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Complex networks approach 
to study comorbidities in patients 
with unruptured intracranial 
aneurysms
Juri Kivelev 1*, Ilkka Saarenpää 1, Antti Karlsson 2, Paride Crisafulli 3,4, Federico Musciotto 3, 
Jyrki Piilo 5 & Rosario N. Mantegna 3,6

The role of complex network analysis in patients with diagnosis of unruptured intracranial aneurysm is 
unexplored. The objective of this study is to assess the applicability of this methodology in aneurysm 
patients. We retrospectively analyze comprehensive unbiased local digital data of a large number 
of patients treated for any reason between January 2004 and July 2019. We apply an age-cohort 
approach to a total of 628,831 patients and construct the diagnostic history of each patient—and 
include the information how old the patient was when diagnosed for the first time with each diagnosis 
coded according to International Classification of Diseases. For each cohort of age within a 10 year 
interval and for each gender, we construct a statistically validated comorbidity network and focused 
on crucial comorbidity links that the aneurysm code has to other disease codes within the whole 
network. For all cohorts of different age and gender, the analysis shows that 267 diagnose codes have 
nearest neighbour statistically validated links to unruptured aneurysm ICD code. Among the 267 
comorbidities, 204 (76%) were found in patients aged from 40 to 69-years old. Patterns of connectivity 
with aneurysms were found for smoking, hypertension, chronic obstructive pulmonary disease, 
dyslipidemia, and mood disorders. A few uncommon connections are also detected in cohorts of 
female patients. Our study explored the applicability of network analysis and statistical validation in 
aneurysm observational study.

Complex network theory has shown its applicability in biomedical research providing new insights in under-
standing nature and mechanisms of a number of  diseases1–3. More than a decade ago, Goh et al. presented the first 
report on applicability of network theory in analyzing the links of genetic disorders resulting in “diseasome”, the 
combined set of all known disorder/disease gene  associations4. Furthermore, Hidalgo et al. proposed a phenotypic 
disease network analysis which showed the potential in unraveling the disease progression when considering the 
role of  comorbidities5. The role of complex network analysis of comorbidities in early diagnosing of unruptured 
intracranial aneurysm (UIA) is worth to be investigated. In modern practice, most of UIA are found incidentally 
on magnetic resonance imaging or computerized tomography. Some of incidental UIA are treated prophylac-
tically aiming at preventing subarachnoid hemorrhage, a devastating intracranial catastrophe, which carries 
approximately 30–40 % mortality risk and causes neurological disability in significant part of the  survivors6,7. 
Recommendations regarding indications for screening non-familial UIA in general population are still lacking 
scientific evidence and vary according to institutional preferences. Nowadays, medical digital data and their 
non-censored computerized processing have reinforced the methodological armamentarium of investigators 
allowing re-assessment of previous clinical guidelines in management of UIA. To benefit the automated data 
collection and network statistics in clinical research, we established a digital big data-type dataset of all available 
codes of diseases coded within International Codes of Disease (later - ICD) 10 classification encountered in all 
consecutive patients treated for any reason in the wellbeing servicies county of Southwest Finland. Subsequently, 
we performed a network analysis of ICD codes of comorbidities in UIA patients. The objective of this study is to 
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present the applicability and effectiveness of a complex network investigation in assessing the role of the comor-
bidities in screening and management of patients with unruptured intracranial aneurysms before haemorrhage.

Results
We process medical records of a dataset including 628,831 individuals treated to any reason within 15 years 
period. Having this big data-type sample of information we apply complex network analysis in studying the role 
of comorbidities in patients carrying UIA. Specifically, we extract comorbidity networks from the diagnoses 
history of patients of the wellbeing services county of southwest Finland. Diagnoses span a period of 15 years 
and 7 months providing enough information for the study of comorbidity of unrupted aneurysms in groups of 
patients of different age and gender. Diagnoses are coded electronically in terms of the international statistical 
classification of diseases (ICD) of the World Health Organization. Diagnoses are highly heterogeneous in their 
occurrence in the population, some diseases are highly frequent, and others occur only rarely. For this reason, 
we use a complex network  methodology8 that is robust with respect to the occurrence of the elements of inter-
est (in the present case the number of diagnoses of a given disease). The complex networks subgraphs obtained 
with this methodology are called statistically validated  networks8. We briefly describe this methodology in the 
methods section. In the following sections, we describe the database investigated and the statistically validated 
networks of ICD codes obtained for groups of patients of given gender and age class. Our focus will be on the 
so-called “ego network" of disease I67.1, i.e., of the disease classified as “Cerebral aneurysm, nonruptured". An 
“ego network" is a subgraph of a network consisting of the node of interest (in our case I67.1), and all nodes 
directly connected with it. The validation method for the links in networks used in our clinical study, allows to 
overcome the problem of heterogeneity in terms of prevalence and patient-wise number of diagnoses. By starting 
from the empirically observed bipartite disease-patient network the link-validation procedure allows extraction 
of the most informative structure of the comorbidity network from the general data sample eliminating the bias 
arising due to diseases’ heterogeneity. Subsequently, we could focus on the specific part of the validated network, 
i.e., UIA ego-network, and managed to highlight the set of links related to diagnosis of UIA. After applying age-
cohort approach we can comprehensively overview the comorbidity sets and their connectivity patterns for each 
age-decade in both genders. From a practical point, this brings an additional prospective in analyzing aneurysm 
epidemiological phenotype-based data.

We show that “ego networks" of I67.1 are informative with respect to: (i) prominent comorbidities signaling 
higher risk of presence of unrupted aneurysms in patients suffering them, (ii) role of gender and age class in I67.1 
comorbidities, and (iii) additional indicators of increased potential risk of unruptured aneurysm. In the next 
sections, we present and discuss data and ego networks of I67.1 extracted from statistically validated networks. 
The method used to obtain statistically validated networks is described in the method section.

Data
Availability of data materials
The original data cannot be shared due to being proprietary data of Auria Clinical Informatics which operates in 
connection with the wellbeing services county of Southwest Finland. The study was approved by the Institutional 
Review board of Turku University Hospital (license number T152/2017). Informed consent was waived due to 
the retrospective design of the study according to Finnish legislation on secondary use of health data.

Data preprocessing
This is a population-based longitudinal retrospective study. Our data consisted of the time period between the 
1st of January 2004 and 31st of July 2019 and included 628,831 individuals. We divide the patients in groups 
by gender and age. Since the data does not cover all the life span of the patients, there is no unique way how to 
construct the age cohorts. For the present study, we have chosen the following procedure. We start considering 
first the diagnoses history of each patient and record how old the patient was when diagnosed for the first time 
with each of his/her ICD codes (note: we use ICD code level XX.X). After this, we construct the age-gender 
cohorts for the duration of 10 years—0–9 years old, 10–19 years old and so on—and keep for each patient the 
entire history of his/her diagnoses. For example: if patient is diagnosed for the first time with ICD code 1 when 
being 56 years old and has a first-time diagnoses with ICD code 2 when having age 63, then the first data point 
contributes to the 50–59 cohort and both data points contribute to the 60–69 age cohort. In this way, we are able 
to track in comprehensive way the long-term diagnoses history. Data was processed and the statistically validated 
comorbidity network of ICD codes implemented utilizing a software that we developed for this purpose. The 
software can be downloaded at the repository https:// github. com/ compl exPar ide/ svaln et.

Ego network
Having thereby constructed the statistically validated comorbidity network of all ICD codes, we consider the ICD 
code I67.1, meaning UIA, under detailed scrutiny. Specifically, we observe the “ego-network” of I67.1. In net-
works for UIA (ICD code I67.1), we found several groups of diseases linked to UIA through statistically validated 
links. By stratifying over the genders, the analysis selects in total 77 distinct ICD codes which are connected by 
statistically validated links to UIA and are dependent on the age and gender of the diagnosed. Figure 1 displays 
example networks for females for age groups 40–49 and 50–59. Statistically validated networks for all groups of 
age and gender and their description are given in the Supplemental Information. In their own networks men 
have 42 distinct ICD nodes and women have 73 ICD nodes. For a summary of their stratification with respect 
to the different categories of ICD code, age and gender, see Table 1. For the complete list of ICD presence in the 
“ego networks" of ICD67.1 for all investigated groups of patients see Table S1A, S1B and S2 of the Supplemental 
Information. Headaches (R51.80) were linked to UIA code in all patients regardless age (with the exception 
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of 80-XX Women) and gender. This obviously corresponds to the real-life situation when a brain imaging is 
commonly performed on ambulatory bases due to patient’s complaint of headache. As a result, UIA is detected 
frequently as an incidental finding. Prominent co-morbidities with UIA are diseases of the circulatory system. 
A link to hypertension (ICD code I10) exists in all patients with age between 40 and 79 years regardless their 
gender. An ischemic and hemorrhagic stroke with or without confirmed atherosclerosis (ICD code level I6x.xx) 
and brain vessel malformations (ICD code level Q2X.XX) are the most typical connections to UIA in all patients. 
These links are almost exclusive in men younger than 40 years and are the larger fraction of links in women. The 
codes of stroke also included the condition after the brain aneurysm rupture (I60.XX). Such link was typical 
for patients with multiple aneurysms, when unruptured one (I67.1) was detected after or before the rupture of 
another one in the same patient. Smoking (ICD codes Z72.0 and F17.2) is associated with UIA diagnosis in both 

Figure 1.  Ego networks of ICD67.7 UIA for women of age class from 40 to 49 (left panel) and from 50 to 59 
(right panel). Each node is labeled with its ICD code. Different colors are used for different categories of ICD 
codes. Specifically, E: endocrine, nutritional and metabolic diseases, light blue; F: mental and behavioural 
disorders, cyan; G: diseases of the nervous system, yellow; H: diseases of the eye and adnexa (H00–H59) 
and diseases of the ear and mastoid process (H60–H95) , coral; I: diseases of the circulatory system, green; 
Q: congenital malformations, deformations and chromosomal abnormalities, pink; R: symptoms, signs and 
abnormal clinical and laboratory findings, not elsewhere classified, orange; Z: factors influencing health status 
and contact with health services, violet.

Table 1.  Table with numbers of nodes in I67.1 ego-network of statistically validated networks.  Percent values 
are given in parenthesis and are obtained by considering the total number in each row for men (M) and 
women (W) separately.

Age

E00–E99 F00–F99 G00–G99 H00–H99 I00–I99 J00–J99 M00–M99 Q00–Q99 R00–R99 Z00–Z99 Total

M W M W M W M W M W M W M W M W M W M W M W

30–39 – – – – – 1 (10) – – 6 
(85.7) 6 (60) – – – – – 1 (10) 1 

(14.3) 1 (10) – 1 (10) 7 10

40–49 – – 1 (5.3) 1 (3.6) 2 
(10.5)

6 
(21.4) – 2 

(7.1)
14 
(73.7)

12 
(42.9) – – – – – 1 (3.6) 1 (5.3) 2 (7.1) 1 (5.3) 4 

(14.3) 19 28

50–59 – 3 (6.4) 1 (3.4) 1 (2.1) 3 
(10.3)

10 
(21.3) 2 (6.9) 4 

(8.5)
15 
(51.7)

18 
(38.3) – – – – 1 (3.4) 2 (4.3) 1 (3.4) 5 

(10.6)
6 
(20.7) 4 (8.5) 29 47

60–69 2 (7.1) 3 (5.7) 1 (3.6) – 3 
(10.7)

9 
(17.0) – 2 

(3.8)
14 
(50)

21 
(39.6) – 1 (1.9) – – 1 (3.6) 3 (5.7) 4 

(14.3)
7 
(13.2)

3 
(10.7)

7 
(13.2) 28 53

70–79 – 2 (5.9) – 1 (2.9) – 4 
(11.8) – – 7 

(63.6)
13 
(38.2) – 2 (5.9) – 1 (2.9) 1 (9.1) 3 (8.8) 2 

(18.2) 3 (8.8) 1 (9.1) 5 
(14.7) 11 34

80–XX – – – – – – – 1 
(100) – – – – – – – – – – – – – 1
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genders in persons withe age from 40 to 79 years. Dyslipidemia (ICD codes E78.X) has connectivity to UIA in all 
women from 50 to 79 years, whereas the respective figure was observed in men only from 60 to 69 years of age. 
Moreover, a link to chronic obstructive pulmonary disease (COPD) coded with J44.8 was found only in women 
aged 60–69 and 70–79 years-old whereas none of the pulmonary disease code could be connected to men with 
UIA. Mood disorders showed connectivity with UIA in women aged from 40 to 49 years (panic disorder—ICD 
code F41.0) and in men aged from 50 to 59 years (depression—ICD code F32.9).

The age cohorts from 60 to 69 and 70 to 79 years old of women present a link to Q61.2 Polycystic kidney, 
autosomal dominant (see supplemental information Figures S4 and S5 and Table S1B). This observation con-
firms the conclusion that some monoigenic conditions, such as autosomal dominant polycystic kidney disease 
are associated with  UIA9,10.

In addition to the verification of comorbidity well known in literature, our method highlights a number of 
less documented comorbidities that could be used as alerts to be used to trigger dedicated analyses. For example, 
vision (H49.0 and H53.X) and hearing (H81.1, H93.1 and R42) disorders are systematically detected in women 
and are also present in men in the cohort from 50 to 79 years (see Tables S1A and S2 of the supplemental informa-
tion). Some encountered comorbidities observed in women were mostly related to aneurysms and/or the repre-
sented indications for brain imaging and included dysphasia/aphasia (R47.0) and paraesthesia of skin (R20.2).

Discussion
Our findings show the applicability of network analysis methodology to population-based study of co-morbidities 
in patients harboring unruptured intracranial aneurysms. Statistically validated networks matched to patients’ age 
and gender elucidated certain groups of diseases detected in UIA carriers. Of note, in real-life conditions more 
than 90% of UIA are found incidentally on MRI and/or CT imaging. Thus, the observed links in our networks do 
not confirm actual clinical causality of respective co-morbidities and UIA, but indeed show their co-existence on 
populational level from the statistical point of view. In this respect, we can subdivide the revealed co-morbidities 
from clinical point of view to three general types that we label A, B and C. Specifically, the three types are defined 
as follows: (A) diseases generally accepted to occur in UIA carriers, (B) diseases representing clinical situations 
when the indication for neuroimaging is related to diseases of central nervous system and showing UIA as an 
incidental finding, and (C) previously unproven connection to UIA. We think the data in group C is of utmost 
interest implying the need for further clinical research to discover the actual role of these pathological condi-
tions in developing an UIA. As an example, one can appreciate the distribution of aforementioned groups in 
both genders showed in Tables S1A, S1B and S2 in the supplemental information. Co-morbidities of group C 
are primarily detected in women. Specifically, they are diseases like Streptococcal pharyngitis (ICD J02.0)11,12, 
chronic obstructive pulmonary disease (ICD J44.8)13, hypothyroidism (ICD E03.9)14,15 and panic disorder (ICD 
F41.0). In men, group C comorbidity is limited to depression (ICD F32.9).

Since the prevalence of UIA is estimated to be 3%, accounting up to 162,000 cases in Finland and 6,5 million 
cases in the USA, new data on potentially causative comorbidities in this patients may carry practical  value6,16,17. 
Systematic meta-analysis  studies16 have shown that prevalence ratios in Finland, Japan and US are similar. 
According to recent a Finnish study analyzing the nationwide Cause of Death and Hospital Discharge Registers 
from 1998 to 2017, rupture of the aneurysm and subarachnoid hemorrhage was the most common type of stroke 
discovered that aneurysmal SAH represented the 18th most common cause of death in all middle-aged persons 
in  Finland18. These data advocate the development of efficient algorithms for general population screening and 
reasonable management of the incidental UIA, especially in working-aged individuals. In this sense, our study 
on network analysis of co-morbidities carries a potential for formulating individualized medically and socio-
economically adjusted UIA management solutions in real-life clinical settings. In practical medicine, physicians 
frequently face the question whether screening of healthy individuals in terms of non-familial UIA diagnosing is 
reasonable or not. To date, the widely accepted concept of what are the risk groups suitable for the screening of 
non-familial UIA has not been established. In the literature, the risk of developing of UIA is reported only among 
persons with certain connective-tissue disorders (e.g., the Ehlers–Danlos syndrome), and among persons with 
polycystic kidney  disease19,20. However, due to rareness of aforementioned entities, their role in epidemiology 
of UIA within the general population is still  debated10. In our case, our data do not contain genetics informa-
tion about patients and therefore we cannot perform investigations on the genetic profile of them. Further, we 
list several potential benefits of comorbidity networks in unruptured aneurysm patients, which may open new 
insights for further clinical investigations.

Concerning benefits and limitations, first, networks address the set of diseases most probably related to UIA 
which may have a role in developing of UIA before the moment of diagnosing. Nowadays, physicians tend to 
benefit increasingly from non-invasive diagnostic solutions and guidelines based on computerized analysis of in-
hospital medical registries. Indeed, in the real-life situation, an ambulatory access to biological material from each 
individual patient for mapping the genomic or any other omics-based personalized risk stratification in terms of 
UIA screening seems to be cumbersome and even irrational. Thus, automatized identification of certain sets of 
co-morbidities from medical registers or other available digital data sources may indicate the risk of developing 
UIA, thus facilitating the decision-making. Second, uncovered by our analysis age-matched set of co-morbidities 
associated with UIA may support the physician in assessment of potential risks of active treatment, especially 
in cases when the patient’s previous health status is not thoroughly investigated. For example, the discovered 
connectivity between chronic obstructive pulmonary diseases and UIA in women older than 60 years can direct 
a diagnostic workout toward identifying hidden subclinical forms of COPD in non-smoking aneurysm carries 
in the respective age. The previous paradigm of age limitation (not older than 65 years) in selection cases for 
an active treatment of UIA currently is shifting toward higher age limits and is more dependent on the patient’s 
co-morbidities, functional status, and local life-expectancy  rates21. The sets of co-morbidities discovered in our 
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age and gender stratified networks may help in the prediction of health status and phenotypical changes in UIA 
patients even in the long run, thus helping to optimize a timing of active treatment. This is especially relevant 
in cases, when UIA is diagnosed in young or middle age and considered for conservative management, but later 
follow-up advocates an active treatment of the aneurysm for some reason. In such cases, treatment safety may 
be secured by early and focused prevention of diseases and conditions which tend to accumulate with aging 
specifically in UIA patients.

Despite of the large sample size, our network analysis was performed on a homogeneous population from the 
single-center area. Furthermore, the availability of neuroimaging, the accuracy of disease coding by healthcare 
providers and the degree of digitalization of patient charts may be a limitation in generalization of our networks. 
The conceptual disadvantage of UIA network may be faced in interpretation of the connectivity of the links to 
the diagnosis of interests and between each other. Although the likelihood of random connectivity between the 
nodes in validated networks is fairly negligible the existed links still do not necessary explain their causality. 
In this context, discovered ICD codes should be estimated as a phenotypical characterization of the selected 
patient group with UIA which has a certain set of diseases prone to appear with stratified connectivity patterns.

Statistically validated networks processed by analyzing an unbiased dataset of 628,831 consecutive patients 
demonstrated high diversity of comorbidities in patients with unruptured intracranial aneurysms. Regardless 
heterogeneity of primary database, we addressed age and gender stratified clusters of comorbidities which had 
respective connectivity patterns. Regardless methodological limitations, the existed data may be used for further 
research in prediction of the dynamics of health status in patients with newly diagnosed unruptured aneurysms 
in the long run.

Methods
In this study, all methods were performed in accordance with the relevant guidelines and regulations including 
the Declaration of Helsinki. Staring from medical records, for groups of patients characterized by their age and 
gender we obtain statistically validated networks of comorbidity of diseases. From these statistically validated 
networks we extract the Ego networks related to the unruptured aneurysm (I67.1). The different steps of our 
method are shown in Fig. 2.

Network concepts
A network consists of a set of N nodes where pairs of nodes are connected with links. The degree of a given 
node i, ki, quantifies to how many other nodes the node i is connected to. Having the knowledge of the degree 
of all the nodes in the network via degree sequence ki, one can construct, e.g., the degree distribution P(k). This 
gives the probability that a node has degree equal to k, when picked up uniformly random from the network. In 
a bipartite network, we have two set of nodes—A and B—and the links that join nodes from the set A to the set 
B. From the bipartite network, it is possible to construct a one-mode network for the nodes in the set A (B) by 
projecting out the nodes of the set B (A). For our current purpose, the set A consists of ICD codes of medical 
diagnoses and the set B consists of patients. There is a link between the ICD code and the patient if the patient 
has been diagnosed with this ICD code. By using our database and projecting now on the side of the ICD codes, 
we obtain an empirical network of diagnoses where there is a link between two ICD codes if there exists at least 
one patient who has been diagnosed with both codes.

Statistical validation of networks
The empirical data used to construct networks might present spurious co-occurrence and—perhaps even more 
importantly—the data features heterogeneity. In our case, this means that the prevalence of ICD codes can vary 
several orders of magnitudes depending on the code. In other words, some of the diseases are very rare affecting 
only a few patients while some other diseases are very common, most of the population/cohort having been 
diagnosed the corresponding ICD code at some point of their life.

Null hypothesis
The statistically validated network (SVN)  method8 is based on choosing an appropriate null hypothesis which 
fully accounts for the heterogenous properties of the system and network under the study. As a starting point, 
the method is based on constructing the bipartite network being studied. In the current case, we have a bipartite 
network of ICD codes and patients, where the nodes from the two sets are linked as described above. Now, the 
null hypothesis is based on randomizing this bipartite network by maintaining the empirically observed degree 
of nodes of set A and set B. In the corresponding randomized network, the number of ICD codes each patient 
had remains the same, and the prevalence of each ICD code also remains the same. However, for each patient his/
her ICD codes are chosen randomly, and for each ICD code—in turn—the patients are chosen randomly. From 
the point of view of the bipartite network, this corresponds to random rewiring of the network where the degree 
of each node is however kept fixed and the degrees still corresponds to the original non-randomized network.

P-value
With the null-hypothesis described above, it now becomes possible to calculate the p-value associated with the 
number of co-occurrences observed for each pair of the ICD codes co-occurring among patients. Suppose that 
Ni (Nj) is the empirically observed number of the patients having been diagnosed with the ICD code i (j). N, in 
turn, indicates the total number of the patientsX in the whole data set and X notes the number of co-occurrences 
of the diagnoses with both the ICD codes i and j. The probability that the fully randomized network—corre-
sponding to the null hypothesis—would present a number X of co-occurrences can now be calculated from by 
the hypergeometric probability distribution as
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Consider now that Ni, j is the actual number of co-occurrences observed in the original network. Subsequently, 
the p-value for having observed the number Ni, j, or more, co-occurrences in the randomized network is given by

Statistical validation: multiple hypothesis testing
Most often, the empirical constructed networks are very large having a large number of nodes and links. With the 
above- mentioned validation method, we actually statistically select links rejecting a null hypothesis between all 
possible pairs of the nodes. Therefore, also the number of statistical tests becomes large. Thus, when performing 
a statistical test for a specific pair of nodes—to minimize the number of false positive—we have to use methods 
suitable for a multiple hypothesis test procedure. For this purpose, we use the control of the false discovery rate 
(FDR)  procedure22. We apply the control of the FDR as follows, we first order all calculated p-values correspond-
ing to the validation of each test/link, to an increasing order. The

actual threshold value increases linearly with the location and the corresponding index of the p-value/test 
in their ordered set. When we reach the point where the threshold is no more satisfied, i.e., pn > nα, where α is 
the used fixed threshold value (in our case α = 0.01). The multiple hypothesis test procedure with the control 

(1)H(X|N ,Ni ,Nj) =

(Ni
X

)(N−Ni
Nj−X

)

(N
Nj

) .

(2)p(Ni,j) = 1−

Ni,j−1
∑

X=0

H(X|N ,Ni ,Nj).

Figure 2.  Scheme of the validation procedure of the disease comorbidity network. The different steps are 
detailed in the section about “Methods”.
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of FDR therefore detects pairwise rejection of the null hypothesis of random matching of diseases highlighting 
comorbidity relations that are statistically validated by taking into account potential familywise errors.

Received: 12 September 2023; Accepted: 16 April 2024
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