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Dynamic analysis of a fuzzy 
Bobwhite quail population model 
under g‑division law
Miao Ouyang 1,3, Qianhong Zhang 2*, Mingji Cai 1 & Zihao Zeng 1

This paper is concerned with a kind of Bobwhite quail population model 

where the parameters and initial values are positive parabolic fuzzy numbers. According to g‑division 
of fuzzy sets and based on the symmetrical parabolic fuzzy numbers, the conditional stability of this 
model is proved. Besides the existence, boundedness and persistence of its unique positive fuzzy 
solution. When some fuzzy stability conditions are satisfied, the model evolution exhibits oscillations 
with return to a fixed fuzzy equilibrium no matter what the initial value is. This phenomena provided a 
vivid counterexample to Allee effect in density‑dependent populations of organisms. As a supplement, 
two numerical examples with data‑table are interspersed to illustrate the effectiveness. Our findings 
have been verified precise with collected northern bobwhite data in Texas, and will help to form some 
efficient density estimates for wildlife populations of universal applications.

Background and motivation
Most biological phenomena use natural language and qualitative reasoning to describe ecological relationships 
in the description process, and artificial intelligence provides a way to process natural language knowledge, such 
as rule-based expert systems. In this process, knowledge is given in the form of ”IF (trigger condition) -THEN 
(event conclusion)”, and an ecosystem rule can be assumed as ”IF the number of species A is large and the number 
of species B and species C is small, THEN the number of species A increases to medium and the number of spe-
cies B decreases to medium.” And the number of species C increases slowly ”, in which ”large”, ”small”, ”increase 
(decrease) to the medium amount” and ”slow increase” are vague and inaccurate.

To address this situation, Zadeh proposed fuzzy set theory in  19651. Its core idea is to use membership func-
tion to represent fuzzy sets, membership function assigns each fuzzy object a value in the range of 0 to 1, which 
are classes with not sharply defined boundaries in which the transition from membership to non-membership 
is gradual. Fuzzy set theory provides a powerful tool for solving fuzzy expert knowledge. Fuzzy rule models 
composed of expert experience, fuzzy sets, fuzzy logic, etc., have been proved rational and effective for general 
ecosystem behavior  analysis2–4, specially, for fishery ecological  modelings5,6, and some epidemic prevention 
 treatments7,8.

Meanwhile,a classic fuzzy set, ” α-cut set” was proposed as a means of handling uncertainty that is due to 
imprecision or vagueness rather than to randomness. Algebraic structures arising out of the family of fuzzy α
-cuts and fuzzy strict ” α-cuts” were investigated  in9, and some significance and usefulness of fuzzy α-cut set are 
discussed. Based on α-cut sets, revealing the relationship of deterministic and uncertain models, many fuzzy 
models were studied worldwide. According to the α-cut sets skills, we considered the discrete time Beverton-
Holt model with fuzzy uncertainty parameters and initial conditions  in10, and a delayed fuzzy Skellam equation 
 in11, that responded to a lag between the variations of external conditions and response of the population to 
several variations. Meanwhile, Li and  Teng12 studied an uncertain SIS epidemic model in 2019. More references 
can be sought  in13.
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Considering the biological population models, the process of habitat fragmentation has been intensified by 
human action of extractive, agriculture and live- stock activities. Among a habitat fragmentation, an Allee effect is 
an vital feature by both theoretically oriented and applied ecologists. Allee effect is a positive association between 
absolute average individual fitness and population size over some finite interval, as objects researched  in14and15,16. 
However, several biology systems do not follow Allee effect in the habitats. Such as a p-fuzzy drosophila medio-
punctata population system, depicted by Castanho M, which in South America Atlantic forest fragments(see17), 
exhibits oscillations with return to equilibrium. These phenomena raised doubts that the positive association 
of density dependence may, but does not necessarily, give rise to a critical population size, below which the 
population cannot persist. For example in 2013, Hefley, Tyre and Blankenship expected the bobwhite quail popu-
lation extinct in a habitat-deteriorating and losing region with two independent data sets as  in18. Then, our next 
concern is about the bobwhite quail population with two generation delays and inevitable data-errors. We will 
conclude that this type of population system does not affected by Allee effect, which result helps institutional to 
conducive ecological maintenance programs. The following is the applicable scene and development of so-called 
bobwhite quail population model.

In 2003, Abu-Saris et al.19 studied the global asymptotic stability and semicycle character of an ordinary 
difference equation as

Contemporaneously, Papaschinopoulos,G et al.20 researched the corresponding fuzzy model,

where xn is a sequence of fuzzy numbers, the parameter A is a fuzzy number. They presented the 
existence,boundedness and the asymptotic behavior of the positive fuzzy solutions .

Inspired by the rational difference equation system in Yang’s  concern21, in 2005,

Zhang22studied the following FDE in 2015. Taşdemir did so and went further  in23, 2021.

According to survey, the estimated abundance of two typical Bobwhite quails is declining by 3 % per year since 
 199624,thereby some long-term conservation efforts to the main poultry in Southern Texas are indispensable. A 
original bobwhite quail population model  in25 focused only on the density of the population at spring, that is net 
increase, and fall, net decrease accordingly. Besides seasonal factor, living environment(brush canopy  cover26,the 
effect of natural predators trap and  removal27,28, a regular  harvest29 ) influenced the process of bobwhite quail 
population evolution usually. Focusing trajectories of Bobwhite quail populations in four reasons is deemed 
sensible, our observations can be expressed in a generalization model of a form originally introduced  by30–32 as

According to Zhang and Taşdemir’s work, the following fuzzy difference equation, typically and not unexpect-
edly, described a general fuzzy bobwhite quail population model (GFBQP model).

This paper simplified above model with C = 1, D = 0, m = 2, p1 = p2 = 1 , saying a fuzzy bobwhite quail popu-
lation (FBQP) model

where the initial population size values xi , i = −2,−1, 0 , and parameters A , that indicates some natural loga-
rithm item of process error term during population-size change,  see33 , and B, that indexes population threshold 
 density25, are positive fuzzy numbers.

We proposed and studied the behavior of positive fuzzy solutions of Eq. (2), applying α - cut sets and 
g-division(more natural to understand than Zadeh Extension principle, as  in34.

This article is mainly to investigate the dynamical behaviors of a third-order fuzzy Bobwhite quail populations 
Model. The content of this paper is organized as follows. Section 2 introduced the related terms and definitions. 
Section 3 proposes the main theorems and proofs including existence, boundedness, persistence and asympto-
matic stability of positive fuzzy solutions under some sufficient conditions. A unique positive fuzzy equilibrium 
x and every positive fuzzy solution xn of Eq. (2) also was drawn to converges to x as n → ∞ . Section 4 presents 
the numerical results for two test problems in parabolic fuzzy  number35, which is an upgraded vision of triangle 
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fuzzy number, and is well-adapted for application more information and application can  refer36,37  and38. The 
conclusion of the article is presented in Section 5.

Some definitions
Firstly we give some definitions will be used in the following.

Definition 2.1 39 A function H : R → [0, 1] is called a fuzzy number if the following conditions (i)-(iv) hold true: 

 (i) H is normal, namely, there is at least an x ∈ R satisfying H(x) = 1;
 (ii) H is fuzzy convex, namely, for each � ∈ [0, 1] and x1, x2 ∈ R , it has 

 (iii) H is upper semi-continuous;
 (iv) The support of H, supp H =

⋃
α∈(0,1][H]α = {x : H(x) > 0} is compact.

The α-level set of fuzzy number H is written [H]α = {x ∈ R : H(x) ≥ α} for α ∈ (0, 1] . It is clear that [H]α is 
a closed interval. H is positive (or negative) if supp H ⊂ (0,+∞)( supp H ⊂ (−∞, 0)). If H is a positive real 
number (trivial fuzzy number), then [H]α = [H ,H], for α ∈ (0, 1].

Let H, P be fuzzy numbers with α level set [H]α = [Hl,α ,Hr,α], [P]α = [Pl,α , Pr,α],α ∈ [0, 1] , the addition and 
multiplication of fuzzy numbers are defined as follows:

The collection of all fuzzy numbers satisfying Eqs.(2.1)-(2.2) is denoted by RF.

Definition 2.2 39 The metric D between arbitrary two fuzzy numbers H and P is denoted by

It is obvious that (RF ,D) forms a complete metric space.

Definition 2.3 40 Let H , P ∈ RF , [H]α = [Hl,α ,Hr,α], [P]α = [Pl,α , Pr,α] , with 0 /∈ [P]α , ∀α ∈ [0, 1] . The g-division 
( ÷g ) is denoted by W = H ÷g P having level sets [W]α = [Wl,α ,Wr,α](here [H]−1

α = [1/Hr,α , 1/Hl,α])

If W is a proper fuzzy number, i.e., Wl,α and Wr,α are nondecreasing and nonincreasing respectively, and 
Wl,1 ≤ Wr,1.

Compared with utilizing Zadeh extension principle, g-division introduced  in40 has an obvious advantage 
that it decreases the singularity of fuzzy solution due to reduction of the length of the support interval. The 
g-division reduced some negligible ambiguity degree, is superior to the Zadeh Extension principle in fuzzy 
number operations. The g-division is the logic basis of several analysis methods, for example, Fanny method 
was considered to be one of the best choices  in41, because it produced the largest reductions in the variance of 
three fields cultivated with soya bean and maize in Brazil. It is utilized by us  in42 to present large time behaviors 
of positive fuzzy solution of a kind of second-order fractal difference equation with positive fuzzy parameters, 
including persistence, boundedness, global convergence.

Remark 2.1 In this paper, according  to40, if the positive fuzzy number H ÷g P = W ∈ RF exists, then one and 
only one of following two cases will be held.

Case I   if Hl,αPr,α ≤ Hr,αPl,α , ∀α ∈ [0, 1], then Wl,α = Hl,α

Pl,α
,Wr,α = Hr,α

Pr,α
,

Case II  if Hl,αPr,α > Hr,αPl,α , ∀α ∈ [0, 1], then Wl,α = Hr,α

Pr,α
,Wr,α = Hl,α

Pl,α
.

Definition 2.4 Let {xn} be a sequence of positive fuzzy number, if there exists a M > 0 , resp. N > 0 , satisfying

then {xn} is persistent, resp. bounded.
If there exist M,N > 0 such that

then the sequence {xn} is bounded and persistent.

H(�x1 + (1− �)x2) ≥ min{H(x1),H(x2)};

(3)[H + P]α = [Hl,α + Pl,α ,Hr,α + Pr,α],

(4)[kH]α = [kHl,α , kHr,α], k > 0.

D(H , P) = sup
α∈[0,1]

max{|Hl,α − Pl,α |, |Hr,α − Pr,α |}.

[W]α = [H]α ÷g [P]α ⇐⇒





(i) [H]α = [P]α[W]α ,
or
(ii) [P]α = [H]α[W]−1

α .

supp xn ⊂ [M,∞), n = 1, 2, · · · , resp . supp xn ⊂ (0,N], n = 1, 2, · · ·

supp xn ⊂ [M,N], n = 1, 2, · · · .
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If the norm �xn�, n = 1, 2, · · · , is an unbounded sequence, then the sequence {xn} is unbounded.

Definition 2.5 xn is said to be a positive solution of Eq. (2) if a sequence {xn} satisfies Eq. (2). x is a positive 
equilibrium of Eq. (2) if

If limn→∞ D(xn, x) = 0 , then {xn} converges to x as n → ∞.

Main results and its proof
Existence of a unique solution of equation (2)
Firstly, we propose the lemma of multi-variable fuzzy function with α-cut set.

Lemma 3.1 39 Let g : R+ × R+ × R+ × R+ → R+ be continuous, Ai ∈ R+
F , i = 1, 2, 3, 4 , then

Theorem 3.1 Consider Eq. (2), where coefficients A,B ∈ R+
F  and xi ∈ R+

F , i = −2,−1, 0 . Then there is a unique 
positive fuzzy solution xn of Eq. (2).

Proof Assume that a sequence of fuzzy numbers {xn} is satisfied with Eq. (2) for initial conditions 
xi ∈ R+

F , i = −2,−1, 0. Consider the α-level set, α ∈ (0, 1],

By virtue of (3.1) and Lemma 3.1, taking α−level set, it follows from Eq. (2) that

According to g-division, we have two cases.   �

Case I

Case II

If Case I occurs, for n ∈ {0, 1, 2, · · · },α ∈ (0, 1] , it follows from (3.2) that

Then, for each initial values (xj,l,α , xj,r,α), j = −2,−1, 0,α ∈ (0, 1] , there is a unique solution xn,α.
Now we show that xn,α ,α ∈ (0, 1] , ascertains the fuzzy solution of Eq. (2) with initial values xi , i = −2,−1, 0 

satisfying

Since xj ∈ R+
F , j = −2,−1, 0 , It follows from  reference19 that, for any αi ∈ (0, 1](i = 1, 2),α1 ≤ α2,

Firstly, we prove that, for n = 0, 1, 2, · · · ,

x = A+ Bx +
x

x2
.

[g(A1,A2,A3,A4)]α = g([A1]α , [A2]α , [A3]α , [A4]α), α ∈ (0, 1].

(5)[xn]α = [xn,l,α , xn,r,α], [A]α = [Al,α ,Ar,α], [B]α = [Bl,α ,Br,α], n = 0, 1, 2, · · · .

[xn+1]α =[xn+1,l,α , xn+1,r,α]

=
[
A+ Bxn +

xn

xn−1xn−2

]

α

= [A]α + [B]α × [xn]α +
[xn]α

[xn−1]α × [xn−2]α

=[Al,α ,Arα] + [Bl,αxn,l,α ,Br,αRn,α] +
[xn,l,α , xn,r,α]

[xn−1,r,αxn−2,r,α , xn−1,r,αxn−2,r,α]

=[Al,α + Bl,αxn,l,α ,Ar,α + Br,αxn,r,α] +
[xn,l,α , xn,r,α]

[xn−1,l,αxn−2,r,α , xn−1,r,αxn−2,r,α]
,

(6)

[xn+1]α =[xn+1,l,α , xn+1,r,α]

=
[
Al,α + Bl,αxn,l,α +

xn,l,α

xn−1,l,αxn−2,l,α
,Ar,α + Br,αxn,r,α +

xn,r,α

xn−1,r,αxn−2,r,α

]
,

(7)

[xn+1]α =[xn+1,l,α , xn+1,r,α]

=
[
Al,α + Bl,αxn,l,α +

xn,r,α

xn−1,r,αxn−2,r,α
,Ar,α + Br,αxn,r,α +

xn,l,α

xn−1,l,αxn−2,l,α

]
.

(8)
xn+1,l,α = Al,α + Bl,αxn,l,α +

xn,l,α

xn−1,l,αxn−2,l,α
,

Rn+1,α = Ar,α + Br,αxn,r,α +
xn,r,α

xn−1,r,αxn−2,r,α
.

(9)[xn]α = [xn,l,α , xn,r,α], n ∈ {0, 1, 2, · · · }, α ∈ (0, 1].

(10)0 < xj,l,α1 ≤ xj,l,α2 ≤ xj,r,α2 ≤ xj,r,α1 , j = 0,−1,−2.
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Since (3.6) hold true, (3.7) is true by mathematical induction for n = 0 . When n = k, k ∈ {1, 2, · · · } , Let (3.7) be 
true. Then, for n = k + 1 , it follows from (3.5)-(3.7) that

Therefore, (3.7) is true.
From (3.5), we know

Since xj ∈ R+
F , j = −2,−1, 0, and A,B ∈ R+

F  , it follows that xj,l,α , xj,r,α , j = 0,−1,−2, are left continuous.
Therefore, it follows from (3.8) that x1,l,α and x1,r,α are left continuous. So, it’s natural by induction that xn,l,α 

and xn,r,αare left continuous
Secondly, it is sufficient that supp xn =

⋃
α∈(0,1][xn,l,α , xn,r,α] is compact, namely, 

⋃
α∈(0,1][xn,l,α , xn,r,α] is 

bounded.
Let n = 1 , since A,B ∈ R+

F  and xj ∈ R+
F , j = −2,−1, 0 , for each α ∈ (0, 1] , there are positive real numbers 

Al,0,Ar,0,Bl,0,Br,0, xj,l,0, xj,r,0, j = −2,−1, 0, such that

Hence from (3.8) and (3.9), it has

Then

Therefore, 
⋃

α∈(0,1][x1,l,α , x1,r,α] ⊂ (0,∞) is compact.
Deducing inductively, it is easy to get that 

⋃
α∈(0,1][xn,l,α , xn,r,α] is compact, and

Noting (3.7) and (3.11), xn,l,α , and xn,r,α are left continuous, [xn,l,α , xn,r,α] ascertains a sequence of positive fuzzy 
numbers xn satisfying (3.5).

Now we show that xn is the positive fuzzy solution of Eq. (2) with the initial conditions xi , i = 0,−1,−2 . For 
α ∈ (0, 1],

We deduce xn is a positive fuzzy solution of Eq. (2) with initial values xi , i = −2,−1, 0.
If there is another positive fuzzy solution xn of Eq. (2) with initial values xi , i = −2,−1, 0 , it is easy to show 

that

From (3.5) and (3.12), then [xn]α = [xn]α ,α ∈ (0, 1], n = 0, 1, 2, · · · , so xn = xn, n = 0, 1, · · · .
Suppose Case II occurs, for n ∈ {0, 1, 2, · · · },α ∈ (0, 1] , it follows from (3.3) that

(11)xn,l,α1 ≤ xn,l,α2 ≤ xn,r,α2 ≤ xn,r,α1 .

xk+1,l,α1 =Al,α1 + Bl,α1xk,l,α1 +
xk,l,α1

xk−1,l,α1xk−2,l,α1

≤ Al,α2 + Bl,α2xk,l,α2 +
xk,l,α2

xk−1,l,α2xk−2,l,α2

= xk+1,l,α2

=Al,α2 + Bl,α2xk,l,α2 +
xk,lα2

xk−1,l,α2xk−2,l,α2

≤ Ar,α2 + Br,α2xn,r,α2 +
xk,r,α2

xk−1,r,α2xk−2,r,α2

= xk+1,r,α2

=Ar,α2 + Br,α2xk,r,α2 +
xk,r,α2

xk−1,r,α2xk−2,r,α2

≤ Ar,α1 + Br,α1xk,r,α1 +
xk,r,α1

xk−1,r,α1xk−2,r,α1

= xk+1,r,α1

(12)
x1,l,α = Al,α + Bl,αx0,l,α +

x0,l,α

x−2,l,αx−1,l,α
,

x1,r,α = Ar,α + Br,αx0,r,α +
x0,r,α

x−2,r,αx−1,r,α
, α ∈ (0, 1].

(13)[Al,α ,Ar,α] ⊂ [Al,0,Ar,0], [Bl,α ,Br,α] ⊂ [Bl,0,Br,0], [xj,l,α , xj,r,α] ⊂ [xj,l,0, xj,r,0].

[x1,l,α , x1,r,α] ⊂
[
Al,0 + Bl,0xj,l,0 +

x0,l,0

x−1,l,0x−2,l,0
,Ar,0 + Br,0xj,r,0 +

x0,r,0

x−1,r,0x−2,r,0

]
,α ∈ (0, 1].

(14)
⋃

α∈(0,1]
[x1,l,α , x1,r,α] ⊂

[
Al,0 + Bl,0x0,l,0 +

x0,l,0

x−1,l,0x−2,l,0
,Ar,0 + Bl,0x0,r,0 +

x0,r,0

x−1,r,0x−2,r,0

]
.

(15)
⋃

α∈(0,1]
[xn,l,α , xn,r,α] ⊂ (0,∞), n = 1, 2, · · · .

[xn+1]α =[xn+1,l,α , xn+1,r,α]

=
[
Al,α + Bl,αxn,l,α +

xn,l,α

xn−1,l,αxn−2,l,α
,Ar,α + Br,αxn,r,α +

xn,r,α

xn−1,r,αxn−2,r,α

]

=
[
A+ Bxn +

xn

xn−1xn−2

]

α

,

(16)[xn]α = [xn,l,α , xn,r,α], α ∈ (0, 1], n = 0, 1, 2, · · · .
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The proof is similar to those of Case I. Thus we finish the proof of Theorem 3.1.
Dynamics of equation (2)
In this section, by virtue of g-division of fuzzy numbers, we investigate the dynamical behavior of the positive 
fuzzy solutions of Eq. (2) by cases I and cases II.

Firstly, if case I occurs, we draw a conclusion of corresponding crisp system in the following lemma.

Lemma 3.2 Consider the following difference equation

where yi > 0, i = −2,−1, 0 , if

then for n ≥ 0

Proof From (3.14) it is clear that yn > p for n ≥ 1 . For n ≥ 4 , one can get that

Deducing inductively, for n− k ≥ 3 , it follows that

  �

Noting that k ≤ n− 3 is equivalent to n− k ≥ 3 . So (3.16) is true.
By Lemma 3.2, the following theorem interprets the sufficient conditions for the positive fuzzy solution xn 

of Eq. (2) will be bounded and persistent.

Theorem 3.2 Consider Eq. (2), where the parameters A,B ∈ R+
F  and the initial conditions xi ∈ R+

F , i = −2,−1, 0 , if

then every positive fuzzy solution xn of Eq. (2) is bounded and persistent.

Proof (i) Let xn be a positive solution of Eq. (2) satisfying (3.5). It follows from (3.4) that

(17)
Ln+1,α = Al,α + Bl,αxn,l,α +

xn,l,α

xn−1,l,αxn−2,l,α
,

Rn+1,α = Ar,α + Br,αxn,r,α +
xn,r,α

xn−1,r,αxn−2,r,α
.

(18)yn+1 = p+ ayn +
yn

yn−1yn−2
, n = 0, 1, · · · ,

(19)





0 < a < 1,

(1− a)p2 > 1,

(20)p < yn <
p3

(1− a)p2 − 1
+ y3.

(21)yn = p+ ayn−1 +
yn−1

yn−2yn−3
≤ p+

1+ ap2

p2
yn−1.

yn ≤p+ p
1+ ap2

p2
+

(
1+ ap2

p2

)2

yn−2 ≤ p+ p
1+ ap2

p2
+ p

(
1+ ap2

p2

)2

+
(
1+ ap2

p2

)3

yn−3

≤p+ p
1+ ap2

p2
+ p

(
1+ ap2

p2

)2

+ p

(
1+ ap2

p2

)3

+
(
1+ ap2

p2

)4

yn−4

≤ · · · ≤
k∑

i=1

p

(
1+ ap2

p2

)i−1

+
(
1+ ap2

p2

)k

yn−k

=
p

1− a− 1/p2

[
1−

(
1+ ap2

p2

)k
]
+

(
1+ ap2

p2

)k

yn−k

≤
p3

(1− a)p2 − 1
+ yn−k ,

(22)





Ar,α ≤ Ar,0 < 1,

(1− Bl,α)A
2
l,α > 1,

(1− Br,α)A
2
r,α > 1,

xn,l,αxn−1,r,αxn−2,r,α ≤ xn,r,αxn−1,l,αxn−2,l,α ,
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Then from (3.9), (3.18) and Lemma 3.2, we get from(3.1) and (3.4)

  �

Theorem 3.2 reveals the relation between the population development error and the population threshold 
density to guarantee a FBQP model steady, when initial size meets Case I.

Lemma 3.3 Consider difference equation (3.14), if

then Eq. (3.14) is asymptotically stable, and its equilibrium point is ȳ = p+
√

p2+4(1−a)
2(1−a) .

Proof It is easy to obtain the equilibrium point ȳ of (3.14). Considering the linearized equation of (3.14) on y , 
by the methodologies  in43–45 associated with (3.14), is

where G = 2(1−a)2

p2+2(1−a)+p
√

p2+4(1−a)
.

Since 3p2 > 4(1− a) , it leads

Using Theorem 1.3.7  in43, the equilibrium y of (3.14) is asymptotically stable.   �

Lemma 3.4 Consider the system of ordinary difference equations in Case I

if

Then every positive solution (yn, zn) of (3.24) tends to equilibrium

Proof Let (yn, zn) be positive solution of (3.24). Set

From Lemma 3.2, we have 0 < p < �1 ≤ y ≤ �1 < ∞, 0 < q < �2 ≤ z ≤ �2 < ∞. Then

Relations (3.27) implies that

That is

Since condition (3.25) hold, we can get

Since �1 ≤ �1, �2 ≤ �2 , then from (3.28), it is obvious that

(23)xn,l,0 ≤ xn,l,α , xn,l,0 ≤ xn,r,α , n = 1, 2, · · · , α ∈ (0, 1].

(24)[xn,l,α , xn,r,α] ⊂ [Al,0,
A3
l,0

(1− Bl,0)A
2
l,0 − 1

+ x3,l,0] × [Ar,0,
A3
r,0

(1− Br,0)A
2
r,0 − 1

+ x3,r,0], n ≥ 5,

(25)





0 < a < 1,

3p2 > 4(1− a),

(26)yn+1 − [a+ G]yn + Gyn−1 + Gyn−2 = 0, n = 0, 1, 2, · · · ,

6(1− a)

p2 + 2(1− a)+ p
√

p2 + 4(1− a)
< 1.

(27)yn+1 = p+ ayn +
yn

yn−1yn−2
, zn+1 = q+ bzn +

zn

zn−1zn−2
, n = 0, 1, · · · ,

(28)0 < a < 1, 0 < b < 1, 3p2 > 4(1− a), 3q2 > 4(1− b),

(29)(y, z) =

(
p+

√
p2 + 4(1− a)

2(1− a)
,
q+

√
q2 + 4(1− b)

2(1− b)

)
.

�1 = lim
n→∞

sup yn, �1 = lim
n→∞

inf yn,�2 = lim
n→∞

sup zn, �2 = lim
n→∞

inf zn.

(30)�1 ≤ p+ a�1 +
�1

�1y
, �2 ≤ q+ b�2 +

�2

�2z
, �1 ≥ p+ a�1 +

�1

�1y
, �2 ≥ q+ b�2 +

�2

�2z
.

ȳp�1 + �1 ≤ yp�1 +�1, zq�2 + �2 ≤ zq�2 +�2.

(31)(yp− 1)(�1 − �1) ≤ 0, (zq− 1)(�2 − �2) ≤ 0.

yp > 1, zq > 1.

�1 = �1, �2 = �2.
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Thus limn→∞ yn and limn→∞ zn exist,  referring46. From the uniqueness of the positive equilibrium of (3.14), we 
have that limn→∞ yn = y, limn→∞ zn = z.   �

Theorem 3.3 For α ∈ (0, 1], A ∈ R+
F ,B ∈ R+ , if

then every positive solution xn of Eq. (2) converges to the positive equilibrium x, where [x]α = [xl,α , xr,α],

and limn→∞ D(xn, x) = 0.

Proof Suppose that there is a positive fuzzy number x satisfying

where xl,α , xr,α ≥ 0 . Then

it gets (3.30)
Let xn be a positive solution of Eq. (2). Since(3.29), it follows from system (3.4), by Lemma 3.3 and Lemma 

3.4, that

Namely,

This completes the proof of Theorem 3.3.   �

Theorem 3.3 describes the development process error item may much less than the population threshold 
density as (3.29), when the initial fuzzy size meet Case I of the FBQP (2).

Secondly, if Case II occurs, it follows that, for α ∈ (0, 1], n = 0, 1, 2, · · · ,

To obtain the dynamical behavior of Eq. (2) in Case II as (3.3) , we need the following lemma.

Lemma 3.5 Consider the system of difference equations

if 0 < a < 1, 0 < b < 1, yi > 0, zi > 0, i = −2,−1, 0 . Then, for n ≥ 1,

where

Proof From (3.32), for n ≥ 1, it is clear that yn ≥ p, zn ≥ q. And for n ≥ 4,

(32)





Ar,α ≤ Ar,0 < 1,

Ar,αBl,α − Al,αBr,α < Ar,α − Al,α

3A2
l,α > 4(1− Bl,α), 3A2

r,α > 4(1− Br,α),

xn,l,αxn−1,r,αxn−2,r,α ≤ xn,r,αxn−1,l,αxn−2,l,α ,

(33)xl,α =
Al,α +

√
A2
l,α + 4(1− Bl,α)

2(1− Bl,α)
, xr,α =

Ar,α +
√

A2
r,α + 4(1− Br,α)

2(1− Br,α)
,

x = A+ Bx +
x

x2
, [x]α = [xl,α , xr,α], α ∈ (0, 1].

xl,α = Al,α + Bxl,α +
xl,α

x2l,α
,

xr,α = Ar,α + Bxr,α +
xr,α

x2r,α
.

lim
n→∞

xn,l,α = xl,α , lim
n→∞

xn,rα = xr,α ,

lim
n→∞

D(xn, x) = lim
n→∞

sup
α∈(0,1]

{max{|xn,l,α − xl,α |, |xn,r,α − xr,α |}} = 0.

(34)
xn+1,l,α = Al,α + Bl,αxn,l,α +

xn,r,α

xn−1,r,αxn−2,r,α
,

xn+1,r,α = Ar,α + Br,αxn,r,α +
xn,l,α

xn−1,l,αxn−2,l;,α
.

(35)yn+1 = p+ ayn +
zn

zn−1zn−2
, zn+1 = q+ bzn +

yn

yn−1yn−2
, n = 0, 1, · · · ,

(36)p ≤ yn ≤
c1

1− a
+ y2, q ≤ zn ≤

c2

1− b
+ z2,

c1 = p+
1+ b

q
+

1+ a

q2p
+

1

q3p2
, c2 = q+

1+ a

p
+

1+ b

p2q
+

1

p3q2
.
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  �

Similarly,

By recursive method, one can get that

This completes the proof of Lemma 3.5.

Theorem 3.4 Consider Eq. (2), where the parameters A,B ∈ R+
F  and the initial conditions xi ∈ R+

F , i = −2,−1, 0 . If

for α ∈ (0, 1] , then every positive fuzzy solution xn of Eq. (2) is bounded and persistent.

Proof Set C = (Cl,α ,Cr,α),α ∈ (0, 1], the proof process is similar to Theorem 3.2. With (3.33) in Lemma3.5,

where

  �

We completes the proof that the positive fuzzy solution xn is bounded and persistent.
Theorem 3.4 reveals the sufficient condition for a fuzzy Bobwhite quail population steady, in Case II, is only 

related to the population initial size and its threshold density.

Lemma 3.6 Consider the system of difference equations (3.32), if

then there exists the unique positive equilibrium (ỹ, z̃), which

is asymptotically stable.

Proof According (3.32), its equilibrium should meet

 It is easy to obtain the unique positive equilibrium point (ỹ, z̃) with expression in (3.36).   �

yn+1 =p+ ayn +
zn

zn−1zn−2
= p+ ayn +

q+ bzn−1 + yn−1

yn−2yn−3

zn−1zn−2

=p+ ayn +
q

zn−1zn−2
+

b

zn−2
+

p

zn−1zn−2yn−2yn−3
+

a

zn−1zn−2yn−3
+

1

zn−1zn−3zn−4yn−2yn−3

≤ayn + p+
q

q2
+

b

q
+

p

q2p2
+

a

q2p
+

1

q3p2

=ayn + c1.

zn+1 ≤ bzn + c2.





yn+1 ≤ a(ayn + c1)+ c1 ≤ · · · ≤ any2 + c1(1−an−1)
1−a ≤ y2 + c1

1−a ,

zn+1 ≤ b(bzn + c2)+ c2 ≤ · · · ≤ bnz2 + c2(1−bn−1)
1−b ≤ z2 + c2

1−b ,

(37)

{
Br,α ≤ Br,0 < 1,

xn,l,αxn−1,r,αxn−2,r,α > xn,r,αxn−1,l,αxn−2,l,α ,

[xn,l,α , xn,r,α] ⊂ [Al,α , x2,l,α +
Cl,α

1− Bl,α
] × [Ar,α , x2,r,α +

Cr,α

1− Br,α
],

Cl,α = Al,α +
1+ Br,α

Ar,α
+

1+ Bl,α

A2
r,αAl,α

+
1

A3
r,αA

2
l,α

, Cr,α = Ar,α +
1+ Bl,α

Al,α
+

1+ Br,α

A2
l,αAr,α

+
1

A3
l,αA

2
r,α

.

(38)





0 < a < 1, 0 < b < 1,

p2

1−a <
q2

1−b ,

(39)

(ỹ, z̃) =

(
pq− (b− a)+

√
(pq+ a− b)2 + 4pq(1− a)

2q(1− a)
,
pq+ (b− a)+

√
(pq+ b− a)2 + 4pq(1− b)

2p(1− b)

)

ỹ = p+ aỹ +
1

z̃
, z̃ = q+ bz̃ +

1

ỹ
, n = 0, 1, · · · ,
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We have the series partial derivatives of yn, zn to the recording delayed values yn−1, yn−2, zn−2 and zn−2 for 
n = 0, 1, · · · as

 The linearized equation of system (3.32) about (ỹ, z̃) is

where �n = (yn, yn−1, yn−2, zn, zn−1, zn−2)
T , and

Let G = diag (1, ε−1, ε−2, · · · , ε−5) be a diagonal matrix, let

Clearly, G is invertible. Computing GTG−1 , we have

From (3.35), we know

By , it follows the positive equilibrium (ỹ, z̃) is asymptotically stable.

Lemma 3.7 Consider the system of difference equations (3.32), if

hold true, then every positive solution (yn, zn) of (3.32) tends to the equilibrium (ỹ, z̃).

Proof Suppose that (yn, zn) is an arbitrary positive solution of (3.32). Set

where li , Li ∈ (0,+∞), i = 1, 2. Then

where (ỹ, z̃) is the positive equilibrium of (3.32). Then

From (3.32), (3.37) and (3.38) it can follow that Li = li , i = 1, 2. Therefore,

The proof of Lemma 3.7 is completed.   �

∂yn+1

∂yn
= a,

∂yn+1

∂zn
=

1

zn−1zn−2
,
∂yn+1

∂zn−1
= −

zn

z2n−1zn−2
,
∂yn+1

∂zn−2
= −

zn

zn−1z
2
n−2

,

∂zn+1

∂zn
= b,

∂zn+1

∂yn
=

1

yn−1yn−2
,
∂zn+1

∂yn−1
= −

yn

y2n−1yn−2
,
∂zn+1

∂yn
= −

yn

yn−1y
2
n−2

,

�n+1 = T�n

T =




a 0 0 1/�z2 − 1/�z2 − 1/�z2
1 0 0 0 0 0
0 1 0 0 0 0

1/�y2 − 1/�y2 − 1/�y2 b 0 0
0 0 0 1 0 0
0 0 0 0 1 0




6

√(
1− b

1− a

)
p2

q2
< ε < 1.

L = GTG−1 =




a 0 0 1/ε3�z2 − 1/ε4�z2 − 1/ε5�z2
ε 0 0 0 0 0
0 ε 0 0 0 0

ε3/�y2 − ε2/�y2 − ε/�y2 b 0 0
0 0 0 ε 0 0
0 0 0 0 ε 0



.

�L�∞ = �GTG−1�∞ = max
1≤i≤6





6�

j=1

|Lij|



 < 1.

(40)





0 < a < 1, 0 < b < 1,

(1− b)p2 < (1− a)q2,

1 < (1− a)(1− b)p2q2,

lim
n→∞

sup yn = L1, lim
n→∞

inf yn = l1, lim
n→∞

sup zn = L2, lim
n→∞

inf zn = l2.

L1 ≤ p+ aL1 +
L2

z̃l2
, l1 ≥ p+ al1 +

l2

z̃L2
, L2 ≤ q+ bL2 +

L1

ỹl1
, l2 ≥ q+ bl2 +

l1

ỹL1
,

(41)
[
(1− a)(1− b)− 1/ ỹ2z̃2

]
(L2 − l2)(L1 − l1) ≤ 0.

lim
n→∞

yn = ỹ, lim
n→∞

zn = z̃.
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Combining Lemma 3.6 with Lemma 3.7, we know Eq. (2) globally asymptotically stable with fuzzy equilib-
rium solution x as the following theorem.

Theorem 3.5 Consider Eq. (2), if the following conditions hold true for α ∈ (0, 1],

Then there exists a unique positive fuzzy equilibrium x, where [x]α = [xl,α , xr,α],

and limn→∞ D(xn, x) = 0.

Proof Assume there is a fuzzy number x satisfying

From which, we have (3.40).
Let xn be a positive solution of (2). Since (3.39) is satisfied, by virtue of Lemma 3.6 and Lemma 3.7, we have

Then

The proof of Theorem 3.5 is completed.   �

Theorem 3.5 revelates the relationship between the error threshold item and the population threshold density 
of FBQP model (2), when the initial fuzzy size meets Case II. Condition (3.39) is necessary to condition (3.29).

Numerical examples
Example 4.1 For reversing the quail decline in Texas, the State Wildlife Department and Texas A & M Agrilife 
Extension Service had funded a series of research and investigations, such as mentioned  in24, which scaled quail 
and bobwhite in the North Texas by a pairwise sequentially Markovian coalescent (PSMC) model (47).

Considering the inevitable error during data acquisition and prepossessing, with incompleteness of living 
environment parameters, we belive the FBQP model may depict and evolve the population of quail bobwhite 
more practically, rather than PSMC model. We set the parameters A with median 1.75 in (2), for the stable 
governmental input on agricultural resources, and B with median 0.15 for the reason that quail bobwhite had a 
pessimistic natural growth rate in situation in those years.

Furthermore, the preceding population structure with three periods is an appropriate delay for the biotic popula-
tion. For simplicity, first of the population size are set to be a unit with cumulative fuzzy degrees as following,

 From (4.1), the corresponding fuzzy parameters and initial values are expressed in Parabolic fuzzy 
numbers(PFNs) as mentioned  in35–38 to depict fuzzy phenomenons, special expressing the system and period 
efficiencies of non-performing assets  in48, where the degree of fuzzy α ∈ (0, 1],

(42)





Br,α ≤ Br,0 < 1,

(1− Br,α)A
2
l,α < (1− Bl,α)A

2
r,α ,

1 < (1− Bl,α)(1− Br,α)A
2
l,αA

2
r,α ,

xn,l,αxn−1,r,αxn−2,r,α > xn,r,αxn−1,l,αxn−2,l,α ,

(43)
xl,α = Bl,α−Br,α+Al,αAr,α+

√
(Bl,α−Br,α+Al,αAr,α)2+4Al,αAr,α(1−Bl,α)

2Ar,α(1−Bl,α)
,

xr,α = Br,α−Bl,α+Al,αAr,α+
√

(Br,α−Bl,α+Al,αAr,α)2+4Al,αAr,α(1−Br,α)

2Al,α(1−Br,α)
.

xl,α = Al,α + Bl,αxl,α +
xr,α

x2r,α
,

xr,α = Ar,α + Br,αRα +
xl,α

x2l,α
.

lim
n→∞

xn,l,α = xl,α ,

lim
n→∞

xn,r,α = xr,α .

lim
n→∞

D(xn, x) = lim
n→∞

sup
α∈(0,1]

{max{|xn,l,α − xl,α |, |xn,r,α − xr,α |}} = 0.

(44)





�
α∈(0,1][A]α = [1.5, 2],

�
α∈(0,1][B]α = [0.15, 0.35],

�
α∈(0,1][x−2]α = [0.75, 1.25],

�
α∈(0,1][x−1]α = [0.65, 1.35],

�
α∈(0,1][x0]α = [0.55, 1.45].
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The parabolic fuzzy numbers are functions according to α , which brings out simulation with Matlab with expres-
sion as following,

The FBQP model (2):

with (4.2) fits both Case I and Case II in the method of fuzzy g-division. Based on Theorem 3.2 and Theorem 3.3, 
model (2) have stable evolution ultimately in Table 1 and numerical simulation diagram in Fig. 1.

Obviously, every fuzzy xn of FBQP model.(2) tends to the unique fuzzy equilibrium x∗ with respect to D as 
n → ∞ , see Fig. 1.

Based on Theorem 3.4 and Theorem 3.5, model (2) have stable evolution ultimately in Table 2 and numerical 
simulation diagram in Fig. 2.

Furthermore every positive solution xn of Eq. (2) tends to the unique fuzzy equilibrium x∗ with respect to D 
as n → ∞ , see Fig. 2.

In Fig. 3, we compared the evolution of model (2) with (4.2) in method of classic division (Zadah exten-
sion principle) and general division (g-division) in Case I and Case II, with the maximum degree of ambiguity 
( α = 0 ). Meanwhile, the crisp model evolution ( α = 1 ) is arranged to demonstrate the relationship between 
fuzzy solutions with crisp solution.

Example 4.2 Accounting FBQP model.(2) constitutionally, we say it is an anti-example to Allee effect not only 
from the analysis in Theorem3.3 and Theorem 3.5, but also from the phenomenon with several initial popula-
tion, higher or lower than the unit. Without losing the generation, Fig. 4 demonstrates a FBQP model with A, B 
in (4.2).

(45)





[A]α =
�
1.75− 0.25 ∗

√
1− α, 1.75+ 0.25 ∗

√
1− α

�
,

[B]α =
�
0.25− 0.1 ∗

√
1− α, 0.25+ 0.1 ∗

√
1− α

�
,

[x−2]α =
�
1− 0.25 ∗

√
1− α, 1+ 0.25 ∗

√
1− α

�
,

[x−1]α =
�
1− 0.35 ∗

√
1− α, 1+ 0.35 ∗

√
1− α

�
,

[x0]α =
�
1− 0.45 ∗

√
1− α, 1+ 0.45 ∗

√
1− α

�
.

(46)





A(x) = 1− 16(x − 1.75)2, 1.5 ≤ x ≤ 2;

B(x) = 1− 100(x − 0.25)2, 0.15 ≤ x ≤ 0.35;

x−2(x) = 1− 16(x − 1)2, 0.5 ≤ x ≤ 1.5;

x−1(x) = 1− 200
49 (x − 1)2, 0.65 ≤ x ≤ 1.35;

x0(x) = 1− 200
81 (x − 1)2, 0.55 ≤ x ≤ 1.45;

xn+1 = A+ Bxn +
xn

xn−1xn−2
, n = 0, 1, · · · ,

Table 1.  FBQP model.(2) in Case I, where A,B, x−2, x−1, x0 are fuzzy parameters in (4.2) The fuzzy positive 
solution is proved to be bounded and persistent that xn ∈ (xl,α , xr,α) = (Al,α ,

A
3
r,α

(1−Br,α)A
2
l,α
−1

+ x3,r,α) , and its 
fuzzy equilibrium solution is (x∗

l,α , x
∗
r,α) as the following table shows.

Ar Br x−2,r x−1,r x0,r xr x
∗
r

Al Bl x−2,l x−1,l x0,l xl x
∗

l

α=0 2.0000 0.3500 1.2500 1.3500 1.4500 (2.0000,6.4500) 3.5147

1.5000 0.1500 0.7500 0.6500 0.5500 (1.5000,4.4486) 2.2806

α=0.25 1.9665 0.3366 1.2165 1.3031 1.3897 (1.9665,6.2476) 3.4068

1.5335 0.1634 0.7835 0.6969 0.6103 (1.5335,4.5114) 2.3431

α=0.5 1.9268 0.3207 1.1768 1.2475 1.3182 (1.9268,6.0185) 3.2846

1.5732 0.1793 0.8232 0.7525 0.6818 (1.5732,4.5989) 2.4203

α=0.75 1.8750 0.3000 1.1250 1.1750 1.2250 (1.8750,5.7370) 3.1344

1.6250 0.2000 0.8750 .82500 0.7750 (1.6520,4.7321) 2.5261

α=1 1.7500 0.2500 1.0000 1.0000 1.0000 (1.7500,5.1325) 2.8081

1.7500 0.2500 1.0000 1.0000 1.0000 (1.7500,5.1325) 2.8081
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As a matter of fact, it has a similar line-trend in Case II. We hope these phenomenon with wide original value 
range may convince one that Allee effect will not work in the thematic model.

Conclusion and postscript
We applied an uncertainty analysis with fuzzy degree to anticipate some species and organism in surrounding 
with vagueness and uncertainty,studied a class of fuzzy Bobwhite quail populations model.

In fact, the results interpreted some ecological population experiment. For example, a research group from 
Colorado-state University trapped and translocated quail from source populations to a large contiguous release 
site in Knox County, Texas, USA during 2016-2017, as  in49. They evaluated mortality and dispersal of these 
individuals by using a multi-state mark-recapture model with state uncertainty. Our results served Ruzicka’s 
conclusions that the population size difference in mortality and dispersal was the largest effect potentially and 

Figure 1.  An Example of FBQP model. (2) in Case I.

Table 2.  FBQP model.(2) with (4.2) The fuzzy positive solution have a similar presentation as in Case I, it is 
bounded and persistent that xn ∈ (xl,α , x,α) = (Al,α ,Ar,α + 1+Bl,α

Al,α
+ 1+Br,α

A
2
l,α
Ar,α

+ 1

A
3
l,α
A2
r,α

) as the following table 
shows.

Ar Br x−2,r x−1,r x0,r xr x
∗
r

Al Bl x−2,l x−1,l x0,l xl x
∗

l

α=0 2.0000 0.3500 1.2500 1.3500 1.4500 (2.0000,6.2819) 3.8192

1.5000 0.3366 0.7500 0.6500 0.5500 (1.5000,3.3997) 2.0728

α=0.25 1.9665 0.2433 1.2165 1.3031 1.3897 (1.9665,6.0414) 4.6126

1.5335 0.1567 0.7835 0.6969 0.6103 (1.5335,3.5571) 2.1594

α=0.5 1.9268 0.3207 1.1768 1.2475 1.3182 (1.9268,5.7677) 3.4860

1.5732 0.1793 0.8232 0.7525 0.6818 (1.5732,3.7487) 2.2664

α=0.75 1.8750 0.3000 1.1250 1.1750 1.2250 (1.8750,5.4283) 3.2705

1.6250 0.2000 0.8750 0.8250 0.7750 (1.6250,4.0073) 2.4135

α=1 1.7500 0.2500 1.0000 1.0000 1.0000 (1.7500,4.6779) 2.8081

2.0000 1.7500 1.0000 1.0000 1.0000 (1.7500,4.6779) 2.8081

Figure 2.  An Example of fuzzy Bobwhite quail populations Model in Case II.
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is likely attributable to weather conditions in seasons. More compatible findings are reflected in several recent 
relevant research,as  in50,  and51so on.

Data availability
The datasets used and/or analyzed during the current study are available from the first author on reasonable 
request.

Received: 8 August 2023; Accepted: 19 April 2024

Figure 3.  The comparison of fuzzy equilibrium in g-division and Zadah extension principle with the crisp 
equilibrium.

Figure 4.  A demonstration of eventual stability of FBQP model (2) with A, B in (4.2), in Case I of g-division.
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