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Uncovering uncharacterized 
binding of transcription factors 
from ATAC‑seq footprinting data
Hendrik Schultheis 1, Mette Bentsen 1, Vanessa Heger 1 & Mario Looso 1,2*

Transcription factors (TFs) are crucial epigenetic regulators, which enable cells to dynamically adjust 
gene expression in response to environmental signals. Computational procedures like digital genomic 
footprinting on chromatin accessibility assays such as ATACseq can be used to identify bound TFs 
in a genome‑wide scale. This method utilizes short regions of low accessibility signals due to steric 
hindrance of DNA bound proteins, called footprints (FPs), which are combined with motif databases 
for TF identification. However, while over 1600 TFs have been described in the human genome, only 
~ 700 of these have a known binding motif. Thus, a substantial number of FPs without overlap to a 
known DNA motif are normally discarded from FP analysis. In addition, the FP method is restricted 
to organisms with a substantial number of known TF motifs. Here we present DENIS (DE Novo motIf 
diScovery), a framework to generate and systematically investigate the potential of de novo TF 
motif discovery from FPs. DENIS includes functionality (1) to isolate FPs without binding motifs, (2) 
to perform de novo motif generation and (3) to characterize novel motifs. Here, we show that the 
framework rediscovers artificially removed TF motifs, quantifies de novo motif usage during an early 
embryonic development example dataset, and is able to analyze and uncover TF activity in organisms 
lacking canonical motifs. The latter task is exemplified by an investigation of a scATAC‑seq dataset in 
zebrafish which covers different cell types during hematopoiesis.
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The expression of genes has to be tightly regulated to ensure a swift and efficient reaction to changing environ-
mental conditions. One important part of the regulatory machinery in living cells are transcription factors (TF). 
TFs are DNA binding proteins that control expression by binding to regulatory regions, such as promoters or 
enhancers, which regulate target  genes1. TFs utilize specific protein domains (such as zinc fingers, paired box 
or homeodomain) to target selected DNA sequences, resulting in the regulation of a few specific genes up to 
large gene sets depending on the abundance and accessibility of the target sequence. Computational algorithms 
designed to generate such motifs (e.g.,  MEME2 and  GLAM23) use genomic regions with suspected TF activity. 
Early algorithms were designed to find statistically overrepresented sequences within the promoter regions of 
co-regulated genes. These algorithms were later extended to include sequence conservation. However, these 
algorithms suffered from a lack of correlation between overrepresented sequences and actual protein binding 
and were therefore mostly successful for lower organisms. This problem was overcome with the advent of chro-
matin immunoprecipitation sequencing (ChIP-seq4 or CUT&RUN5) and similar techniques, which identify 
the TF binding motif for one TF at a time. These experimentally derived motifs are collected and organized in 
specialized TF databases such as  JASPAR6 or  HOCOMOCO7. However, these efforts are hampered by the need 
for TF-specific antibodies for CUT&RUN or ChIP-seq, which are not available for all TFs or in all organisms of 
interest. Thus, while more than 1600 genes in the human genome are characterized to be TFs, less than 50% of 
these have a validated binding motif (JASPAR CORE vertebrates: 727 human motifs). Of note, human and mouse 
are some of the most studied models in terms of TF binding, but for most other organisms, the rate of TFs with 
known motifs is considerably lower (JASPAR CORE vertebrates: 14% non-human).

In contrast to established methods, Assay for Transposase Accessible Chromatin using sequencing (ATAC-
seq) allows for the unbiased genome-wide assessment of chromatin accessibility. This is realized by a hyperactive 
Tn5 transposase, which preferentially cuts and inserts sequencing adapters into open chromatin, resulting in 
fragments of different sizes. Open chromatin regions are identified as peaks after amplification, sequencing, and 
mapping of the ATAC-seq fragments. Notably, within these peaks, the distribution of cutsites reveals so-called 
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footprints (FPs), defined as small regions of reduced read coverage, resulting from DNA–protein binding that 
protects DNA from Tn5 cutting. This FP signal allows for the genome-wide investigation of TF binding for all 
known TFs from one ATAC-seq run, as FPs can typically be assigned to known motifs from TF motif  databases8,9 
(Fig. 1a). But in some cases, FPs can be observed for which there is no known TF motif. This can be hypothesized 
to be caused by proteins without a known binding motif or with multiple motifs for one factor, of which some 
are unexplored (e.g. driven by the availability of different  cofactors10). We define this concept as the uncharac-
terized binding motif (UBM). Of note, the amount of UBMs is expected to differ depending on the organism, 
tissue, and cell type under investigation. For example, an increase in UBMs may be facilitated by studying rare 
cell types that are likely to contain more unspecified TFs, or TFs may undergo allosteric changes induced by the 
presence of different cofactors, causing them to target an altered  UBM10. Thus, a computational tool for UBM 
characterization needs to identify and visualize de novo motifs and their corresponding gene targets in a cell 
type and organism-specific manner.

In order to systematically investigate the potential of a genome-wide unbiased FP analysis, we implemented a 
computational framework called DENIS (DE Novo motIf diScovery) that (1) isolates UBM events from ATAC-
seq data (Fig. 1a), (2) performs de novo motif generation (Fig. 1b), (3) calculates information content, motif 
novelty and quality parameters, and (4) characterizes de novo motifs through open chromatin enrichment analy-
sis, differential analysis, gene annotation and gene set enrichment analysis (Fig. 1c). The framework is designed 
to robustly explore DNA binding events on a global scale, to compare ATAC-seq datasets from one or multiple 
conditions, and is suitable to be applied to any organism. Of note, the latter feature provides potential to use the 
framework for organisms with very few known TF motifs in order to predict organism-specific TF motifs, and 
subsequently assign them to conserved TF-classes by motif similarity search.

As a proof of principle, we show that DENIS rediscovers the TF Dux in a simulated leave-one-out approach 
on a bulk ATAC-seq dataset from mouse embryonic stem cells. In addition, the application to a Dux overexpres-
sion vs. Dux wildtype (WT) condition revealed a number of differentially regulated de novo motifs indicating 
several UBMs within early embryonic stages. Finally, the framework is shown to predict both known and de 
novo TF motifs in a cell type specific manner by the application to a high resolution zebrafish derived single-cell 
ATAC-seq (scATAC-seq) dataset on hematopoiesis.

Results
Workflow and strategy
We implemented the DENIS tool as a modular computational Python framework, which smoothly integrates with 
our previously published software  TOBIAS8. However, because DENIS detects FPs based on an accessibility rating 
at base pair resolution, provided in the widely used BigWig format, it can easily work with data provided by other 
tools, such as HINT-ATAC 9 or  Wellington13. DENIS first detects FPs based on the aforementioned accessibility 
rating, where peaks indicate FPs (Fig. 1a). This is done by applying a custom peak-calling algorithm to detect 
stretches of locally increased FP scores. Next, in order to isolate locations of potentially unknown TF binding, 
DENIS excludes FPs that have a sufficiently good hit for at least one of the motifs included in a reference motif 
database. In order to consider TF complexes binding in close proximity, DENIS allows for the removal of the 
motif location within a FP, rather than the complete FP. However, DENIS can also operate without a reference 
database enabling it to identify FPs in an unbiased manner, which is a major advantage, especially for organisms 
with few motifs available. After detection, FPs are evaluated for their size and location, and FPs below the mini-
mum size threshold are removed. The genomic sequences within the remaining FP locations are further used for 
de novo motif generation (Fig. 1b). Once the de novo motif generation is finished, UBMs are validated through 
analysis based on comparison to motif databases and investigation of potential binding locations (Fig. 1c). This 
last step is of paramount importance, as the computational categorization of a de novo generated motif as pro-
vided by DENIS is the only way to add additional evidence for biological significance without going through an 
extensive and laborious round of wet-lab based validation steps.

The DENIS framework source code, its documentation and exemplary data are freely available from GitHub.
In order to implement an optimal prediction of motifs (Fig. 1b), we investigated three widely accepted tools 

for de novo motif prediction, namely  GLAM23,  MEME2 and  DREME14. Through performance tests considering 
speed, RAM usage, accuracy and precision, we found that MEME was the most suitable motif generation tool 
to integrate into our application (Supp. Fig. 1a–c). However, since MEME was created for the identification of 
motifs within one ChIP-seq dataset, its application for a mixture of FP derived sequences representing multiple 
TFs with vastly different input quantities has not been validated. In order to test MEME for this ability, we col-
lected the source ChIP-seq of 20 random motifs originating from JASPAR and constructed a dataset ranging 
from 395 to 322,803 representative sequences per motif with 659,078 sequences in total. Testing on this set of 

Figure 1.  DE Novo motIf diScovery (DENIS) framework. (a) The framework receives continuous binding 
scores as minimal input. In the first step, the binding scores are scanned and footprints (FPs) are extracted 
genome-wide. If binding scores for two conditions are provided as input, differential binding will be assessed. 
(b) Sequences at detected FPs are extracted and used to perform data driven de novo motif prediction. In an 
iterative process, most prominent motifs are extracted and corresponding sequences are removed from the 
motif discovery pool. FPs not (yet) used are kept for following discovery runs. (c) Resulting motifs are subjected 
to downstream analysis. DENIS provides (1) an individual motif site annotation module (e.g. annotation to 
genes)11, (2) a motif database comparison module, (3) a module to compute global binding site enrichment in 
open chromatin, and (4) based on the annotation module, a motif based gene set enrichment analysis (GSEA) 
 module12. All subfigures were created with BioRender.com.
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in silico binding sites, we found that MEME was prone to find only the most prominent motifs from a mixture 
of sequences (Fig. 2a).

In order to overcome this resolution issue, we designed DENIS to apply an iterative approach to (1) collect the 
most prominent motifs, (2) filter out the sequences that were used to form these de novo motifs, and (3) repeat 
this process until there are no further significant motifs available in the data (Fig. 2b,c). Further filtering steps 
on the level of motif significance improved the specificity of the framework by reducing the number of motifs 
while retaining sensitivity (Fig. 2d). Finally, DENIS merges very similar motifs found in multiple iterations and 
continues with the consensus motif in these cases. Using the described test data above, DENIS generated a total 
of 141 motifs over 26 iterations, which were finally merged to 30 unique motifs. Using this approach, DENIS 
was able to correctly identify 60% (35% increase to a single run) of the test input motifs. In conclusion, DENIS is 
capable of finding de novo motifs from a complex in silico generated mixture of sequences such as found within 
uncharacterized ATAC-seq FPs.

To the best of our knowledge, just four other tools exist intended to generate de novo motifs from ATAC-seq 
data, namely  BindVAE15 and  MMGraph16 (both using machine learning in combination with k-mers),  CEMIG17 
(which utilizes De Bruijin graphs created on k-mers), and the RSAT peak-motifs  pipeline18 (a pipeline intended 
for ChIP-seq, which is also applicable to ATAC-seq data). However, BindVAE, CEMIG and RSAT solely oper-
ate on the sequences of complete ATAC-seq peaks, therefore these tools lack precision compared to a FP based 
tool. While MMGraph utilizes FPs for its de novo motif generation, similarly to DENIS, it does not provide any 
downstream analysis. As such, these tools can be classified as de novo motif generation tools, similar to MEME, 
and therefore might be incorporated into DENIS as alternative motif callers in the future.

Figure 2.  Iterative motif discovery from complex sequence mixtures. (a) Simulated de novo motif discovery 
by MEME, each dot indicates the closest MEME created motif compared to the respective original motif; As 
indicated by black circles, there is a correlation of binding site count (y axis) and de novo motif similarity 
distance (x axis) to the original motif. (b) Scheme of the iterative motif prediction; Identified FP sequences are 
extracted to build the motif discovery pool and used to create de novo motifs (red box). Created motifs are 
filtered for significance and all corresponding sequences used to generate significant motifs are removed from 
the sequence discovery pool. This process is run iteratively until no further significant motifs are predicted. 
The figure was created with BioRender.com. (c) Number (y axis) of generated motifs per iteration (x axis), split 
by significance (orange and blue) i.e. motifs accepted by internal dynamic e-value filter. (d) Heatmap showing 
the distance of de novo motifs detected per iteration (columns) to the most similar database motif (row) for 
significant motifs from a simulated de novo run. To the left, the number of sites from the corresponding ChIP-
seq run per factor is shown as a bar plot. Grey color indicates no significant motifs were available within one 
iteration.
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Generation of de novo motifs from footprinting tracks
Next, we aimed to utilize ATAC-seq data combined with genomic footprinting for identifying de novo motifs 
globally within a biological context. For this, we utilized bulk ATAC-seq data of mouse embryonic stem cells 
(mESC)19. Importantly, the data includes two conditions, one with an induced expression of the TF Dux (Dux 
positive) and a WT condition, where Dux is not expressed (Dux negative). Dux is known to be a major driver 
for zygotic genome activation during early embryonic development, and its overexpression is sufficient to direct 
mESCs into a 2 cell-like  stage19,20. As Dux is not expressed in natural embryonic stem cells, it is not expected to 
leave any FP in this condition. The motif for Dux should therefore not be discoverable in these cells.

Thus, we asked whether DENIS would be able to specifically identify Dux in the Dux positive cells. As a proof 
of principle, we excluded Dux and Dux-like motifs (Supp. Fig. 2a,b) from the known motif reference database, 
which enables the Dux motif to be found as part of the UBM’s (Fig. 3a), and ran DENIS for both conditions (Dux 
positive and negative) separately. DENIS found a total of 48 motifs for the Dux positive and three motifs for the 
Dux negative condition. To verify whether DENIS identified a motif that can be attributed to the Dux factor, we 
used a previously published ChIP-seq for  Dux19. The genome was scanned for binding sites, followed by binding 
site enrichment analysis of ChIP-peaks against the whole genome. We found the highest enrichment for motif 
20, which is a motif with a binding profile similar to Dux (Fig. 3b). Interestingly, motif 1 of the Dux negative 
condition was also found among the top enriched motifs. This motif was found to be highly similar to Prdm4, a 
TF known to regulate pluripotency and differentiation in embryonic stem cells, which explains why it creates FPs 
in both  conditions21. Hence, DENIS meets our expectations of recalling biologically relevant motifs from ATAC-
seq FPs using a leave-one-out approach as highlighted by rediscovering Dux in the Dux positive condition only.

Differential footprinting yields upregulated motifs
Next, we investigated the performance of the DENIS framework to predict genome-wide DNA binding events 
without any prior knowledge on the target motif. In practice, this is done by searching for UBMs without sub-
tracting known motifs, and thus treating all FPs as part of the search space. This approach serves as an unbiased 
characterization of all DNA binding events from a single measurement, and can thus be compared between 
conditions. In the case of the Dux dataset, this approach can quantify differential binding events of novel motifs 
between Dux positive and Dux negative conditions, thus enabling us to identify condition specific upregulated 
motifs in an unbiased manner (Fig. 3c).

The differential footprinting mode is realized by subtracting binding scores between conditions, in our exam-
ple, the Dux negative from the Dux positive condition, which leaves us with binding events unique to the Dux 
positive condition. Starting the framework on these positions and without a reference motif database, we received 
178.034 Dux positive exclusive FPs. From these, DENIS reported a total of 90 UBMs, representing potentially 
2C-like specific TFs. Of note, the motifs identified by DENIS should include both rediscovered database motifs 
as well as novel motifs. As expected, we found various levels of similarity to database motifs (Fig. 3d–f, Supp. 
Fig. 2c). These database motifs include  NFYA22,  SNAI223,  POU2F224,  KLF925 and  SP326, which are well known 
to be active in developmental processes. Not surprisingly, we also identified the Dux motif as highly specific for 
the Dux positive condition. A GSEA on the genes annotated to the binding sites of motif 10 further supported 
this assessment by showing enrichment for gene ontology terms related with zygotic genome activation (Supp. 
Fig. 2e). In addition to the 25 rediscovered motifs, we found 65 motifs that did not match the database, which 
are therefore considered novel.

Our next question was whether the UBMs are indeed specific for the Dux positive condition. To this end, we 
ran  TOBIAS8 to verify the differential activity of the UBMs. We did this by joining the newly generated UBMs 
(novel and rediscovered) with the JASPAR reference database. As expected, we found significant enrichment 
for the UBMs in the Dux positive condition (Fig. 3g), supporting their discovery from the Dux positive specific 
FPs. Interestingly, we saw an enrichment of UBMs independent of their subgroups, namely the rediscovered 
and the novel motifs. Since most of the UBMs showed a clear preference to be more active in the Dux positive 
condition we decided to investigate their biological significance. For this reason, we initially selected the redis-
covered UBMs and found their involvement in developmental processes by linking them back to their database 
counterparts, identified through a similarity search. However, this approach was not feasible for the novel UBMs. 
Therefore, we sought to further characterize the novel UBMs by means other than motif similarity. We used 
binding site overlap and clustering, a method that allows the grouping of UBMs and known motifs (Fig. 3h). 
As shown  previously27–30, TFs that share the same protein binding domain, but not necessarily the same motif, 
often act in a substitutive or complementary manner. Consequently, the enrichment of certain TF-classes within 
clusters, derived from overlapping binding sites, can be used to assign UBMs to already annotated TF-classes31. 
For our dataset, we utilized the top overlapping (> 95% percentile) JASPAR motifs per UBM and checked their 
TF-class annotations. Strikingly, we found significant enrichment for a given TF-class for 50 out of the 90 dis-
covered motifs (Supp. Fig. 2d). Exemplary candidates include Basic helix-loop-helix factors (bHLH)32, C2H2 
zinc finger  factors33, T-Box  factors34 and fork head/winged helix  factors35, which are known to be important in 
developmental processes. In particular, our motif 10, which is assigned as the rediscovery of Dux, was enriched 
for Homeo domain factors, to which Dux belongs (Fig. 3i).

Interestingly, one of the novel UBMs showed high enrichment for T-Box factors, a group of TF genes 
shared by all metazoan species (Fig. 3j). This group of genes is well known to be involved in early embryonic 
 development34,36.

Concluding, we have shown that our framework produces condition-specific motifs from footprinting data 
without prior knowledge. The UBMs were shown to have biological relevance by investigating their similarity 
to known motifs and assignment to TF-classes.
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Figure 3.  De novo rediscovery of motifs and differential analysis. (a) Scheme on rediscovering the Dux motif 
by removal from the background motif database. Separate DENIS runs on a Dux positive and on a Dux negative 
condition. (b) Binding site enrichment (y axis) of motifs calculated by DENIS (x axis) as described in (a) within Dux 
ChIP-seq peaks. The top motifs enriched for Dux positive (green) and Dux negative (red) conditions are shown. (c) 
Scheme on how to discover motifs unique to the Dux positive condition without the use of any motif database. DENIS 
uses the differential FP module to predict motifs exclusively present in the Dux positive condition. (d) Differential 
motifs as generated in (c), sorted by distance (x axis) to their closest match in the motif database. Motifs below a 
distance of 0.4 are considered as rediscovered database motifs, motifs above are considered novel. (e, f) Examples of 
rediscovered motifs and their corresponding JASPAR database matches. (g) Combined differential motif activity plot 
of JASPAR and DENIS (novel & rediscovered) motifs. For each motif the fold change of activity between conditions 
(x axis) and corresponding pvalue is depicted. (h) Excerpt of motif similarity clustering as generated from TOBIAS 
based on binding site overlap. Motif 10 represents the rediscovered DENIS version of the Dux motif (see also (e)). (i, 
j) Exemplary TF-class assignment for one rediscovered (i) and one novel (j) motif. The number of JASPAR motifs with 
high binding sequence overlap to the respective de novo motif is depicted as N, and the total number of motifs within 
the JASPAR database is given as DN. The plots show enrichment (x axis) for assigned TF-classes (y axis, one row per 
class). The enrichment is computed by counting the number of motifs in N assigned to a TF-class (depicted as n) and 
comparing it to the count of motifs in DN assigned to the same class (depicted as dn). Parts (a) and (c) are created with 
BioRender.com.
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Single‑cell ATAC footprinting uncovers novel motifs in niche organisms
Most research in molecular biology is performed in a few standard model organisms for which a plethora of 
databases and background information are publicly available. However, aside from these, non-standard model 
organisms, defined as niche  models37, lack these knowledge databases. Therefore, researchers working in these 
models are often forced to analyze their data based on comparison to standard organisms or have to translate 
their data by e.g. homology gene mapping.

In this context, DENIS is intended to work directly on niche model organism data, as it is able to identify 
UBM’s from footprints even if no motif database is provided. For illustration, we selected the zebrafish as a well 
known model organism with limited motif information in available databases. We used a scATAC-seq  dataset38 
dealing with hematopoiesis and the replenishment of blood cells. Existing cell type annotation for 12 cell types 
was used to aggregate single-cell signal into pseudobulk ATAC-seq data. DENIS was applied individually per 
cell type and without reference motif database (Fig. 4a).

First, we asked about the completeness of a de novo approach on this organism. In summary, we identified a 
total of 1,121,543 FPs across all cell types, with ~ 70% containing at least one site used in motif generation (FPs 
may have more than one binding site). From these, DENIS was able to capture a total of 169 motifs (Fig. 4b). As 
we expected some motifs, and thereby TFs, to be active in multiple cell types given, we performed a similarity 
distance comparison on all these motifs. This condensed the 169 initial motifs to 67 unique motifs (Supp. Fig. 3a). 
Twenty-two of these motifs were found in two or more cell types (Supp. Fig. 3b). This indicates that DENIS is 
able to find the same motifs independent of the distinct chromatin landscapes of different cell types. As ~ 70% 
of human genes show orthologues to zebrafish genes, we first wanted to see how many of the DENIS motifs 
were found within motif  databases39. Thus, JASPAR vertebrates were searched for motifs matching the discov-
ered UBMs. Eleven motifs could be assigned to database motifs. When checking the corresponding human TF 
sequences,  Ensembl40 reported eight of the eleven factors to have a highly conserved homologue within zebrafish 
(Supp. Fig. 3c), with the GeneCards  compendium41 assigning homologs to the remaining factors (PBX2, CEBPG 
and ZNF768). Furthermore, many were found to play a role during hematopoiesis, e.g.  SP342,  Spi143,  CTCF44 

Figure 4.  De novo motif generation within niche model organisms. (a) Workflow to discover motifs per cell 
type. Initial scATAC-seq derived cell type clusters are merged into pseudobulks. DENIS de novo generates 
motifs on each cell type separately. (b) Number of motifs per cell type. Motifs similar between cell types are 
considered active in multiple cell types and therefore merged. (c) Overlap between the JASPAR database and 
DENIS motifs. Out of 67 motifs discovered across all cell types, eleven were found within the JASPAR database. 
(d) Distance heatmap of DENIS rediscovered motifs (rows) to matches within the JASPAR database (columns). 
Column labels show the closest JASPAR match per DENIS motif. Shown below are the DENIS motif (left) and 
JASPAR match (right) for Spi1 and CREM. (e) Motifs with ambiguous or no match to the JASPAR database. 
Top are presumed TF-complexes. The first row shows a combination of KLF9-CTCF, and the second combines 
a novel motif with Spi1. The bottom part shows novel motifs created by the DENIS framework. Parts (a) and (b) 
are created with BioRender.com.
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and  PBX245 (Fig. 4c,d, Supp. Fig. 3d), supporting our hypothesis on rediscovering active TF by rediscovering 
TF motifs.

Next, we asked about the other 56 motifs that were not assigned to a given JASPAR motif. Upon visual inspec-
tion, we classified them into two groups, namely (1) extended motifs, and (2) pure novel motifs. While the first 
group is the smaller subgroup with about 1/3 of the motifs, it is characterized by partial similarity to one or 
multiple database motifs. As shown in (Fig. 4e top, Supp. Fig. 3e), these motifs are potential TF complex motifs, 
with both parts to be known as single motifs. An exemplary case is shown for a DENIS motif that matches KLF9 
and CTCF, both assigned to have a protective role against DNA  methylation46. Other examples were found with 
one of the parts to be a known database motif, while the second part is novel. The second subgroup of motifs is 
not related to JASPAR motifs (Fig. 4e bottom, Supp. Fig. 3f). We consider this presumed overlap of novel and 
established motifs to further support the validity of motifs generated by our framework.

Finally, we checked the distribution of novel and rediscovered motif binding sites in FPs utilized to create 
UBMs. We found that nearly all of the utilized FPs (~ 94%) contained a binding site associated with a novel motif, 
whereas only ~ 43% of FPs contained binding sites of rediscovered motifs, this stresses the need for an organism 
agnostic motif generation pipeline such as DENIS.

DENIS uncovers cell type specific motifs
So far, we identified motifs in the WT condition of each cell  type38. However, the dataset also provides a comple-
mentary gata2b knockout (KO) condition, enabling us to de novo analyze key differences between two hemat-
opoiesis conditions. Thus, we executed DENIS in differential footprinting mode to yield motifs specific to the 
WT condition. The framework discovered 57 motifs across all cell types, and as before, consensus motifs were 
created to accommodate motifs occurring in multiple cell types, resulting in ten motifs with FPs unique to 
the WT condition (Fig. 5a). Comparing these motifs to JASPAR, DENIS classified six as rediscovered and the 
remaining four as novel (Fig. 5b,c).

We compared the rediscovered motifs and their originating cell types to WT enriched motifs described by 
Avagyan et al.38. One interesting motif here is consensus motif 0, which is almost an exact replica of CTCF and 
found by our framework in all cell types except for granulocytes. Interestingly, Avagyan et al.38 classified CTCF in 
more detail and reported it to be highly specific in the WT condition of five selected cell types, to be moderately 
specific in another seven cell types, and granulocytes to completely lack CTCF activity. Our results completely 
support the findings of Avagyan et al.38, and more importantly, highlight the capability of DENIS to robustly 
detect motifs, even if the TF signal considerably varies between the cell types investigated.

Another example is consensus motif 4. It was found in B cell precursor, B cell, Granulocyte, Macrophage, 
Myeloid progenitor and Eosinophils. This UBM can be assigned to a group of seven JASPAR motifs (Fig. 5c), of 
which SPI1, SPIB, Stat2, EHF and GABPA were found to be enriched in the dataset by Avagyan et al.38 as well.

Figure 5.  Differential motif generation and footprinting. (a) Workflow to unravel wildtype (WT) exclusive 
motifs. Pseudobulks of WT and knockout (KO) per cell type are provided to DENIS differential footprinting 
mode. Similar motifs across cell types are merged. Rediscovered motifs are identified with the JASPAR database. 
Created with BioRender.com. (b) Novel DENIS motifs identified to be unique for the WT condition. (c) 
Distance heatmap of DENIS to JASPAR motifs with de novo motifs in rows and similar factors as columns. The 
two motif logo columns on the right show de novo DENIS motifs and their closest JASPAR match. (d) Two 
aggregated footprints for WT vs. KO (orange and blue line) in erythroid progenitor cells including the number 
of binding sites (n). Plots indicate a motif centered view with a width of 120 bp.
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Furthermore, we asked whether all UBMs (rediscovered and novel) exhibit steric hindering of Tn5 transposase 
activity, as shown by aggregated footprinting plots. By plotting Tn5 signals centered at motifs, we found six 
out of ten DENIS motifs with a strongly aggregated footprint signal (Supp. Fig. 4). We saw a clear footprint for 
consensus motif 0, which is not surprising, as the matching TF CTCF is well-known to create a strong footprint 
signal due to its role as a chromatin remodeler. However, we also identified this footprint to be stronger in WT 
in comparison to KO, which supports the assumption that this TF is enriched in WT footprints (Fig. 5d left). In 
addition, we found strong WT specific footprints for consensus motif 5, a novel motif, further proving evidence 
of TF activity to be co-localized with the DENIS motifs (Fig. 5d right). Additional FPs were found for consensus 
motif 2 (Nrf1), consensus motif 3 (CREB3L4, JUNB, ATF7, JDP2, ATF3, FOS, CREB1, CREM), and consensus 
motif 4, also suggesting these TFs to be highly active (Supp. Fig. 4). Interestingly, consensus motif 6, partially 
rediscovered as the NF-Y TF, shows no FP but periodic DNA blocking (Supp. Fig. 4f). NF-Y is reported to be 
essential for the replenishment of hematopoietic stem  cells22. We hypothesize the periodic pattern to reflect its 
three subunits binding together (NFYA, NFYB, NFYC).

Concluding, identified motifs are shown to be specific for condition and cell type. Furthermore, most motifs 
are supported by cell type specific aggregated footprints for rediscovered and novel motifs. These findings render 
DENIS especially applicable for motif analysis across many samples or cell types resulting from bulk ATAC-seq 
or scATAC-seq.

Discussion
The utilization of DNA binding motifs as a surrogate for TF binding and their role in predicting gene regulation 
has been investigated for decades. However, even for human, arguably the most characterized organism, less 
than 50% of TFs have been described by a TF binding motif (JASPAR CORE), hindering unbiased genome-wide 
studies on TF binding and TF activity. Consequently, these motif based approaches fall short when analyzing 
niche model organisms, as the rate of available motifs in such cases is vanishingly low.

DENIS utilizes a completely new approach for de novo motif generation from ATAC-seq data. Briefly, DENIS 
can find UBMs from complex mixtures of sequences by using an iterative logic to aggregate motifs from FPs that 
are represented with different frequencies in the data.

Additionally, we wanted to assess the influence of data quality, specifically read coverage on the amount of 
generated FPs and motifs. Thus, we subsampled the reads (5–100%) of Hendrickson et al.19 and ran DENIS on 
each subsampling (Supp. Fig. 5). As expected, we observed a strong positive correlation between FPs and genomic 
coverage. However, the number of generated motifs provided a very weak correlation with genomic coverage. 
We conclude from this that a relatively low number of FPs is sufficient to create reasonable motifs albeit the 
amount of FPs generally increases the similarity when compared to given database motifs, which is in line with 
our other benchmarks (Fig. 2a, Supp. Fig. 1c).

While the production of UBMs can be a challenge, downstream analysis and assessment of functional sig-
nificance remain just as critical. In this manuscript, we introduced a series of methods, such as structured com-
parison to motif databases, or the overlap of binding site locations that enable the characterization of UBMs. 
DENIS defines a new class of computational tools and strategies to filter candidates toward meaningful results.

The overall ability to find UBMs is highly dependent on the cell type and organism investigated. For example, 
when analyzing the Dux TF data, we noticed a strong difference in the number of generated motifs between the 
Dux positive and Dux negative condition (48 vs. 3 motifs). We attribute this disparity to the relatively unexplored 
mechanisms of epigenetic regulation during zygotic genome activation. Many factors that are active at this stage 
have never been characterized by ChIP-seq analysis. This assumption is supported by the massive change of the 
overall chromatin structure in this  dataset8. In contrast, the Dux negative condition constitutes a well studied 
WT mESC that is not expected to hold many novel active TF candidates. This was further confirmed during 
the differential analysis of the Dux TF data. A characterization of Dux positive de novo motifs by binding site 
overlap showed our rediscovered Dux motif to cluster closely with Dux and other Homeo domain factors. In 
line with control factor Dux, we found most UBMs to show a TF-class enrichment. An illustrative example is 
motif 37 enriched for the T-Box factor class that lists 17 known associated  genes34, of which 15 are found in the 
JASPAR database. The two remaining genes TBX10 and TBX22 are not present in JASPAR, allowing speculation 
whether the novel motif predicted by DENIS is the binding motif of either one of these genes or a TF that has 
yet to be described, but showing high overlap with the T-Box factor class.

When applying DENIS to a niche model organism situation with zebrafish scATAC-seq, a comparable low 
motif rediscovery rate is found. Of 67 UBMs identified from the WT cell samples, only 11 could be assigned 
to a known human motif in JASPAR’s vertebrates collection, which does not contain any motifs derived from 
zebrafish. Interestingly, the respective genes of all 11 candidates were found to be highly conserved between 
zebrafish and human. Therefore, we assume binding motifs of these factors to be conserved as well. However, 
for the assignment of the remaining motifs, pure motif similarity falls short, potentially because the TFs have 
diverged too much and as such are too dissimilar to assign. This is also evident in the example of WT vs. gata2b 
KO, where we were not able to identify a motif with significant similarity to a given GATA2 within JASPAR, even 
though this would be expected based on our differential approach to collect FPs exclusive for the WT condition. 
We hypothesize that zebrafish’s gata2b is part of the novel UBMs but possesses a binding motif too different from 
given GATA2 and thus cannot be assigned. Regardless of the UBM’s affiliation to either be a novel or rediscovered 
motif, we found a considerable amount of motifs in more than one cell type or even subsets of cell types. These 
are assumed to originate from the same TF active in different environments and roles, which our approach is able 
to identify despite drastically changing chromatin landscapes (available FPs) between cell types. These findings 
support our claim for biological significance of the UBMs.
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In summary, DENIS is the first versatile framework for unbiased TF activity analysis via de novo motif gen-
eration and binding site assignment based on ATAC-seq footprinting. DENIS constitutes a versatile and cost 
effective tool when screening for a binding pattern of a factor that refuses detection by e.g. ChIP-seq. However, 
as ATAC-seq footprinting is only able to report a binding event, but not the specific protein bound, we want to 
emphasize that extended methods such as mass spectrometry are needed to further investigate promising motif 
candidates and corresponding protein assignments. Nevertheless, the ability of DENIS to run without a refer-
ence motif database generates opportunities for model and niche model organisms and enables the detection 
of highly promising candidates for wet-lab validation or to significantly improve coverage of motif databases.

Methods
Data
Benchmark of motif generation tools
Motif binding sites were collected from  JASPAR6. Datasets with a binding site count from 100 to 15,000 were 
created for one motif (MA0474.1) and four motifs (MA0474.1, MA0035.3, MA0461.1 and MA0480.1). Bind-
ing sites of the latter were divided into a fixed ratio (40, 30, 20 and 10%). The datasets were finally used to run 
selected motif discovery tools (MEME, DREME, GLAM2) and evaluate their output.

Benchmark motif selection
A dataset of 20 ChIP-seq motifs was constructed to test MEME’s ability to find motifs in a heterogeneous envi-
ronment similar to ATAC-seq data. Binding sites of motifs were collected from JASPAR and flanking regions 
were added until each sequence had a total length of 100 bp. The number of motif binding sites ranged from 395 
to 322,803 with the dataset being comprised of 659,078 binding sites total.

Exemplary bulk ATAC‑seq data
Public ATAC-seq data of mouse embryonic stem cells was obtained from Hendrickson et al.19. The data com-
prises Dux positive and negative samples, which code for Dux overexpression and Dux wildtype, respectively. 
The data was downloaded and then prepared for analysis using  TOBIAS8. ATAC-signal was corrected for the 
Tn5 transposase bias and converted to an FP binding score. The FP score was used to create and analyze binding 
motifs using DENIS.

To test DENIS ability to rediscover Dux, motifs from JASPAR2022 core vertebrates and HOCOMOCOv11 
core human and mouse were combined. Next, all motifs similar to Dux are removed from the dataset to ensure 
Dux binding sites are treated as novel binding sites. This was done by computing a distance score using TOBIAS. 
All motifs below a distance threshold (< 0.4) were removed, which resulted in the removal of 38 out of 1595 
motifs. The remaining motifs were then provided as a database during Dux rediscovery.

Exemplary single‑cell ATAC‑seq data
Public scATAC data of zebrafish hematopoietic cells was taken from Avagyan et al.38. The data comprises hemat-
opoietic cell types over a wildtype vs. knockout condition. The data was downloaded and preprocessed by 
aligning reads using STAR 47, followed by quality filtering using  EpiScanpy48. The remaining cells were assigned 
to cell types using cell type annotation as provided by Avagyan et al.38. Thereafter, pseudobulks were created by 
combining reads of cells assigned to the same cell type. This enabled data preparation with  TOBIAS8 (see above) 
followed by DENIS analysis on each cell type.

DENIS framework and code availability
The DENIS framework is publicly available from https:// github. com/ looso lab/ denis and is split into three parts 
(see below). The first part performs (1) footprinting analysis and footprint characterization (known/unknown), 
in which DENIS identifies protein binding locations in a genome-wide manner. (2) Unknown FP sequences 
are extracted and used to create novel motifs. Finally, in (3) novel motifs are provided to downstream analysis 
modules. The exact steps of a DENIS framework are dependent on the supplied data. An exemplary framework 
run is given via the repository.

(1) Footprinting analysis.
  This step will identify FPs by scanning a continuous binding score, as produced by a footprinting tool 

such as  TOBIAS8, HINT-ATAC 9 or  Wellington13 in BigWig format, by calling peaks. A peak is considered 
a FP if it meets certain parameters. It has to have a flat top, be within a defined width and has to exceed a 
local height limit. FPs in close proximity will be merged if the gap between them is below a given width 
and depth threshold. Furthermore, assuming a motif database is available, FPs are scanned for overlap 
with motifs. Regions, where overlap is detected, are removed, filtering the FPs to regions without a known 
binding TF.

  If two scorings (e.g. two conditions) are given, the scores are combined to a differential FP score prior 
to identifying the FPs. The differential score is computed by subtracting the second from the first score. 
Importantly, values below zero are set to zero. This results in a differential binding score, representing 
regions unique to the first score, hence FPs unique to the first condition.

(2) De novo motif discovery.
  Novel motifs are generated using FPs identified in the prior step. This is accomplished using the MEME 

tool in consecutive runs with decreasing amounts of FPs. After each MEME run, significant motifs are 
filtered based on e-value. The filter threshold is dynamically chosen by fitting the e-values to a function, on 

https://github.com/loosolab/denis
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which a knee location algorithm is applied. Afterwards, FPs used to create significant motifs are filtered, 
by removing the exact motif location within each FP, retaining the flanking parts of the FP for the follow-
ing iteration. Keeping the flanking parts is done to identify motifs of closely bound TFs. The reduced FP 
set is then used to further create novel motifs. This cycle repeats until no more motifs are generated or no 
significant motifs are found for several iterations. Finally, all de novo generated motifs are clustered and 
similar motifs are merged. The clustering is done utilizing TOBIAS with a user defined distance threshold 
(throughout this work set to 0.4 for all merging operations), below which motifs are combined. The frame-
work proceeds with the resulting consensus motifs.

(3) Downstream analysis modules.
  Finally, novel motifs are subjected to several types of analysis. Given a motif database, a set of canonical 

motifs, which is either automatically chosen by the framework or defined by the user, is analyzed alongside 
the novel motifs. Each motif within this set is used to scan for binding sites throughout the genome. The 
binding sites are used to investigate their enrichment in open chromatin as well as to annotate the ones 
within open chromatin to genomic features in proximity using the UROPA annotation  tool11. The latter 
requires genomic feature information to be supplied to the framework. Binding site annotation of each 
motif is then followed by feature enrichment analysis. Assuming the provided feature information contains 
genes, a genes set enrichment analysis is computed, showing biological processes, cellular components 
and molecular functions related to each motif using  GOATOOLS12. Additionally, motifs are compared to 
provided database motifs and the most similar database motifs are shown for each.

Data availability
Dux overexpression ATAC-seq, and ChIP-seq data are available from GEO under the accession GSE85632. 
Hematopoiesis scATAC-seq data is available from GEO under the accession GSE151232.
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