
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9294  | https://doi.org/10.1038/s41598-024-60113-7

www.nature.com/scientificreports

Potential therapeutic targets 
for COVID‑19 complicated 
with pulmonary hypertension: 
a bioinformatics and early 
validation study
Qingbin Hou 1, Jinping Jiang 2, Kun Na 1, Xiaolin Zhang 1, Dan Liu 1, Quanmin Jing 1, 
Chenghui Yan 1* & Yaling Han 1*

Coronavirus disease (COVID-19) and pulmonary hypertension (PH) are closely correlated. However, 
the mechanism is still poorly understood. In this article, we analyzed the molecular action network 
driving the emergence of this event. Two datasets (GSE113439 and GSE147507) from the GEO 
database were used for the identification of differentially expressed genes (DEGs).Common DEGs 
were selected by VennDiagram and their enrichment in biological pathways was analyzed. Candidate 
gene biomarkers were selected using three different machine-learning algorithms (SVM-RFE, LASSO, 
RF).The diagnostic efficacy of these foundational genes was validated using independent datasets. 
Eventually, we validated molecular docking and medication prediction. We found 62 common 
DEGs, including several ones that could be enriched for Immune Response and Inflammation. Two 
DEGs (SELE and CCL20) could be identified by machine-learning algorithms. They performed well in 
diagnostic tests on independent datasets. In particular, we observed an upregulation of functions 
associated with the adaptive immune response, the leukocyte-lymphocyte-driven immunological 
response, and the proinflammatory response. Moreover, by ssGSEA, natural killer T cells, activated 
dendritic cells, activated CD4 T cells, neutrophils, and plasmacytoid dendritic cells were correlated 
with COVID-19 and PH, with SELE and CCL20 showing the strongest correlation with dendritic 
cells. Potential therapeutic compounds like FENRETI-NIDE, AFLATOXIN B1 and 1-nitropyrene were 
predicted. Further molecular docking and molecular dynamics simulations showed that 1-nitropyrene 
had the most stable binding with SELE and CCL20.The findings indicated that SELE and CCL20 were 
identified as novel diagnostic biomarkers for COVID-19 complicated with PH, and the target of these 
two key genes, FENRETI-NIDE and 1-nitropyrene, was predicted to be a potential therapeutic target, 
thus providing new insights into the prediction and treatment of COVID-19 complicated with PH in 
clinical practice.
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SVM-RFE	� Support vector machine recursive feature elimination
LASSO	� Least absolute shrinkage and selection operator
RF	� Random forest

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 
(COVID-19) has spread over the world and was proclaimed a pandemic on 11 March 2020, posing a major 
danger to public health all over the world1–3. Multiple mutant strains of SARS-CoV-2 have emerged during the 
past two years, boosting the virus’s potential to infect people or elude vaccination protection. COVID-19 will 
continue to be a worldwide burden on healthcare and economies for as long as people are infected with it. In the 
post-pandemic period, we should also be concerned with the long-term effects of COVID-19 and its treatment4–6.

Long-term effects of COVID-19 can be observed in the respiratory and cardiovascular systems, but the virus 
also affects the neurological system, bones, and endocrine glands. Important COVID-19 consequences include 
acute respiratory distress syndrome (ARDS), venous thromboembolism, pulmonary hypertension, and acute 
cardiac injury5,6.

Pulmonary hypertension has been reported to complicate the course of illness for 13.4% and 21% of patients 
with a novel, and severe novel coronavirus infections, respectively. Pulmonary hypertension is a serious compli-
cation of new coronavirus infection, increasing the likelihood of requiring intensive care unit care, mechanical 
ventilation, extracorporeal membrane oxygenation (ECMO), and even death. Therefore, detecting high pul-
monary artery pressure in SARS-CoV-2 patients early might enhance the long-term prognosis of patients and 
minimize the hospitalization rate and death owing to such complications7–10.The processes of immunological 
dysfunction, endothelial dysfunction, vascular leakage, and thrombotic microangiopathy that are comparable 
to those that cause pulmonary vascular disease may be responsible for the effects of SARS-CoV-2 on pulmonary 
hemodynamics, as revealed in previous studies. On the other hand, reports of the study mechanism’s depth and 
specificity are uncommon7–11. This investigation aims to learn more about the connection between COVID-19 
and pulmonary hypertension by examining the pathogenic molecules, pathological processes, and potential 
therapeutic targets involved.

Here, we ran a functional enrichment analysis on the GEO database to identify common differentially 
expressed genes (C-DEGs) across the COVID-19 and PH datasets. The validation queue confirmed the results 
of a screening of the key genes using three machine algorithms: LASSO, RF, and SVM-RFE-based. Gene set 
enrichment analysis (GSEA) was used to examine the role of prioritized core genes. We next mapped out the 
regulatory networks including these DEGs, including TF-gene connections and TF-microRNA co-regulation. 
Drug-protein interaction networks, molecular docking simulations and molecular dynamics simulations were 
employed to screen for possible therapeutic medicines. Our findings are expected to offer a novel approach to 
elucidating the genetic connection between the aforementioned disorders. Figure 1 depicts our research protocol.

Results
COVID‑ and PH‑based DEGs screening
There were 1405 differentially expressed genes (Fig. 2A) and 923 non-differentially expressed genes (Fig. 2B) 
between COVID-19 patients and controls in the GSE147507 dataset. As can be shown in Fig. 2B, 461 highly-
expressed and 81 scarcely-expressed genes could be observed in the GSE113439 dataset distinguishing PH 
patients from healthy controls. Using the KEGG, we found that the PH dataset was enriched for the process of 
regulating the actin cytoskeleton (Padj = 0.031), ribosome biogenesis in eukaryotes (Padj = 0.0073), RNA deg-
radation (Padj = 0.0072), nucleocytoplasmic transport (Padj = 0.022), contraction of vascular smooth muscle 
(Padj = 0.038), and motor proteins (Padj = 0.022). There was hypertrophic cardiomyopathy (Padj = 0.014), spon-
dyloarthritis (Padj = 0.017), and right ventricular cardiomyopathy due to arrhythmia (Padj = 0.022) (Fig. 2C). 
The COVID-19 dataset, on the other hand, was enriched for Herpes simplex virus 1 infection (Padj = 0.000053), 
interaction between cytokines and their receptors (Padj = 0.00000002), neuroactive ligand-receptor interaction 
(Padj = 0.00086), PI3K-Akt signaling pathway (Padj = 0.016), lipid and atherosclerotic disease (Padj = 0.000044), 
tuberculosis (Padj = 0.00000083), chemokine signaling pathway (Padj = 0.0000051), NOD-like receptor signaling 
pathway (Padj = 0.000013), and COVID-19 (Padj = 0.025) (Fig. 2D). Moreover, analyzing genes using GO terms: 
enrichments of DEGs were seen in the COVID dataset in reaction to inflammatory response (Padj = 7.20 × 10–26), 
immune response (Padj = 8.40 × 10–16), neutrophil chemotaxis (Padj = 4.00 × 10–14), cell–cell signaling 
(Padj = 8.30 × 10–12), and cellular response to lipopolysaccharide (Padj = 1.30 × 10–11) (Fig. 2E). RNA polymerase II 
promote (Padj = 2.30 × 10–03), cell division (Padj = 1.30 × 10–05), protein phosphorylation (Padj = 8.50 × 10–03), cell 
adhesion(Padj = 0.015), cellular response to DNA damage (Padj = 3.30 × 10–06), DNA repair(Padj = 4.40 × 10–06), 
inflammatory response(Padj = 0.005), negative regulation of apoptotic process (Padj = 0.038) were enriched in 
the PH dataset, as shown in Fig. 2F.

C‑DEGs screening
Using a Venn diagram to compare DEGs across the GSE147507 and GSE113439 datasets, we found 62 C-DEGs 
(Supplementary Table S1), 47 of which were significantly upregulated (Fig. 3A) and 15 downregulated (Fig. 3B).

C‑DEGs functional profiles evaluation
The C-DEGs exhibited enrichment in the TNF signaling pathway (Padj = 5.00 × 10–4), herpes simplex virus 1 
infection (Padj = 0.0057), Rheumatoid arthritis (P adj = 0.4 × 10–3), viral protein interaction with cytokine and 
cytokine receptor (Padj = 0.0042), malaria (P adj = 0.012) lipid and atherosclerosis (Padj = 0.033), inflammatory 
bowel disease (Padj = 0.019), and PPAR signaling pathway (Padj = 0.025) (Fig. 3C, Supplementary Table S2).
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The GO biological process (BP) enrichment investigation (Fig. 3D, Supplementary Table S3) revealed that 
C-DEGs were enriched for the following processes: inflammatory response (Padj = 0.0019), immune response 
(Padj = 0.017), cell surface receptor (Padj = 0.017), cellular response to interferon-gamma (Padj = 0.00023), posi-
tive regulation of NF-kB (Padj = 0.014), and response to lipopolysaccharide (Padj = 0.0094). Enrichment analy-
ses for membrane raft (Padj = 0.00073), tertiary granule lumen (Padj = 0.00055), and specific granule lumen 
(Padj = 0.00078), transmembrane signaling receptor activity (Padj = 0.0025), threonine phosphatase inhibitor 
activity (Padj = 0.00068), and cyclic ADP-ribose generation (Padj = 0.001) were performed on C-DEGs (Fig. 3E,F). 
These findings suggest that immune inflammation plays a critical role in the etiology and progression of COVID-
19 coupled with PH.

Selection of candidate diagnostic biomarkers using machine learning
Among these 62DEGs (Supplementary Table S4), LASSO regression analysis identified 20 genes with the lowest 
binominal deviation (Fig. 4A,B). The random forest approach was used to identify 10 candidates after the DEGs 
were ranked by gene significance score (Fig. 4C,D). For PH progression in COVID19, the SVM-RFE method 
identified 8 genes with the lowest error and best accuracy after 100 folds (Fig. 4E,F). Finally, a Venn diagram was 
used to show how SELE and CCL20 (Fig. 4G) were shown to be DEGs when both methods were used together.

Assessment and validation of biomarker diagnostic value and nomogram construction
The GSE53408, GSE196822 were used as validation dataset. There was a statistically significant difference in 
the expression of SELE and CCL20 between the pulmonary hypertension and control groups and between 
COVID-19 and control groups (Fig. 5A,B). After several iterations of selection, SELE and CCL20 were chosen 
to form a nomogram (Fig. 5C). Each gene’s level of expression was given a numerical value in the nomogram. 

Figure 1.   Research design flow chart.
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Finally, the sum score was applied to predict the incidence of PH progression in COVID-19 patients (Fig. 5D). 
Nomogram performed exceptionally well in predicting PH development in COVID19, with an AUC of 0.826 
(95% CI 0.637–1.000; Fig. 5D). Moreover, precision recall (PR) and decision curve analysis (DCA) for the nomo-
gram was also performed, showing that the nomogram model may be beneficial for the diagnosis of COVID-19 
complicated with PH (Fig. 5E,F).

GSEA of Hub genes
We used GSEA to determine the probable physiological functions of the two hub genes between COVID-19 and 
PH. We found that increased SELE, CCL20 expressions in GSE113439 (Fig. 6A,B) and GSE147507 (Fig. 6C,D) 
were strongly associated with activated immune responses such as adaptive immune response around blood ves-
sels. The increase of proinflammatory factor increased the expression of cytokines and chemokines, contributing 
to excessive contraction and proliferation of blood vessel cells.

Figure 2.   Screening DEGs for COVID-19 and PH respectively. (A) Volcano plot between COVID-19 patients 
and healthy controls.1405 up genes (red) and 923 down genes (blue). (B) Volcano plot between PH patients 
and healthy controls. 461 up genes (red) and 81 down genes (blue). (C,D)The KEGG analysis of COVID-19 
DEGs, PH DEGs. (E,F) The GO analysis of COVID-19 DEGs、PH DEGs. COVID-19 Coronavirus disease, 
PH pulmonary hypertention, DEG Differentially expressed genes, KEGG Kyoto Encyclopedia of Genes and 
Genomes, GO Gene Ontology.
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Immune invasion and core genes correlation
We used ssGSEA for examining the possible relationships between the two discovered hub genes and 28 immune 
cells. SELE、CCL20 were shown to be directly related with various immune cell types in the GSE 147507dataset 
(Fig. 7A), except for CD56dim natural killer cells, CD56bright natural killer cells, memory B cells, and Type 2 T 
helper cells. These two found hub genes in GSE113439 were linked to the following cell types and subsets: type 
1 T helper cell, regulatory T cell, plasmacytoid dendritic cell, neutrophil, natural killer T cell, mast cell, central 
memory CD4 T cell, activated dendritic cell, and activated CD4 T cell (Fig. 7B).

When we combined the ssGSEA findings from the aforementioned datasets, we found that COVID-19 and 
PH were linked to the activation of CD4 T cells, activated dendritic cells, natural killer T cells, neutrophils, and 
plasmacytoid dendritic cells. According to a Pearson correlation study, plasmacytoid dendritic cells had the 
highest level of association with CCL20, while Activated dendritic cells had the highest level of linkage with 
SELE (Fig. 7C).

Figure 3.   Identification and Functional enrichment analysis of common DEGs. (A) Venn diagram revealing 
47 Up-regulated common DEGs in COVID-19 and PH. (B) Venn diagram revealing 17 Down-regulated 
common DEGs in COVID-19 and PH. (C) KEGG pathway analysis was performed on common DEGs. (D) 
GO-BP terms of common genes. (E) GO-CC terms of common genes. (F) GO-MF terms of common genes. 
DEG Differentially expressed genes. COVID coronavirus disease. PH pulmonary hypertention. KEGG Kyoto 
Encyclopedia of Genes and Genomes. GO-BP, GO-CC, GO-MF Gene Ontology terms in biological process, 
cellular component, and molecular function.
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Co‑modulatory axis TF‑miRNA and TF‑gene associations
After that, the Network analyst was utilized (Fig. 8A). There was a total of 19 nodes and 18 edges in the con-
structed network. There was a strong correlation among hub genes and TFs, and the TFs affected more than 
one hub gene in the network. To assess the connection between miRNAs + TFs and hub genes, we built the TF 
miRNA co-modulatory axis. There were 39 nodes in our network, 38 edges, and 25 miRNA-based interactions 
that involved hub genes, by which the overall expression of hub genes could be modulated. In our research, 
SELE and CCL20 have been identified as potential diagnostic biomarkers for COVID-19 in conjunction with 
pulmonary hypertension (PH). To further validate the roles of these genes in the disease, we propose the use 
of the FFLtool for analyzing transcription factor-gene and transcription factor-miRNA networks. FFLtool is a 
web server designed for the analysis of feed-forward loops (FFLs), providing deep insights into the interactions 

Figure 4.   Selection of candidate diagnostic biomarkers of COVID-19 progression with machine learning 
approaches. (A,B) LASSO regression analysis was applied to screen diagnostic biomarkers. (C) The diagnostic 
error relating to control,COVID-19 and total groups was visualized from the random forest. (D) The column 
showing 30 DEGs ranked based on the importance score calculated from the random forest. (E,F) The number 
of DEGs with the lowest error and highest accuracy after 100 folds were considered the most suitable candidates 
via the SVM-RFE algorithm. (G) The intersection of 3 machine learning algorithms was obtained with a 
Venn diagram tool. LASSO least absolute shrinkage and selection operator, SVM-RFE support vector machine 
recursive feature elimination, DEGs Differentially expressed genes.
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between transcription factors, miRNAs, and genes. By incorporating our key genes, transcription factors, miR-
NAs into this analysis. As a result, the FFL containing TF CCL20, miRNA miR-1256 and target gene PPARG 
appeared at the top (Fig. 8B,Supplementary Fig. 1). This FFL among CCL20, miR-1256 and PPARG may be a 
novel regulatory module in COVID-19 complicated with pulmonary hypertension.

Targeted chemical interaction and candidate drugs identification in COVID‑19 and PH
Glutathione, Simvastatin, niacin, Fenretinide, 1-nitropyrene, N-acetyl-l-cysteine, nickel chloride, silica, vincris-
tine, hydrogen peroxide, and aflatoxin B1 were among the 10 medications under consideration (Supplementary 
Table S5). These potential medications interacted with shared DEGs, suggesting they may be used to treat both 
disorders.

In addition, molecular docking was utilized to foretell the drug-hub gene binding mechanisms (Supple-
mentary Table S6). Figure 9 displays the outcomes of the molecular docking analysis. It was discovered that the 
binding sites of FENRETINIDE, 1-NITROPYRENE, and AFLATOXIN B1 to the two target proteins have lower 
stabilization energies. As a result, these three medications under consideration may one day be used to treat 
both COVID-19 and PH (Fig. 9). Subsequently, we also performed drug predictions for these two key genes in 
the CTD database, we found that Lipopolysaccharides, bisphenol A, Acetaminophen, Benzo(a)pyrene, Silicon 

Figure 5.   Nomogram construction and diagnostic performance validation. (A) SELE, CCL20 were validated 
in GSE53408.*P < 0.05. (B) SELE, CCL20 were validated in GSE196822.*P < 0.05. (C).The nomogram was 
established based on the 2 selected candidate biomarkers. Each DEG corresponds to a score. (D) The ROC curve 
of the nomogram. (E) PR analysis curve (F) decision curve analysis (DCA) curve.
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Dioxide, Tetrachlorodibenzodioxin, titanium dioxide, 1-nitropyrene, 2,2′,4,4′-tetrabromodiphenyl ether, 2-anisi-
dine (Supplementary Table S7).Combining Enrichr and CTD databases is not difficult to find 1-NITROPYRENE 
can be predicted in both databases. So we further performed molecular dynamics simulations.

Molecular dynamics simulation of 1‑nitropyrene‑CCL20/SELE complex
Based on the molecular docking results, 100-ns MD simulations of the 1-nitropyrene-CCL20/SELE complex were 
performed to investigate the dynamic properties obtained by molecular docking. The final results included the 

Figure 6.   Gene set enrichment analysis. (A,B) A merged enrichment plot of SELE, CCL20 in GSE 147507 
cohort. (C,D) A merged enrichment plot of SELE, CCL20 in GSE113439 cohort.
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Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (Rg), Solution 
Accessible Surface Area (SASA), and the changes in hydrogen bonds during the entire 100-ns simulation process.

The RMSD curves of the 1-nitropyrene-CCL20 complex gradually approached equilibrium after 28 ns, with 
an RMSD fluctuation of 0.25–0.3 nm. In addition, the RMSD curves of the 1-nitropyrene SELE complex all 
approached equilibrium at 60–88 ns, and the mean RMSD was less than 0.35 nm (Fig. 10A). The Rg curves of 
the 1-nitropyrene-CCL20 and 1-nitropyrene-SELE complexes remained stable during the entire process, with 
average Rg values of 1.88 nm and 1.68 nm, respectively (Fig. 10B). The low Rg values indicated that the protein 
remained compact during the simulation process of 100 ns. In the 1-nitropyrene-CCL20 complex, the RMSF of 
the C chain of CCL20 protein fluctuated significantly; this was especially noticeable in the region of amino acids 
27–36 which, as can be seen from the protein structure, is located in the loop region of the C chain, resulting in 
greater flexibility during the 100-ns process. The RMSF values of the α-helix and β-fold in the C chain remained 
relatively low during the simulation process, while the RMSF values of the A and B chains were observed to 
change essentially simultaneously, indicating that small 1-nitropyrene molecule had little effect on the overall 
flexibility of the CCL20 protein. In the 1-nitropyrene-SELEcomplex, large RMSF values were observed in the 
124–140 amino acid region which, according to the molecular docking, surrounds the binding pocket of the 
small molecule. Therefore, we speculate that the addition of 1-nitropyrene increased the flexibility of the amino 

Figure 7.   Association between the hub genes and immune infiltration. (A) In GSE147507cohort, CCL20, 
SELE were shown to positively correlate with most cell types. Except for CD56dim natural killer cells, 
CD56bright natural killer cells, memory B cells, and Type 2 T helper cells. (B) In GSE113439 cohort, CCL20, 
SELE were shown to positively correlate with many cell types. Including: type 1 T helper cell, regulatory T cell, 
plasmacytoid dendritic cell, neutrophil, natural killer T cell, mast cell, central memory CD4 T cell, activated 
dendritic cell, and activated CD4 T cell. Red: positive correlation; Blue: negative correlation. (C) According to 
a Pearson correlation study, plasmacytoid dendritic cells had the highest level of association with CCL20,while 
Activated dendritic cells had the highest level of linkage with SELE.
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acids at the binding site. The results show a large RMSF value (Fig. 10C,D). In the 100-ns simulation process, 
the number of hydrogen bonds in the 1-nitropyrene-CCL20/SELE complex was maintained at 2, while the 
maximum number of hydrogen bonds in the 1-nitropyrene-CCL20 complex was 3. The 1-nitropyrene-SELE 
complex could have up to five hydrogen bonds. This considerable number of hydrogen bonds helps to maintain 
the stability of the complex (Fig. 10E). The SASA curves of the 1-nitropyrene-CCL20 and 1-nitropyrene-SELE 
complexes remained stable throughout the process, and the mean SASA values were as follows: The low SASA 
values of 128 nm2 and 92 nm2 (Fig. 10F).

Discussion
After the initial observation by Xie and colleagues12 that COVID-19 is associated with an increase in cardio-
vascular disorders, numerous clinical studies and meta-analyses have confirmed an augmented incidence of 
acute coronary syndromes, myocarditis, pericarditis, heart failure, and arrhythmias13–20 The consequences of 
severe COVID-19 include systemic hypoxia, acute respiratory distress, hyper-coagulation, sepsis, inflammation, 
metabolic stress, and cytokine storms, all of which may stress the cardiovascular system, eventually leading to 
blood pressure dysregulation21–25.

Pulmonary hypertension, as a serious cardiopulmonary complication of COVID-19,increasing the like-
lihood of requiring intensive care unit care, mechanical ventilation, extracorporeal membrane oxygenation 
(ECMO), and even death. Therefore, detecting high pulmonary artery pressure in SARS-CoV-2 patients early 
might enhance the long-term prognosis of patients and minimize the hospitalization rate and death owing to 
such complications7–9,26.But de Jong CMM27 found that chronic thromboembolic pulmonary hypertension is 
not a more common long-term complication after COVID-19-associated pulmonary embolism than after non-
COVID-19-associated pulmonary embolism. Whether this phenomenon is due to large differences in pathogen-
esis, it is particularly important to study the pathogenesis of COVID-19 combined with pulmonary hypertension.

So, this study attempted to explore molecules associated with the pathogenesis of COVID combined with PH 
through a variety of bioinformatics methods, after which a comprehensive diagnostic pattern was established by 
scoring significant markers. The expression of each gene was quantified and scored, with higher scores associated 
with greater predictive potential. These predictive scores could be used for monitoring and early intervention in 
COVID-19 patients, especially those with PH. A further aim was the identification of specific drugs that could 
target key genes associated with COVID-19 complicated with PH, enhancing both the diagnosis and treatment 
of this condition.

Similar to the genetic causes of pulmonary arterial hypertension, COVID-19 severity may be affected by 
variations in the same genes. Many of the pathobiological hallmarks of pulmonary arterial hypertension are also 
present in COVID-19-induced pulmonary vasculopathy, including endodermatitis, vasculitis-medial hypertro-
phy, and smooth muscle cell proliferation. Especially endothelial dysfunction is a common feature of the clinical 
manifestations observed in COVID-19 patients. The SARS-CoV-2 coronavirus accesses host cells via the bind-
ing of its spike glycoprotein to angiotensin-converting enzyme 2(ACE2), sialic acid receptor, transmembrane 
serine protease 2 (TMPRSS2), and extracellular matrix metalloproteinase inducer (CD147); catepsin B and L 
also participate in virus entry. All of these factors are expressed in endothelial cells28–31. Overactivated platelets 
cause cytokine storms and thrombosis, and studies have shown that platelets that express pro-inflammatory 
molecules and that carry viral RNA are particularly likely to be highly active32.

Figure 8.   Network for TF-gene and TF-miRNA interaction with Common DEGs. (A) We predicted 25 
miRNAs and 11 TF-genes interacting with SELE and CCL20 through the Network analyst website. Red nodes: 
hub genes; blue nodes: miRNA. Green nodes:TF-genes. (B) We identified that among CCL20, miR-1256 and 
PPARG may be a novel regulatory module in COVID-19 complicated with pulmonary hypertension through 
the FFL tool.
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Among the C-DEGs, we found 47 highly expressed genes and 15 lowly expressed genes when comparing 
COVID-19 and PH datasets. Using GO analysis, we found that C-DEGs were enriched for the following terms: 
inflammatory response, immunological response, cell surface receptor, cellular response to interferon-gamma, 
positive regulation of NF-kB, and reaction to lipopolysaccharide. TNF signaling route, Herpes simplex virus 
1 infection, viral protein interaction with cytokine and cytokine receptor, malaria, lipid and atherosclerosis, 
PPAR signaling pathway, and PPAR signaling pathway were all enriched for among the C-DEGs in the KEGG 

Figure 9.   3D and 2D Molecular docking patterns for (A) FENRETINIDE, (B) 1-NITROPYRENE, (C) 
AFLATOXIN B1 with CCL20 respectively. (D) FENRETINIDE, (E) 1-NITROPYRENE, (F) AFLATOXIN B1 
with SELE respectively.
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enrichment analysis. These results strongly suggest that immune inflammation is a driving force in the emergence 
and progression of COVID-19 coupled with PH. Infection with SARS-CoV-2 may cause a cytokine storm leading 
to systemic inflammation and vascular endothelial cell damage. These changes may cause hypercoagulability 
and intravascular thrombosis, together with increasing pulmonary vascular resistance. Diffuse microangiopathy 
and microthrombosis caused by extensive impairment of vascular endothelial function may further aggravate 
the imbalance of the pulmonary ventilation/blood flow ratio, and increases in the pulmonary right-to-left shunt 
may further aggravate hypoxia, thus promoting pulmonary vascular contraction and remodeling. In addition, 
when the body is attacked by a virus, it can activate T cells and promote the overexpression of IFN-induced 
genes that could also lead to the apoptosis of endothelial cells and thus to PH. This has much in common with 
the results of LuisG’s study33.

To further search for the core genes associated with COVID-19 combined with PH among the 62 identified 
DEGs, we used machine learning to choose potential diagnostic biomarkers. LASSO regression analysis identi-
fied 20 genes with the lowest binominal deviation. The random forest approach identified 10 candidates after 
ranking the DEGs according to significance, and the SVM-RFE method identified 8 genes with the lowest error 
and best accuracy after 100 fold changes. Using the intersection of the results of the three algorithms, SELE and 

Figure 10.   100 ns molecular dynamics simulation analysis of 1-nitropyrene-CCL20/SELE complex. (A) RMSD 
curve of 1-nitropyrene-CCL20/SELE complex, (B) Rg curve of 1-nitropyrene-CCL20/SELE complex, (C) RMSF 
curve of 1-nitropyrene-CCL20 complex, (D) RMSF curve of 1-nitropyrene-SELE complex, (E) hydrogen bond 
change curve of 1-nitropyrene-CCL20/SELE complex, and (F) SASA curve of 1-nitropyrene-CCL20/SELE 
complex.
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CCL20 were identified as core genes. These two key genes were discovered to have statistically significant dif-
ferences when compared to one another in the validation set. Next, we built a prediction model to make even 
more informed predictions on COVID-19 complicated with PH by assessment of the scores in the table in which 
higher scores represented greater likelihood of developing PH after COVID-19. By drawing the ROC, PR, and 
DCA curves, it was found that the prediction model was reliable.

One of the core genes identified was SELE. Activation of endothelial cells by cytokines results in the expres-
sion of a cell-surface glycoprotein called SELE, which facilitates the adherence of circulating monocytes and 
lymphocytes to endothelial cells34. The plasma marker for endothelial dysfunction or injury is soluble E-selectin 
(sE-selectin), which is secreted by damaged or dysfunctional endothelial cells35,36. IFN-gamma-R2 membrane 
transport to the Golgi and proper IFN-gamma-R assembly both need E-selectin involvement. The activation 
of the BTK kinase is triggered by the interaction of an E-selective protein, which in turn forms a functional 
IFN-gamma-R that can bind to another functional IFN-gamma-R, so generating an efficient innate response of 
macrophages to intracellular bacterial infection37,38. The importance of endothelial cells in the spread of SARS-
CoV-2 is becoming more widely accepted. It is probable that E-Selectin’s function in leukocyte chemotaxis during 
inflammation is the fundamental mechanism at work here. E-Selectin surface expression increases, which may 
facilitate the entry of leukocytes into the tissue and the initiation of inflammation to combat the infection39,40.
DM Smadja et al. discovered that PH is linked to circulating endothelial cells, soluble E-selectin, and sVCAM, 
but not to endothelial progenitor cells, CD34(+)CD133(+) cells, or vascular endothelial growth factor (VEGF)41. 
Similarities between this and our study’s results suggest that SELE may be a key pathogenic molecule of COVID 
19 coupled PH.

CCL20, also known as macrophage inflammatory protein-3α or liver activation regulated chemokine, is 
another gene of central importance that we examined. CCL20 is a CC chemokine that specifically interacts to 
CCR6. In addition to recruiting immature dendritic cells, effector/memory T cells, and B cells, this chemokine 
also has an inflammatory role in maintaining homeostasis. It plays a crucial part in maintaining regular traf-
ficking of immune cells and in kicking off T-cell-dependent inflammation. CCL20 regulates the right amount of 
inflammation by keeping a fine balance between offensive and defensive immunity42–45. It also recruits Th17 cells 
and regulatory T cells to inflammatory sites since CCR6 is present on these cell types. Patients with COVID-19 
were found to have elevated levels of CCL20 in both bronchoalveolar lavage (BAL) fluid and plasma samples46. 
Pulmonary arterial hypertension in individuals with SSc is associated with elevated serum CCL20 levels44. How-
ever, there has only been a little amount of research done on CCL20 in COVID and PH patients.

Functional enrichment was primarily in adaptive immune response, leukocyte, and lymphocyte mediated the 
immune response, and proinflammatory response mediated by cytokines like IL-12 and TNF-a, which promoted 
the proliferation of pulmonary artery smooth muscle cells and induced vascular remodeling, as determined by 
GSEA of SELE and CCL20 in the data sets of COVID-19 and PH.

We used ssGSEA analysis to look at the relationship between SELE and CCL20 and 23 different types of 
immune cells in the COVID-19 and PH datasets, and we found that activated CD4 T cells, activated dendritic 
cells, natural killer T cells, neutrophils, and plasmacytoid dendritic cells were all linked to COVID-19 and PH. 
The highest Pearson correlation was reported between CCL20 and plasmacytoid dendritic cells, and the highest 
connection between SELE and activated dendritic cells. The immunological response of different cells may be 
regulated by SELE and CCL20, leading to an increase in the incidence of COVID-19 coupled PH. Lymphocytes, 
including NK cells, are activated and migrate to the lung during an acute coronavirus infection because of 
the accumulation of inflammatory mononuclear macrophages and neutrophils, which release cytokines and 
chemokines. When SELE and CCL20 levels drop, NK cell numbers and function decline. PH developed as a 
result of an increase in sensitivity to COVID-19 and modification of pulmonary artery walls caused by NK cell 
destruction. Chronic tissue inflammation can be caused by CD4 + T cell-mediated cellular immunity, which is 
a particular cellular immune response driven by CD4 + T cells47–50. There is an invasion of lymphocytes (mostly 
T cells) and mononuclear phagocytic cell lines, resulting in an exudative inflammation. The pathophysiology 
of COVID-19-complicated PH is also influenced by SELE and CCL20-mediated neutrophil proliferation. By 
secreting neutrophils extracellular traps, which in turn increase pulmonary artery endothelial cell damage and 
smooth muscle cell proliferation, neutrophils serve to both perpetuate and worsen inflammation.

SELE, CCL20 with dendritic cells exhibited the greatest correlation among the five cell types, according to a 
Pearson analysis. Dendritic cells were dramatically decreased in individuals with COVID-19 sequelae, accord-
ing to research by Tomonari Sumi et al.51. About 7 months after SARS-CoV-2 infection, Perez-Gomez A et al52 
discovered that dendritic cells dropped considerably in vivo. There are parallels between this conclusion and 
our own. There is a decrease in the number of mature myeloid DC and associated functional abnormalities in 
people with COVID-19 who also have PH. Therefore, DC cells are unable to initiate an immune response by 
encouraging primary T cell activation and proliferation in order to protect the body from virus-induced harm.

In addition to diagnosis, the identification of drugs targeting pathogenesis is also an important direction for 
us to explore. Current treatment of COVID-19 is primarily dependent on supportive care, together with the use 
of antiviral and immunomodulatory drugs. Given the distribution of the population living with comorbidities, 
specifically, the predominantly middle-aged and elderly demographic, poly pharmaceuticals and drug-drug 
interactions might be apparent. Unfortunately, the potential risk of drug-drug interactions is largely unknown 
since most studies on COVID-19 do not provide details on interactions between drugs used in the course of 
COVID-19 treatment and co-medications used for the management of other comorbidities in these patients53. 
Moreover, the use of some commonly used drugs in COVID patients may lead to an increased number of adverse 
pulmonary effects54. The current direction is to find suitable drugs that have a certain therapeutic effect and 
relatively few side effects. In this study, because of the significance of SELE and CCL20 in the pathogenesis of 
COVID-19 and PH, we chose them as drug prediction and molecular docking targets. The binding energy of 
these two molecules with FENRETINIDE, 1-NITROPYRENE, and AFLATOXIN B1 was the lowest of any of the 
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eight anticipated medications, which was not expected. At present, there are few reports that 1-NITROPYRENE 
and AFLATOXIN B1 can improve the symptoms of COVID-19 and PH55–62.Also as a nitro compound, WenXia 
Feng et al. found that Inhaled nitric oxide treatment was beneficial in reducing and stabilizing the PASP and 
might also reduce the risk of right heart failure in COVID‐19 with pulmonary hypertension63. In this study, we 
found that whether in the enrichr database or the CTD database, by performing drug predictions on the key 
genes that COVID combines with PH, we found that we could predict that 1-NITROPYRENE was a potential 
therapeutic drug, and that through molecular docking and molecular dynamics simulations, we found that the 
combination of 1-NITROPYRENE and the two key genes was extremely stable. Therefore, it has great potential to 
be used as a drug to treat this complication. Because of its beneficial effects on glucose tolerance, lipid levels, and 
body fat percentage, the synthetic retinide derivative Fenretinide has been used for a variety of medical purposes, 
including cancer prevention and treatment, atherosclerosis improvement, and the amelioration of non-alcoholic 
fatty liver disease. Its capacity to reduce the production of inflammatory mediators and prevent macrophage 
polarization may be the primary mechanism at work here63–65. Fenretinide was found to inhibit the release of pro-
inflammatory factors (IL-1β, MCP1, iNOS, and TNF-α). Fenretinide may inhibit NF-κB signaling by reducing 
the nuclear translocation of the protein via downregulation of IKKβ and IκBα phosphorylation64. In addition, 
delayed release of IFN-I is well known in SARS-CoV infection as a mechanism that slows the antiviral response 
of the body. The viral mechanisms associated with IFN-I evasion are multifaceted, including sequestering and 
shielding RNA within double-membrane vesicles, modification of viral mRNA 5-cap structures, and specific 
targeting of antiviral cellular pathways. In SARS-CoV and MERS-CoV, IFN-I production is protective only at the 
early stages after infection; at later time points, on the contrary, when the immune response is increased, IFN-I 
and inflammatory cytokines become pathogenic66–69. In both zika virus and dengue virus, fenretinide inhibited 
the non-structural protein 5 (NS5), which contributed to virulence, by preventing the production of IFN-I70. 
Thus, it is possible that fenretinide may also influence the mechanisms regulating IFN-I evasion in coronavirus 
infections. However, there are still few relevant findings, and the precise mechanism of action is unclear, calling 
for more in-depth pharmacological study.

Our literature search found a lack of research on the shared mechanism between COVID-19 and PH, espe-
cially bioinformatic studies. Here, we screened for C-DEGs, tested Core genes with a machine algorithm, and 
built a model to predict the COVID-19 combined with PH. We investigated how these two essential genes are 
linked to diseases and made predictions about the transcription factors and miRNAs that regulate them. In the 
end, we used molecular docking and targeting predictions for two important genes to determine which medica-
tions would be most effective.

However, there were certain gaps in our research. First, through molecular docking, we found that Fen-
retinide, a targeted drug for SELE and CCL20, may be a new target for the treatment of COVID 19 combined 
PH, though the mechanism by which it acts still needs to be further studied. External validation is needed for 
additional verification of the current outcomes. Moreover, in vitro model validation is required to additionally 
explore the core gene functions.

Materials and methods
Data collection
We scoured the whole GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/) using the phrases "COVID-19" and 
"Pulmonary hypertension"71. All sequenced data came from humans, and all screened data sets included both 
control and diseased subjects. The GSE113439, GSE147507, and GSE53408 datasets passed a rigorous screening 
process and were ultimately chosen. There was a total of 23 patients with COVID-19 and 55 healthy volunteers’ 
samples in the GSE147507, whereas the GSE113439 included 15 patients with PH and 11 normal controls. 
Furthermore, there were 11 healthy subjects and 12 with very severe PH in the GSE53408 dataset, 9 healthy 
subjects and 26 with COVID-19 in the GSE196822 dataset. An overview of these datasets is shown in Table S8. 
The genomic profile of DEGs was log2 transformed, and gene symbols were matched to probes using annotation 
documentation from relevant datasets. Eventually, a gene matrix was extracted for further analysis, with gene 
symbols being contained in columns and sample names represented in rows.

DEGs screening
DEGs were identified between PH and controls in the GSE113439 dataset using the Limma and GEOquery 
packages in the R programme, and between COVID-19 cases and controls within GSE147507. If a gene ID could 
not be assigned to a probe ID during the conversion process, the probe ID was not used. After merging many 
probe IDs into a single gene ID, the final calculation was determined as the median expression value. Adjusted 
p-values less than 0.05 and |logFC (fold change) |≥ 1 were considered statistically significant.

DEGs‑related KEGG and GO analyses
We performed both KEGG and GO analyses to further comprehend the physiological functions and functional 
correlations of shared COVID-19 and PH DEGs. Adjusted p-values of < 0.05 were deemed significant. The top 
10 DEGs were shown using R’s clusterProfiler tool.

C‑DEGs‑related enrichment and identification analyses
Using the VennDiagram tool (http://​jvenn.​toulo​use.​inra.​fr/​app/​examp​le.​html), we could visually represent 
C-DEGs (both low- and highly-expressed ones) from the GSE147507 and GSE113439. R’s cluster-Profiler tool 
was employed for displaying the results of the KEGG and GO network studies. Significance was defined as 
before. Three different machine-learning algorithms—support vector machine-recursive feature elimination 
(SVM-RFE), least absolute shrinkage and selection operator (LASSO) logistic regression, and random forests 

http://www.ncbi.nlm.nih.gov/geo/
http://jvenn.toulouse.inra.fr/app/example.html
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(RF)72–77—were utilized for identifying potential new biomarkers for pediatric sepsis. Additionally, the random 
forest method was implemented using the "randomForest" R package in R. Using the "glmnet" R package78, this 
study conducted LASSO logistic regression analysis, with minimum lambda being deemed best. Partial likeli-
hood deviation was below 5%, and parameter selection for optimization was cross-verified by a factor of 10. The 
genes that share characteristics with all three of the earlier-discussed classification schemes were then chosen 
for further investigation.

Nomogram construction and receiver operating characteristics curve (ROC)
Candidates for biomarkers had their levels of expression evaluated between the PH and Control groups so that 
the diagnostic value of each could be calculated using a receiver operating characteristic (ROC) curve. The diag-
nostic value was then estimated using a 95% confidence interval and the area under the ROC curve (AUC). As 
a means of reducing bias, the GSE53408 dataset was utilized for validation. For the rms R package nomogram 
construction, only those candidates with an AUC > 0.7 in both test and validation sets were chosen. AUC was 
used to verify the nomogram’s diagnostic accuracy, and AUC and decision and calibration curves were used to 
evaluate the nomogram’s performance.

Immune invasion and GSEA analysis
Next, GSEA in R was utilized for evaluating the hub genes that could be detected. A phenotype’s significance 
might be determined via evaluating the gene distribution pattern for that trait against a predefined gene set. 
Besides, to measure the degree of immune infiltration in each dataset sample, the ssGSEA score was employed 
for quantifying immune cell invasion in COVID-19 and PH datasets and for immune invasion establishment 
within GSE113439 and GSE147507. Correlations between 2 core genes and 23 immune cells were determined 
using Pearson correlation analysis to reveal immune cells and core genes potential correlations79.

TF‑gene and TF‑miRNA modulatory networks
The Networkanalyst platform (www.​netwo​rkana​lyst.​ca) has been utilized for creating TF-miRNA and TF-gene 
modulatory networks80. We then validate TF-gene and TF-miRNA network by FFL loop. FFLtool is available on 
http://​bioin​fo.​life.​hust.​edu.​cn/​FFLto​ol/81.

Molecular docking simulations and evaluation of candidate drugs
Understanding protein activities and furthering drug development are both aided by chemical-protein interaction 
networks. Analysis was done using the web-based Enrichr portal together with the Drug Signatures Database 
(DSigDB, http://​dsigdb.​tanlab.​org/​DSigD​Bv1.0/82. Based on their p-values, the top 8 therapeutic compounds 
were selected as potential candidates. The Protein Data Bank (www.​rcsb.​org) served as the source for the crystal 
compositions of these important proteins, and Autodock tools (version 1.5.4) were approached in all docking 
studies. Binding energy was approached to demonstrate the findings. The ultimate outcome was displayed in 
Pymol (PyMOL Molecular Visualisation System 2020). 2D interaction analysis and statistics of interaction types, 
distances, and numbers were performed using the academic version of Maestro software (https://​newsi​te.​schro​
dinger.​com/​platf​orm/​produ​cts/​maest​ro/).

Molecular dynamics (MD) simulations
GROMACS 2022.3 software was used for molecular dynamics simulations. For small-molecule preprocess-
ing, AmberTools 22 was used to add GAFF force fields to small molecules, while Gaussian 16 W was used to 
hydrogenate small molecules and calculate the RESP potential. Potential data were added to the topology file 
of the molecular dynamics system. The simulation conditions were carried out at a static temperature of 300 K 
and an atmospheric pressure of 1 Bar. Amber99sb-ildn was used for force fields, water molecules were used as 
the solvent (Tip3p water model), and the total charge of the simulation system was neutralized by adding an 
appropriate number of Na+ ions. The simulation system adopted the steepest descent method to minimize the 
energy, and then conducted the isothermal isovolumic ensemble (NVT) equilibrium and isothermal isobaric 
ensemble (NPT) equilibrium for 100,000 steps, respectively, with a coupling constant of 0.1 ps and a duration of 
100 ps. The free molecular dynamics simulation was then performed. The process consisted of 5,000,000 steps, 
with a step length of 2 fs and a total duration of 100 ns. After completion of the simulation, the built-in tool of 
the software was used to analyze the trajectory, and the root mean-square deviation (RMSD), root-mean-square 
fluctuation (RMSF), and protein rotation radius of each amino acid trajectory were calculated, combined with 
the free energy (MMPBSA), free energy topography, and other data83–85.

Statistical analysis
T-tests were used to compare the proportions of different immune cells between the control and PH groups 
using GraphPad Prism Version 8.3.0 (GraphPad Software, San Diego, CA, USA). P-values < 0.05 were considered 
statistically significant.

Conclusions
In this research, SELE and CCL20 were found to be indicators of COVID-19 and PH co-pathogenesis by various 
bioinformatics analyse and machine learning algorithms. Adaptive immune response, leukocyte, lymphocyte 
mediated immune responses, and proinflammatory response mediated by cytokines like IL-12, TNF-a were 
functionally enriched in these two hub genes. These two hub genes were selected for nomogram construction and 
their diagnostic value evaluated by machine learning. The nomogram was found to have high diagnostic value. 

http://www.networkanalyst.ca
http://bioinfo.life.hust.edu.cn/FFLtool/
http://dsigdb.tanlab.org/DSigDBv1.0/
http://www.rcsb.org
https://newsite.schrodinger.com/platform/products/maestro/
https://newsite.schrodinger.com/platform/products/maestro/
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Dendritic cells had the strongest connection with SELE and CCL20, followed by activated CD4 T cells, active 
dendritic cells, natural killer T cells, neutrophils, and plasmacytoid dendritic cells. Using only 2 reference genes, 
we were able to isolate 12 shared TFs and 25 shared TF-miRNAs.by FFL tool, This FFL among CCL20, miR-
1256 and PPARG may be a novel regulatory module in COVID-19 complicated with pulmonary hypertension. 
It was hypothesized that FENRETINIDE, 1-NITROPYRENE, and AFLATOXIN B1would be useful in treating 
COVID-19 complicated by PH. Further molecular docking and molecular dynamics simulations showed that 
1-nitropyrene had the most stable binding with SELE and CCL20. Understanding the comorbidity of COVID-19 
and PH may be aided by these biomarkers and the connection between COVID-19 and PH and angiogenesis.

Data availability
Datasets used in the study (GSE113439, GSE147507,GSE53408 and GSE196822) can be downloaded with-
out restriction from the public GEO database.GSE113439: https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi? 
acc = GSE113439; GSE147507: https://​www.​ncbi.​nlm.​nih.​gov/​gds/? acc = GSE147507; GSE53408: https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi? acc = GSE53408;.https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi? 
acc = GSE196822;.The original contributions presented in the study are included in the article/Supplementary 
Material. Further inquiries can be directed to the corresponding author.
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