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Edge computing based real‑time 
Nephrops (Nephrops norvegicus) 
catch estimation in demersal trawls 
using object detection models
Ercan Avsar *, Jordan P. Feekings  & Ludvig Ahm Krag 

In demersal trawl fisheries, the unavailability of the catch information until the end of the catching 
process is a drawback, leading to seabed impacts, bycatches and reducing the economic performance 
of the fisheries. The emergence of in‑trawl cameras to observe catches in real‑time can provide such 
information. This data needs to be processed in real‑time to determine the catch compositions and 
rates, eventually improving sustainability and economic performance of the fisheries. In this study, a 
real‑time underwater video processing system counting the Nephrops individuals entering the trawl 
has been developed using object detection and tracking methods on an edge device (NVIDIA Jetson 
AGX Orin). Seven state‑of‑the‑art YOLO models were tested to discover the appropriate training 
settings and YOLO model. To achieve real‑time processing and accurate counting simultaneously, 
four frame skipping ideas were evaluated. It has been shown that adaptive frame skipping approach, 
together with YOLOv8s model, can increase the processing speed up to 97.47 FPS while achieving 
correct count rate and F‑score of 82.57% and 0.86, respectively. In conclusion, this system can improve 
the sustainability of the Nephrops directed trawl fishery by providing catch information in real‑time.

Demersal trawling is globally a conventional fishing method that involves towing one or more nets along the 
seafloor to catch demersal, or bottom-dwelling, fish and shellfish. This method of fishing is used to target a large 
range of species globally and in the greater North Sea species such as cod (Gadus morhua), haddock (Melano-
grammus aeglefinus), plaice (Pleuronectes platessa), and Nephrops (Nephrops norvegicus). Demersal trawling is 
often considered a controversial fishing method, as it has geotechnical impacts on the seafloor that can affect 
the in- and epifauna present on the seabed and may result in the unintentional capture of non-target species 
and sizes, known as  bycatch1–3.

Extensive efforts have been made to minimize these negative impacts, particularly to improve the selectivity of 
demersal trawls to reduce  bycatch4–6 and develop gear with a reduced benthic  impact7,8. However, such develop-
ments do not address another problem related with demersal trawling, which is having no information about the 
catch composition and catch rates until the end of the trawling operation. Having such information in real-time 
can also contribute to reducing demersal trawling’s negative impacts by ensuring that fishing quotas are fished 
more efficiently and better match the quota compositions  available9,10. In other words, there is a critical lack of 
information as streaming of live catch data from the trawl during fishing would enable the fisher to search for 
more suitable grounds (e.g. avoiding grounds with high presence of juvenile individuals or little commercially 
sized individuals). This could eventually allow for more targeted, efficient, and sustainable fishing by reducing the 
bycatch and optimizing the catch rates by only fishing where it economically and ecologically makes sense to do 
so. This is something which can facilitate substantial improvements for fisheries targeting species like Nephrops 
which are only available to the fishery when they are out of their  burrows11. In addition, the small mesh sizes 
employed in the fishery can lead to high amounts of  discards12. Therefore, the Nephrops-directed fishery requires 
detection of Nephrops catch items for improving its efficiency and sustainability.

Recent studies collecting in-trawl data using underwater cameras make the visual data available onboard 
the vessels in near real-time13. This, however, brings about the necessity of processing the video in real-time to 
report the instantaneous catch compositions and rates in the trawl directly to the operator. Such a catch reporting 
system can provide a more detailed picture of what is taking place during the fishing operation. Subsequently, 
it can be used to make real-time decisions during trawling and eventually open a way for more sustainable and 
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profitable demersal fisheries. State-of-the-art deep learning models developed for computer vision applications 
are suitable tools for automated processing of these videos. In particular, object detection methods such as You 
Only Look Once (YOLO)14 and Faster region-based convolutional neural networks (RCNN)15 can generate 
bounding boxes around the objects of interest in the video frames. The approaches based on deep learning are 
known to be very efficient in various marine-related applications such as recognition of fish  species16, ecosystem 
monitoring using underwater  videos17, and electronic monitoring with onboard  videos18.

There are some studies where the catch rates are automatically determined in underwater videos. For example, 
Allken et al. used an object detection model based on RetinaNet to identify pelagic and mesopelagic  fishes19. For 
counting the fishes, no tracking step was utilized. Instead, a linear regression model was used to estimate total 
catch items given the total number of fish detections in the video. In another study, an instance segmentation 
method, Mask R-CNN, was used to detect round fish and flat fish in addition to Nephrops20. In that study, dif-
ferent image augmentation methods were used to improve the detection and tracking of the fish in the videos. 
However, these works do not include any results regarding the processing speed of the algorithms. In the area 
of underwater image processing, Deep Vision, an in-trawl stereo camera system, has been utilized in some 
recent  studies21–23. The major drawback of that system is that the collected data is stored in a hard drive during 
trawling. Hence, it does not have the feature to stream the data onboard. In addition, the studies using the data 
collected by Deep Vision have objectives like fish size  measurement24, species  identification25, and fish  counting19 
in individual frames with no concern of real-time processing. One recent example where real-time processing 
speed was considered is the approach by Avsar et al.26. The study shows the suitability of the YOLOv4 model for 
real-time counting of Nephrops. However, the results reported in that work are obtained on a high-performance 
computer that is not possible to access remotely during fishing. Therefore, there is a need for evaluating the 
feasibility of deep learning-based object detectors and edge computing hardware for real-time processing of 
underwater videos.

Deep learning models typically require huge amounts of computation to make predictions on the input data. 
Therefore, the delay observed at the output is too large to be considered as real-time processing unless the hard-
ware is sufficiently powerful. One solution to this problem is cloud-based computing where data is transmitted 
from the source to a remote computer and the processing results are sent back to the source through an internet 
connection. However, this solution is not feasible for real-time applications as it will introduce network-related 
delays in the pipeline. An alternative to cloud-based approaches can be utilization of edge devices that are typi-
cally compact sized computing hardware designed to perform data processing at a point closer to the data source. 
Edge devices can address the related requirements simultaneously using their specialized hardware platforms that 
are optimized for deep learning computations while minimizing power consumption. Therefore, they are often 
used in deep learning applications to perform real-time data analysis and decision-making at the point of data 
capture, rather than sending the data to a remote server for  processing27. This can provide several advantages, 
including reduced latency, improved privacy and security, and reduced bandwidth. As a result, utilization of 
edge devices may be critical for real-time processing of the video data onboard and eventually provide fishers 
with instant catch information.

The aim of this work is to investigate if the catch information can be made available to fishers in real-time 
using equipment that can be installed onboard fishing vessels. For this purpose, exhaustive experimentations on 
state-of-the-art object detection models and an edge computing device have been carried out to understand the 
possibility of achieving real-time speed in processing of the underwater footage collected by an in-trawl camera. 
In other words, performances of object detection models have been evaluated for different settings and ways 
to improve the overall processing speed of the video frames have been investigated. At the deployment stage in 
real-world applications, there may be hardware-related constraints such as buffering the inflow of frames and 
decrement in the processing performance of the hardware as a result of heating. Such constraints have not been 
included in the scope of this study which considers processing speeds of the individual frames for determining 
the overall performance.

In particular, Nephrops individuals in the videos are counted to estimate the number of Nephrops caught 
during the trawling operation. For this purpose, two of the most recent YOLO versions, YOLOv7 and YOLOv8, 
are used for detecting the Nephrops instances in the video frames. For tracking the detections in the frames, 
Simple Online Realtime Tracking (SORT) is used and the tracks satisfying certain conditions are considered 
as Nephrops catches. To determine the optimum experimental settings for real-time counting of Nephrops, the 
performances of numerous experimental settings are compared. For training of the object detection models, 
these settings include different optimizers, batch sizes, and input image dimensions. Since the processing speed 
is a critical evaluation criterion in this study, the effects of skipping frames in different amounts on the counting 
performance have been evaluated. The frame skipping operation is expected to cause degradation in the tracking 
performance, but it enhances the overall processing speed. To address this tradeoff, an adaptive frame skipping 
idea, which decides whether to skip the next frame based on the content of the frame, is proposed. Finally, the 
change in the frame processing speed as a result of power consumption limitation of the edge device has been 
observed. It is obvious that limited power consumption means slower processing of data. However, it is important 
to understand the rate of change in the processing speed for specific power ratings because this information is 
useful when the edge device is powered by an external battery. In practice, it is never possible to deliver the results 
in exact real-time (i.e. with no delay) because of the delays introduced at every single step of the pipeline from 
video acquisition to visualization of the results. Therefore, the term real-time used throughout this manuscript 
actually refers to near real-time and any processing speed higher than the frame rate of the video is defined as 
real-time processing. The research questions listed below are addressed in this study:
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• Is it possible to achieve close to real-time processing speed of Nephrops catch count estimation in demersal 
trawl fisheries using the state-of-the-art object detectors and an edge device?

• How much does the frame skipping degrade the counting performance of Nephrops while improving the 
average processing speed?

• Is it possible to improve the frame skipping idea by modifying it to skip frames adaptively?
• What are the training and test settings for YOLO-based object detectors to obtain real-time processing with 

a maximized performance in counting of the Nephrops catches?
• How is the overall processing speed affected when the maximum allowed power consumption of the edge 

device is reduced?

Materials and methods
The dataset
The datasets used in model training and evaluation of the methodology are generated from the videos recorded 
on June 27, 2020, on commercial Nephrops grounds in Skagerrak using an underwater stereo camera  system13,20. 
The YOLO models require images with bounding box annotations for training. Therefore, a dataset of 4044 
images was generated from the videos recorded during the hauls. The images in the dataset were selected accord-
ing to the presence of Nephrops or other catch items. 12.5% of these images were randomly selected as a test set 
and the remaining proportion was increased by 1000 additional images generated using copy-paste augmenta-
tion to form the training  set28.

On the other hand, the ultimate performance assessment of the methodology should be performed on vid-
eos, rather than images, to evaluate overall processing speed and Nephrops counting accuracy. For this purpose, 
five videos that do not have any Nephrops objects in common with those in the training set were selected. Each 
video has a different duration, varying Nephrops ground truth counts, and different object densities, providing 
diverse scenarios that better represent the cases in real  applications29. More information on the videos is available 
in Table 1. Since the performance of the proposed method depends on the Nephrops distribution throughout 
the videos, frame-based details (such as ratios of frames with Nephrops and ranges of frame numbers for each 
Nephrops presence) for the test videos are provided in the Supplementary Information file. The stereo camera 
was set to record videos with a resolution of 1280 × 720 pixels at 60 frames per second (FPS), and only the videos 
from the right camera were processed. For benchmarking purposes, both the image and video datasets are the 
same as those used in Avsar et al.26.

Deep learning models for Nephrops detection
The two very recent versions of YOLO, YOLOv7 and YOLOv8, are used in this study to perform the object detec-
tion task. YOLO uses a single-stage object detection approach, hence the models of YOLO family are known to be 
fast and accurate. In general, YOLO architectures have the major building blocks of backbone, neck, and predic-
tion head. YOLOv7 uses novel computational units in its backbone called extended efficient layer aggregation 
network (E-ELAN)30. E-ELAN units enable improved learning through expand, shuffle, and merge cardinality 
operations in their structure while keeping the original gradient transmission path. In addition, it features module 
re-parameterization meaning that some sets of model weights are averaged for enhancing model performance. 
In the prediction head of YOLOv7, an additional auxiliary head is introduced to assist in the training operation, 
and eventually achieve better predictions by the lead head. The technical details of the experiments and ablation 
studies on ultimate model structure are available in the YOLOv7  paper30. A tiny version of YOLOv7, YOLOv7-
Tiny, was also developed to be used on edge GPU devices. Different from the YOLOv7 model, YOLOv7-Tiny uses 
the Rectified Linear Unit (ReLU) as the activation function and it possesses a smaller number of computational 
layers which yields a reduction in the number of parameters as well.

In the backbone of YOLOv8, a cross-stage partial (CSP) network that allows concatenation of the features 
from different hierarchical levels is used. Usage of anchor boxes with predefined aspect ratios has been a bottle-
neck for both speed and accuracy for YOLO models. YOLOv8 eliminates the need of the anchor boxes at the pre-
diction phase by detecting the object center directly. As another improvement, it involves specific convolutional 
units called C2f modules enabling a better gradient flow during learning. The number of residual connections in 
the Cf2 modules, as well as the number of channels in the intermediate convolutional layers, can be adjusted by 
depth and width multipliers, respectively. In other words, these two hyperparameters are useful for customizing 
the feature extraction capability and the number of parameters of the YOLO model, which makes it possible to 
adjust the processing speed and detection accuracy of the model. Therefore, in the public repository of YOLOv8, 
five different versions have been made available; nano (n), small (s), medium (m), large (l), and extra-large (xl). 

Table 1.  Details of the videos.

Duration (min:sec) Total Nephrops (no.) Nephrops/s FPS

Video 1 00:55 4 0.0727 60

Video 2 01:31 6 0.0659 60

Video 3 07:30 36 0.0800 60

Video 4 08:10 40 0.0816 60

Video 5 06:29 23 0.0591 60
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YOLOv8 can be defined as an improved version of YOLOv5, however, none of these methods have an associated 
paper where the model details are  explained31.

The trained models have been applied to the individual frames of the test videos sequentially to find the 
bounding boxes of the Nephrops objects. The bounding box information is input to the tracking algorithm before 
processing the next frame.

Tracking and counting of the Nephrops
The detection of Nephrops individuals alone is not sufficient to be able to determine catch rates (counts) in 
the trawl. Therefore, these detections should be tracked throughout the video and the tracks satisfying certain 
conditions should be considered as catch items. It was shown earlier, that checking the tracks generated by the 
Simple Online and Real-time Tracking (SORT) algorithm against three different cases related to the bounding 
box coordinates achieves a promising counting  performance26. Therefore, the same strategy has been followed 
in this study. However, for completeness, it is mentioned here as well.

The Nephrops tracks were generated using SORT, a computationally light algorithm for tracking objects in 
2D that uses a Kalman filter to predict the states of the tracks for the next  frame32,33. However, not all the tracks 
account for true Nephrops catches because the SORT algorithm may lose the track of the Nephrops in the video or 
Nephrops may swim in the opposite direction of trawling after floating for while in the field of view of the camera. 
To determine tracks corresponding to true Nephrops catches, a horizontal level is introduced at the top 4/5 of 
the frame height, where the position of the bounding boxes relative to the horizontal level determine whether 
the individual is recorded or not (Fig. 1). In particular, tracks are considered as a true Nephrops catch when one 
of the following conditions are satisfied:

 i. When the bottom of the bounding box crosses the horizontal level.
 ii. When the center of the bounding box crosses the horizontal level.
 iii. When the height of the bounding box is greater than 2/3 of the frame height.

Details of the training and test time settings
Efficient training of the model is essential for accurate detection of the Nephrops individuals. This affects the 
overall assessment of the system performance during testing that involves tracking and counting of the Nephrops 
in the videos. Therefore, numerous settings have been experimented with to understand how the counting per-
formance and the processing speed changes as functions of these settings.

As mentioned earlier, the Nephrops detection step has been tested with YOLOv7 and YOLOv8 models sepa-
rately. In addition to regular YOLOv7, its lightweight version YOLOv7-Tiny has been used for detection. As 
for YOLOv8, five variants with different scales and computational loads have been used. As a result, a total of 
seven models are involved in the detection step. It is possible to train these models using different optimizers, 
batch sizes, and image dimensions, each of which influences the training performance and consequently the 
weights of the output model. Stochastic gradient descent (SGD)34 and  Adam35 are the two optimizer functions 
considered. Batches of 32 or 64 images were randomly generated for the model training by resizing the input 
images to dimensions 256, 416, or 640 pixels. These options allowed for obtaining 12 different combinations for 
training settings and all seven models were trained with each of these combinations, which amounts to training 
of 84 different models. The training operation continued for 200 epochs and the weights achieving the highest 
mean average precision were used during the test phase. For the remaining model parameters, default settings 
and values provided in the related repositories are  used31,36.

During the testing of the models, the videos mentioned in Table 1 were processed and their counting per-
formance assessed together with the frame processing speed. The processing of the videos was accomplished by 

Figure 1.  A sample processed frame showing the horizontal level (red line), bounding box and some 
information about the status of the processing.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9481  | https://doi.org/10.1038/s41598-024-60255-8

www.nature.com/scientificreports/

dealing with the frames individually (i.e., one by one with a batch size of 1 frame). Prediction of the bounding 
boxes in the frames was done with a confidence threshold value of 0.5. Since the frame processing speed has a 
critical value for this study, improvements in processing speed have been prioritized at a cost of sacrificing the 
correct counts to some extent. For this purpose, four different frame skipping ideas have been implemented and 
their effects on the Nephrops counting performance and average processing speed evaluated. Three of the frame 
skipping approaches skip some intermediate frames according to predefined settings. The fourth one uses the 
detection output of the model to determine whether to process or skip the next frames. Therefore, the fourth 
approach is called adaptive frame skipping. Details of these frame skipping ideas are given below and illustrated 
in Fig. 2.

 i. Frame skipping #1 (FS#1) Skip every third frame and process the others.
 ii. Frame skipping #2 (FS#2) Skip every second frame and process the others.
 iii. Frame skipping #3 (FS#3) Skip every second and third frames and process the others.
 iv. Adaptive frame skipping: Determine whether to process or skip the next frames according to the content 

of the current frame. If there are no Nephrops in the current frame, skip the next two frames and process 
the third one. Else, process the next two frames. Check the presence of Nephrops in every processed frame 
and implement the same condition until the end of the video.

In particular, the first three frame skipping approaches are expected to affect the overall processing speed in 
a positive way while degrading the counting performance to some degree. The purpose of the adaptive frame 
skipping is to resolve this issue by processing the frames more often whenever a Nephrops is detected in the 
video. As a result, it is aimed to achieve higher overall FPS values and counting performance simultaneously.

In addition to the counting performance and the processing speed, it is also important to consider the power 
consumption of the edge device because such hardware may be required to run in remote locations with limited 
power resources. In the case of Nephrops fisheries, the next design stage may be to process the videos underwater 
without streaming them to an onboard station. This implies powering the edge device with an external battery 
that should last at least until the end of the haul (typical haul durations in the Nephrops fisheries range from 4 to 
6 h). Therefore, optimizing the power consumption is necessary for effective utilization of the power resources 
and determine the battery requirements. In order to understand how the lowered power consumption of the 
edge device affects the frame processing speed, the same experiments have been repeated after introducing a 
restriction on the power consumption of the edge device. For this purpose, the edge device was first used in 
max power mode which may consume up to 60  W37. Next, an upper limit of 50 W was introduced for allowed 
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Figure 2.  Illustration of frame skipping approaches. Red and green boxes represent skipped and processed 
frames, respectively.
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power consumption and changes in the frame processing speed observed. Note that such a limitation does not 
affect the counting performance.

In summary, seven different models are included in this study, where each model has been trained with vari-
ous combinations of optimizers, input image sizes, and batch sizes. During testing, four different frame skipping 
ideas were implemented together with the case where all frames were processed (i.e. no frame skipping). In 
addition, the same experiments were performed after changing the power mode of the edge device.

Specifications of the coding environments
For training of the models, a Tesla A100 GPU with 40 GB RAM that is available at high performance computing 
clusters of Technical University of Denmark was used together with cudnn v8.2.0.53 and CUDA v11.338. The 
training codes were written with Python v3.9.11 utilizing PyTorch framework v1.12.1 and torchvision v0.13.1.

All the trained model files were transferred to NVIDIA Jetson AGX Orin developer kit, the state-of-the-art 
edge device used for performing the experiments involved in this study. This is a single board computer optimized 
for deep learning applications containing 64 GB memory, 2048-core NVIDIA Ampere architecture GPU with 
64 Tensor Cores operating at 1.3 GHz, and 12-core ArmCortex CPU with a maximum frequency of 2.2  GHz39. 
On the edge device, all the codes were written in Python v3.8.10 using PyTorch v1.14.0 and torchvision v0.15.0. 
The GPU support was accomplished through cudnn v8.6.0 and CUDA v11.4.19.

Performance evaluation metrics
The performance metrics considered within the experiments are categorized under two groups; counting per-
formance and processing speed. For evaluating the counting performance, each Nephrops track counted by the 
algorithm is labelled as either a true positive (TP) track or a false positive (FP) track after comparing them with 
the ground truth (GT) tracks. Furthermore, those Nephrops that are visible in the video but not counted by the 
algorithm are labelled as false negative (FN) tracks. The number of true positive tracks is important to assess 
the rate of the correctly counted Nephrops. Therefore, the first counting performance metric, namely the correct 
count rate, is defined as

False positive and false negative tracks are two important types of counts that influence the overall perfor-
mance of a method. However, these numbers are not used when calculating the correct count rate. Therefore, the 
F-score that considers true and false counts together is calculated as the second metric using the formula below.

As for the processing speed evaluation, the time taken to process each individual frame is recorded and its 
reciprocal is calculated as the processing speed in frames per second (FPS). The total processing time for an 
individual frame contains durations for detection and tracking together. Minimum, maximum, and mean FPS 
values for all the frames in a test video are reported to determine the suitability of the method for real-time 
applications. In case of frame skipping, the FPS value of an individual frame is multiplied by a factor equal to 
one more than the number of skipped frames and the result of this multiplication is recorded as the FPS value for 
that frame. For instance, if it takes 50ms for a frame to be processed with FS#2, the corresponding FPS value for 
that frame will be calculated as 40. This value is obtained by multiplying 20, the original FPS value, by 2 because 
only one frame is skipped before the processed frames.

Intermediate metrics, such as detection performance of the YOLO models on the test set and tracking per-
formance of the SORT algorithm, have not been considered in this study because they are not directly reflecting 
counting performance. In addition, these details are already provided in an earlier study where other versions 
of YOLO were  used26.

Results
Due to the diversity in the training-time and testing-time settings, a large amount of performance metrics were 
produced. These results have been collected under certain topics and presented in the following subsections to 
enable a convenient discussion. In particular, the models generated by different training-time settings have been 
compared for the case when there is no frame skipping (“Overview of the models in terms of counting perfor-
mance and processing speed” and “Quantitative results for selected models” section). The effects of changing 
the frame skipping options and the power mode of the edge device are presented separately (“Performance with 
frame skipping” section).

Overview of the models in terms of counting performance and processing speed
It is possible to identify the most suitable training settings by observing the performances of the trained models. 
For this purpose, results related with different optimizers, input image sizes, and batch sizes have been sum-
marized by calculating their mean and standard deviations over all trained models for each of the seven YOLO 
models. For example, when comparing the SGD and Adam optimizers, the average correct count rates for all 
YOLOv8n models trained using SGD and Adam are calculated separately. This is repeated for all models, and 
the standard deviations are computed in the same way. In order to compare effects of the input image sizes and 
batch sizes on the performance, the same approach is used for different image sizes and batch sizes. This approach 
allows for generating a number of charts that summarize, enable visual comparison, and generate an overview 

Correct Count Rate = 100×
TP

GT
.

F-score =
TP

TP + 0.5× (FP + FN)
.
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of the results. For this purpose, six bar charts have been generated showing the mean and standard deviation of 
the correct count rates (Fig. 3a–c) and F-scores (Fig. 3d–f) for SGD and Adam optimizers, input image dimen-
sions of 256, 416, and 640, and batch sizes of 32 and 64. Since the input image size is the only setting that affects 
the prediction speed of the model, FPS values for comparing the image sizes are provided separately (Fig. 4).

Quantitative results for selected models
As a result of the experiments, an extensive number of performance measures have been generated. For simplicity 
and clarity, those models that perform best are investigated further. According to the results given in Fig. 3a–c, a 
training scheme involving Adam optimizer with an input image dimension of 416 pixels and batches of 32 images 
achieves high counting performance in general. As for the speed performance, YOLOv8n, YOLOv8s, YOLOv8m, 
and YOLOv7-Tiny are the four fastest model types, with no significant difference in counting performance than 
those obtained by the other three models (Figs. 3, 4). Therefore, quantitative performances of these four models 
trained with the aforementioned settings are provided (Table 2). In particular, the number of Nephrops counted 
by each of the models, together with the number of true positive, false positive, and false negative tracks are 
reported for each individual test videos (Table 2). These numbers allow for computation of counting performance 
metrics using the formulae given in “Performance evaluation metrics” section.

These models are also compared in terms of their related frame processing speed, which is a critical measure 
for the intended real-time operation (Table 3). On average, the fastest and slowest models are YOLOv8s and 
YOLOv7-Tiny, respectively. The majority of (68 out of 84) the models are capable of achieving counting perfor-
mance above 80%, which can be considered as providing sufficiently valuable information to the vessel during 
fishing. However, the average processing speed of the frames are not high enough for delivering the information 

Figure 3.  Mean and standard deviations of correct count rates (a–c) and F-scores (d–f) for different optimizers 
(a,d), input image dimensions (b,e), and batch sizes (c,f).

Figure 4.  Mean and standard deviations of FPS values for different image sizes and YOLO models.
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in real time (Table 3). Therefore, the same experiments have been carried out by skipping frames in different 
amounts as explained in “Details of the training and test time settings” section.

Performance with frame skipping
The three frame skipping approaches other than adaptive frame skipping use predefined intervals for selecting 
which frames to process. In other words, the rate of increment in the expected FPS value may be calculated to 
some extent when one of FS#1, FS#2, and FS#3 is applied. On the other hand, this is not the case for adaptive 
frame skipping in which the skipping decision is made based on the content of the frame. Thus, results associated 
with the adaptive frame skipping are presented separately from the others. The changes in the correct count rates 
and F-scores are illustrated in Fig. 5, where the four dots in each line represent the cases for no frame skipping, 
FS#1, FS#2, and FS#3 from left to right on the horizontal axis.

Different from skipping the frames at a predefined rate, adaptive frame skipping uses the Nephrops presence 
information to determine whether to process more frames. Therefore, it helps improve the overall processing 
speed when there are intervals with no Nephrops detection. In order to illustrate the effectiveness of adaptive 

Table 2.  Counting performances of the selected models trained with Adam optimizer, 416 pixels of input 
image dimension and batches of 32 images.

Video-1 Video-2 Video-3 Video-4 Video-5 Total

Ground truth 4 6 36 40 23 109

YOLOv8n

 Output 4 4 36 22 23 89

 True positives 3 4 32 19 20 78

 False positives 1 0 4 3 3 11

 False negatives 1 2 4 21 3 31

 Correct count rate (%) 75.00 66.66 88.89 47.50 86.96 71.56

 F-score 0.75 0.80 0.89 0.61 0.87 0.79

YOLOv8s

 Output 3 4 36 39 24 106

 True positives 3 4 33 31 22 93

 False positives 0 0 3 8 2 13

 False negatives 1 2 3 9 1 16

 Correct count rate (%) 75.00 66.67 91.67 77.50 95.65 85.32

 F-score 0.86 0.80 0.92 0.78 0.94 0.87

YOLOv8m

 Output 3 4 36 33 22 98

 True positives 3 4 32 27 21 87

 False positives 0 0 4 6 1 11

 False negatives 1 2 4 13 2 22

 Correct count rate (%) 75.00 66.67 88.89 67.50 91.30 79.82

 F-score 0.86 0.80 0.89 0.74 0.93 0.84

YOLOv7-Tiny

 Output 4 5 41 40 24 114

 True positives 3 4 34 30 20 91

 False positives 1 1 7 10 4 23

 False negatives 1 2 2 10 3 18

 Correct count rate (%) 75.00 66.67 94.44 75.00 86.96 83.49

 F-score 0.75 0.73 0.88 0.75 0.85 0.82

Table 3.  Frame processing speeds of the selected models in frames per second (mean[min–max]). Best values 
are in bold.

Video-1 Video-2 Video-3 Video-4 Video-5 Average

YOLOv8n 36.49 [20–42] 36.26 [30–39] 36.94 [23–41] 36.73 [27–42] 37.08 [30–40] 36.70 [26.0–40.8]

YOLOv8s 36.83 [22–42] 36.32 [32–39] 37.16 [27–42] 37.29 [26–43] 37.84 [29–43] 37.09 [27.2–41.8]

YOLOv8m 30.33 [22–32] 30.75 [24–34] 31.19 [22–35] 31.15 [24–33] 31.15 [25–33] 30.91 [19.4–33.4]

YOLOv7-Tiny 28.12 [17–30] 28.00 [18–30] 28.15 [21–31] 28.25 [22–31] 28.24 [20–31] 28.15 [19.6–30.6]
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frame skipping, the changes in average FPS values and the counting performances for cases with and without 
frame skipping are given in Table 4.

Processing speed under constrained power consumption
Introducing an upper limit for power consumption of the edge device affects only the processing speed of the 
frames. As a result of the experiments, it was observed that setting the power mode to 50 W causes a reduction in 
the average processing speed between 25 and 30%. In general, the reduction rate is higher for the frame skipping 
cases with higher amounts of processed frames. In other words, the higher the number of processed frames, the 
more the overall processing speed is affected by the power limitations.

Rate of processed frames
The total number of processed frames is the main factor affecting the reported FPS values and this number can-
not be predicted in case of adaptive frame skipping. Therefore, the total numbers of processed frames, frames 
with Nephrops detections, and skipped frames are provided to enable a more detailed benchmarking across the 
object detection models (Table 5).

Figure 5.  FPS values versus correct count rates (a) and F-scores (b) for different frame skipping amounts s. 
Dots from left to right correspond to cases for no frame skipping, FS#1, FS#2, and FS#3, respectively. The real-
time threshold is denoted by horizontal red line at 60 FPS.
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Discussion
This study exhaustively evaluates numerous training and test time settings for a Nephrops counting algorithm 
utilizing state-of-the-art object detectors and demonstrates that is it possible to provide automatically processed 
catch information to fishers in real-time using hardware that realistically can be used onboard commercial fishing 
vessels. The developed image processing system can be transferred to other species and demersal trawl fisheries 
and can be further developed to handle all relevant species, wanted or unwanted that may enter a given trawl.

Comparison of object detection models and their settings
All of the seven models in this study were trained for different combinations of the optimizer, batch size, and 
input image dimension. Instead of providing the results for every single model, an overview of the results is pre-
sented for different groups of the training settings (Fig. 3). This allows for summarizing the results and making 

Table 4.  Effects of different frame skipping approaches on speed and counting performances for four YOLO 
models. The red and green colors denote the non-real-time and real-time processing speeds, respectively. Best 
values are shown in bold.

No FS FS#1 FS#2 FS#3 Adap�ve FS

YO
LO

v8
n Average FPS 36.70 54.91 71.52 106.36 117.80

Correct Count Rate (%) 71.56 63.30 59.63 49.54 67.89

F-Score 0.79 0.74 0.70 0.64 0.77

YO
LO

v8
s Average FPS 37.09 54.74 72.01 107.05 97.47

Correct Count Rate (%) 85.32 77.06 71.56 51.38 82.57

F-Score 0.87 0.82 0.80 0.64 0.86
YO

LO
v8

m

Average FPS 30.91 45.71 60.39 89.80 81.24

Correct Count Rate (%) 79.82 72.48 69.72 55.96 78.90

F-Score 0.84 0.80 0.77 0.67 0.84

YO
LO

v7
-T

in
y Average FPS 28.15 42.23 56.21 83.90 74.71

Correct Count Rate (%) 83.49 75.23 72.48 58.72 80.73

F-Score 0.82 0.77 0.77 0.71 0.81

Table 5.  Numbers of processed frames, frames with Nephrops detections, and skipped frames for object 
detection models with adaptive frame skipping applied.

Video-1 Video-2 Video-3 Video-4 Video-5

YOLOv8n

 No of processed frames 1285 2003 9742 10,327 8348

 No of frames with Nephrops detections 248 236 1035 706 797

 No of skipped frames 2065 3504 17,281 19,080 15,022

YOLOv8s

 No of processed frames 1287 2007 9873 10,722 8392

 No of frames with Nephrops detections 250 245 1208 1287 859

 No of skipped frames 2063 3500 17,150 18,685 14,978

YOLOv8m

 No of processed frames 1289 2007 9865 10,628 8385

 No of frames with Nephrops detections 254 243 1213 1164 858

 No of skipped frames 2061 3500 17,158 18,779 14,985

YOLOv7-Tiny

 No of processed frames 1294 2002 9882 10,602 8395

 No of frames with Nephrops detections 258 237 1224 1095 872

 No of skipped frames 2056 3505 17,141 18,805 14,975



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9481  | https://doi.org/10.1038/s41598-024-60255-8

www.nature.com/scientificreports/

comparisons between the training settings to determine the most suitable ones. According to Fig. 3, F-score 
is not an obvious distinguishing factor for counting performance because there is not a significant difference 
between the F-score values in the different experiments. Comparing the correct count rates, the other counting 
performance metric, training with the Adam optimizer achieves a better result than SGD in most of the models. 
In addition, the highest correct count rate and F-score values are obtained with the Adam optimizer, image 
dimensions of 416 pixels and batch size of 32 images. Therefore, it is possible to conclude that this is a suitable 
combination for the Nephrops counting task, and the models with these settings have been investigated in detail 
for the following experiments.

It is also possible to perform model-wise comparison using the plots in Fig. 3. On average, the YOLOv7-Tiny 
model has the best counting performance, but the highest performance overall is achieved by the YOLOv8s 
model. This means that usage of large and computationally heavy models does not necessarily yield better count-
ing performance in the videos. Such large models may generally be better at making predictions on single images, 
however within the overall algorithm, they may output some false positive detections due to partial occlusions of 
the objects. In addition, larger amounts of training epochs and training images may be more useful for a better 
learning of the larger models. Besides, larger models have longer processing duration of the frames, which is 
not desired for the current application.

The model type and input image size are the two major factors affecting the overall processing speed, and their 
associated performances can be compared using the bar graph in Fig. 4. In general, the combination of smaller 
images and smaller models achieve higher FPS values. However, there are some occasions where the FPS values 
are higher for larger images. Therefore, it is not possible to expect a negative correlation between them all the 
time. For a certain model setting, the FPS value and the counting performance may be considered regardless of 
the setting for input image size.

Based on the two types of performance metrics, four fast and accurate models are selected and their quan-
titative performances are provided in Tables 2 and 3. The differences in the model performances can be seen 
precisely in these tables. Among the selected models, YOLOv8s model has the best correct count rate, F-score, 
and FPS value. Both counting performance metrics of YOLOv8s model outperform those obtained by YOLOv4 
which was reported in an earlier  study26. However, the processing speed averaged over all the test videos is 37.09 
FPS, a value that cannot be considered as real-time for the videos considered in this study. As a result, using 
the state-of-the-art abject detectors on an edge device without any speed enhancement step, it is not possible to 
achieve real-time processing.

In the related literature, there are no efforts for real-time processing of the underwater videos for catch 
counting in certain fisheries. Yet, there are some other studies aiming to achieve faster speed in the processing of 
underwater images. For example, Jahanbakht et al., proposed a lightweight convolutional neural network model 
for segmentation of the fish on an edge computing device. Even though their model introduces improvements, 
the associated processing speed is below 5 FPS, a value that cannot be considered real-time27. In another study, 
Soom et al., employed a binary classification model on some hardware with changing computational power to 
determine presence of  fish40. They utilized deep learning models to recognize the environmental conditions 
and frame differencing to detect the foreground objects in the videos. The proposed model reached a maximum 
processing speed of 45 FPS. These studies do not focus on recognition of a specific fish species which prevents 
it from being evaluated for a specific fishery.

Impacts of frame skipping
For the algorithm to be considered as real-time, its corresponding average frame processing speed should be 
greater than or equal to the frame rate of the input video. Thus, all these models are not capable of producing 
results in real-time on the edge device when the entire frame sequences are processed (i.e., no frame skipping 
is implemented). In other words, when all the frames in a given video are processed using the object detection 
models, the overall delay becomes too much that the catch items cannot be counted in real-time. As a solution 
to this, four frame skipping ideas were implemented and their respective effects on the performance values 
explored. It is expected that introducing frame skipping will degrade the counting performance while achieving 
a faster overall processing. This is shown in Fig. 5 by illustrating the changes in correct count rate and F-score 
for three frame skipping approaches (FS#1, FS#2, FS#3) together with the case in which all frames are processed. 
As expected, an increase in the number of frames skipped results in a decrease in counting performance while 
increasing the average FPS value. None of the models can achieve sufficiently high FPS when FS#1 is applied. 
Also, the average decrement percentages in the correct count rates and F-scores for FS#1 are 10.75% and 5.74%, 
respectively. For FS#2, real-time FPS values are obtained only with YOLOv8n, YOLOv8s YOLOv8m models at 
moderate counting performances. The average rates of decrement in the counting performance in case of FS#2 
are 14.66% for correct count rate and 8.46% for F-score. Despite the very high FPS values in case of FS#3, the 
correct count rates drop below 60% for all the models which cannot be accepted as a sufficiently high value for 
deployment.

The trade-off mentioned above has been addressed by introducing adaptive frame skipping that allows more 
frequent processing of the frames whenever a Nephrops is detected in the video. In other words, more frames 
are skipped in the parts of the video with no Nephrops. This property enables achieving higher FPS values and 
counting performance simultaneously. The performance metrics related with all the frame skipping approaches 
are given in Table 4. Obviously, adaptive frame skipping can considerably improve the FPS value while main-
taining the counting performance at relatively high levels. In particular, adaptive frame skipping together with 
YOLOv8s model can increase speed up the processing nearly 2.6 times and still achieve a correct count rate 
of 82.57% and an F-score of 0.86. All in all, YOLOv8s model featuring frame skipping and trained with Adam 
optimizer, image dimensions of 416 pixels, and batch size of 32 achieves the maximum counting performance 
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among all the experimented models and settings. Based on the results obtained, adaptive frame skipping is the 
most suitable option for the given test videos. The adaptive frame skipping approach is very useful when there 
are intervals in the video with no Nephrops. On the other hand, as the frequency of Nephrops instances increase, 
less frames will be skipped, causing the FPS value to be similar to the no frame skipping case.

Design and application possibilities for Nephrops fisheries
When fishing for Nephrops, the limited information on catches in real-time can result in relatively low catch vol-
umes. This lack of information also reduces the sustainability of the fishery, where carbon emissions and seabed 
disturbances can be unnecessarily high due to poor catch rates. Therefore, providing real-time information about 
catch rates during fishing is very important for improving the sustainability of fisheries, where such knowledge 
may be used as a decision tool for optimizing the fishing  operation26. In other words, such information enables 
the fishers to improve their targeting behavior, consequently improving catch rates and reducing unnecessary 
seabed disturbances and carbon emissions.

The automated processing of the videos collected using in-trawl cameras may be accomplished by deep 
learning-based object detection models. However, such models require computationally powerful hardware to 
process the video frames in real-time. In addition, this hardware typically consumes a large amount of space and 
electrical energy. Due to the resource-related restrictions on board fishing vessels, such constraints are not easily 
resolved. Furthermore, an in-trawl processing system, where video frames are processed underwater without 
streaming them up to the vessel, will have tighter restrictions. Therefore, it is critical to produce catch statistics, 
e.g. Nephrops catch counts, in real-time while minimizing space and power consumption. Within the scope of 
this this study, these requirements have been addressed by using an edge device optimized for deep learning 
applications. The results of the comprehensive experiments conducted on the edge device have revealed the 
optimal model, its relevant settings, possibility of real-time operation, even under restricted power consumption.

In this context, the change in processing speed mentioned in “Processing speed under constrained power 
consumption” section provides valuable information. In particular, reducing the maximum allowed power con-
sumption from 60 to 50 W causes a maximum decrement rate of 30%. This implies that if an average FPS value 
of around 90 is obtained in the max power mode, real-time processing can still be achieved when the power 
consumption of the device is restricted. This property is particularly useful in cases where the Nephrops counting 
system is expected to be powered by external batteries with limited resources.

Future improvements in the algorithm
The adaptive frame skipping starts processing consecutive frames whenever a Nephrops is detected. Hence, the 
requirement of more processing emerges intermittently depending on the presence of Nephrops. This can be a 
disadvantage when the Nephrops instances are distributed uniformly throughout the video or where the pres-
ence of Nephrops is high. However, in case of long intervals with no Nephrops instances, adaptive frame skipping 
works sufficiently fast and accurate. If extensive delays are observed in processing when adaptive frame skipping 
is being used, a workaround can be planned for expediting the processing speed. This may include switching 
to a faster but relatively inaccurate model or skipping more frames. The processing speed at various temporal 
densities of Nephrops in the videos should be investigated in the future for understanding the system behavior 
under various real-world scenarios.

Since demersal fisheries typically target multiple species, a deep learning model capable of detecting other 
species than Nephrops would be useful for future applications. In that case, a delay in processing may be intro-
duced in the detection and tracking steps because of the increased number of classes.

During their initial development, the object detection models used in this study are benchmarked on Micro-
soft Common Objects in Context (MS COCO) dataset that contains objects from 80 different classes. However, 
this study aims to detect only Nephrops instances. Despite the accurate detection of Nephrops individuals with 
the original YOLO models, these models may be revised and modified to reduce their computational needs and 
still be appropriate for Nephrops detection. Such an updated model may generate the output in a shorter time 
and help achieve real-time processing with reduced power consumption.

Conclusion
This study includes detailed experiments on searching for an appropriate object detection model and its train-
ing settings for automatically counting the Nephrops catch items in real time during demersal trawling. For this 
purpose, the videos collected using an in-trawl camera are processed on an edge device that is suitable to be used 
on board fishing vessels. Seven different object detection models with varying complexities have been involved 
in the experiments and four frame skipping approaches have been analyzed to achieve real-time processing 
speeds with high counting performance. It has been observed that the highest correct count rate is achieved 
when YOLOv8s model is trained using Adam optimizer, input image size of 416, and batch size of 32. However, 
there are other models with respective settings that may produce similar outputs in real-time while achiev-
ing satisfactory counting performance. In addition, application of the adaptive frame skipping has introduced 
significant improvement in average processing speed at an expense of minor degradation in correct count rate.

The results indicate that the proposed method can be used for real-world applications and make demersal 
trawling in general and for current studies results the Nephrops fishery a more informed and targeted operation 
and make trawls as a fishing method more sustainable. In particular, this study may help mitigating some of the 
fundamental problems associated with demersal trawl fisheries such as seabed impact, excessive fuel emissions, 
and high amounts of bycatch. Therefore, the proposed approach is a promising tool for improving the sustain-
ability and transparency of demersal trawling for current and future trawl fisheries.
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Data availability
Publicly available datasets were analyzed in this study. This data can be found here: https:// doi. org/ 10. 11583/ 
DTU. 21769 442.
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