).
	20.	 Yang, J. et al. Single-cell profiling reveals molecular basis of malignant phenotypes and tumor microenvironments in small bowel 

adenocarcinomas. Cell Discov. 8(1), 92 (2022).
	21.	 Zhao, Y., Xue, C., Xie, Z., Ouyang, X. & Li, L. Comprehensive analysis of ubiquitin-specific protease 1 reveals its importance in 

hepatocellular carcinoma. Cell Prolif. 53(10), e12908 (2020).
	22.	 Chen, J. et al. Targeting WEE1 by adavosertib inhibits the malignant phenotypes of hepatocellular carcinoma. Biochem. Pharmacol. 

188, 114494 (2021).
	23.	 Zhao, X., Ogunwobi, O. O. & Liu, C. Survivin inhibition is critical for Bcl-2 inhibitor-induced apoptosis in hepatocellular carcinoma 

cells. PLoS ONE 6(8), e21980 (2011).
	24.	 Sheng, H. et al. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by 

potentiating the tumor immune microenvironment in hepatocellular carcinoma. J. Immunother. Cancer 8(1), e000340 (2020).
	25.	 Liu, Y. et al. Paclitaxel suppresses hepatocellular carcinoma tumorigenesis through regulating circ-BIRC6/miR-877-5p/YWHAZ 

axis. Onco Targets Ther. 13, 9377–9388 (2020).
	26.	 Yang, T. et al. A novel signature incorporating lipid metabolism- and immune-related genes to predict the prognosis and immune 

landscape in hepatocellular carcinoma. Front. Oncol. 13, 1182434 (2023).



15

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9509  | https://doi.org/10.1038/s41598-024-59877-9

www.nature.com/scientificreports/

	27.	 Ieta, K. et al. Identification of overexpressed genes in hepatocellular carcinoma, with special reference to ubiquitin-conjugating 
enzyme E2C gene expression. Int. J. Cancer 121(1), 33–38 (2007).

	28.	 Xiong, Y. et al. UBE2C functions as a potential oncogene by enhancing cell proliferation, migration, invasion, and drug resistance 
in hepatocellular carcinoma cells. Biosci. Rep. 39(4), BSR20182384 (2019).

	29.	 Fujii, T. et al. Overexpression of pituitary tumor transforming gene 1 in HCC is associated with angiogenesis and poor prognosis. 
Hepatology 43(6), 1267–1275 (2006).

	30.	 Zhang, X. et al. Phosphorylated PTTG1 switches its subcellular distribution and promotes beta-catenin stabilization and subsequent 
transcription activity. Oncogene 42(32), 2439–2455 (2023).

	31.	 Zhou, Q. et al. PTTG1 reprograms asparagine metabolism to promote hepatocellular carcinoma progression. Cancer Res. 83(14), 
2372–2386 (2023).

	32.	 Cai, H. et al. High expression of TOP2A gene predicted poor prognosis of hepatocellular carcinoma after radical hepatectomy. 
Transl. Cancer Res. 9(2), 983–992 (2020).

	33.	 Dong, Y. et al. Type IIA topoisomerase (TOP2A) triggers epithelial-mesenchymal transition and facilitates HCC progression by 
regulating Snail expression. Bioengineered 12(2), 12967–12979 (2021).

	34.	 Wang, T., Lu, J., Wang, R., Cao, W. & Xu, J. TOP2A promotes proliferation and metastasis of hepatocellular carcinoma regulated 
by miR-144-3p. J. Cancer 13(2), 589–601 (2022).

	35.	 Ma, L. et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholan-
giocarcinoma. J. Hepatol. 75(6), 1397–1408 (2021).

	36.	 Wang, J., Hao, F., Fei, X. & Chen, Y. SPP1 functions as an enhancer of cell growth in hepatocellular carcinoma targeted by miR-
181c. Am. J. Transl. Res. 11(11), 6924–6937 (2019).

	37.	 Ma, D. et al. FCN3 inhibits the progression of hepatocellular carcinoma by suppressing SBDS-mediated blockade of the p53 
pathway. Int. J. Biol. Sci. 19(2), 362–376 (2023).

	38.	 Zhou, X. et al. CYP2C8 suppress proliferation, migration, invasion and sorafenib resistance of hepatocellular carcinoma via pi3k/
akt/p27(kip1) axis. J. Hepatocell Carcinoma 8, 1323–1338 (2021).

	39.	 Yang, J. et al. Loss of FBP1 facilitates aggressive features of hepatocellular carcinoma cells through the Warburg effect. Carcinogenesis 
38(2), 134–143 (2017).

	40.	 Li, J., Yang, Z. & Tuo, B. Role of OCT1 in hepatocellular carcinoma. Onco Targets Ther. 12, 6013–6022 (2019).
	41.	 Liu, X. et al. Prognostic implications of alcohol dehydrogenases in hepatocellular carcinoma. BMC Cancer 20(1), 1204 (2020).
	42.	 Tran, Q. H., Nguyen, V. G., Tran, C. M. & Nguyen, M. N. Down-regulation of solute carrier family 10 member 1 is associated with 

early recurrence and poorer prognosis of hepatocellular carcinoma. Heliyon 7(3), e06463 (2021).
	43.	 Gao, S. et al. Screening hub genes of hepatocellular carcinoma based on public databases. Comput. Math. Methods Med. 2021, 

7029130 (2021).
	44.	 Gao, Q., Fan, L., Chen, Y. & Cai, J. Identification of the hub and prognostic genes in liver hepatocellular carcinoma via bioinformat-

ics analysis. Front. Mol. Biosci. 9, 1000847 (2022).
	45.	 Zhuang, H. et al. Identification of LSM family members as novel unfavorable biomarkers in hepatocellular carcinoma. Front. Oncol. 

12, 871771 (2022).
	46.	 Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12(1), 31–46 (2022).
	47.	 Rohrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16(11), 732–749 (2016).
	48.	 Donne, R. & Lujambio, A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. 

Hepatology 77(5), 1773–1796 (2023).
	49.	 Zhang, Y., Zou, J. & Chen, R. An M0 macrophage-related prognostic model for hepatocellular carcinoma. BMC Cancer 22(1), 791 

(2022).
	50.	 Wei, X. et al. Association of tumor cell metabolic subtype and immune response with the clinical course of hepatocellular carci-

noma. Oncologist 28(11), e1031–e1042 (2023).
	51.	 Liu, X., Li, X., Wei, H., Liu, Y. & Li, N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. 

Front. Immunol. 14, 1209056 (2023).
	52.	 Llovet, J. M. et al. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 19(3), 151–172 (2022).
	53.	 Joseph, J. D. et al. The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer. 

Elife 5, e15828 (2016).
	54.	 Lai, A. et al. Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that 

demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J. Med. Chem. 58(12), 4888–4904 (2015).
	55.	 Cheeti, S. et al. Application of a novel ‘make and test in parallel’ strategy to investigate the effect of formulation on the pharma-

cokinetics of GDC-0810 in healthy subjects. Pharm. Res. 35(12), 233 (2018).
	56.	 Stockwell, B. R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14), 

2401–2421 (2022).
	57.	 Cheff, D. M. et al. Development of an assay pipeline for the discovery of novel small molecule inhibitors of human glutathione 

peroxidases GPX1 and GPX4. Redox Biol. 63, 102719 (2023).

Acknowledgements
The authors would like to acknowledge the TCGA, ICGC, GEO, GTEx, HPA, and CPTAC for providing data.

Author contributions
X.G.G. and X.Y.L. conceived and designed the study. X.G.G., X.R., F.T.W., X.X.R., M.C.L., G.Z.C. and X.Y.L. 
contributed materials, analysis tools and data curation. X.G.G., X.R., and X.Y.L. wrote and reviewed the paper. 
All authors read and approved the final version of the manuscript.

Funding
This work was supported by the National Natural Science Foundation of China (Grant No. 81802389 to X.Y.L. 
and 81972242 to G.X.G.), the Research Foundation of Xuzhou Medical University (Grant No. D2015006 to 
X.Y.L.), Key Research Project of Xuzhou City (Grant No. KC22114 to X.Y.L.), Integration and innovation project 
of Xuzhou Medical University (Grant No. XYRHCX2022004 to X.Y.L.).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.L.



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9509  | https://doi.org/10.1038/s41598-024-59877-9

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Immunotherapy and drug sensitivity predictive roles of a novel prognostic model in hepatocellular carcinoma
	Materials and methods
	Cell culture and reagents
	Patient specimens
	Publicly available data acquisition
	Selection of prognosis-related genes
	Signature construction and expression verification of prognosis-related genes
	Quantitative polymerase chain reaction
	Construction and validation of prognosis risk model
	Functional enrichment and pathway correlation analysis
	Immune infiltration and checkpoint blockade analyses
	Drug sensitivity analysis
	Cell proliferation and colony formation analyses
	Cell apoptosis and ROS analysis
	Molecule docking
	Etics apprval and consnt to partiipate

	Results
	Identification of prognosis-related genes in HCC patients
	Variation and expression verification of 11 selected genes in HCC patients
	Construction of a survival prediction risk model
	Validation of the prediction risk model
	Enrichment analysis of 11 prognosis-related genes in HCC patients
	Immune response between low- and high-risk groups in HCC patients
	Drug candidate prediction and verification for HCC
	Ferroptosis is the potential target of Brilanestrant in HCC

	Discussion
	Conclusion
	References
	Acknowledgements


