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The exponential growth of data across various medical domains has generated a substantial demand 
for techniques to analyze multimodal big data. This demand is particularly pronounced in fields such 
as computational pathology due to the diverse nature of the tissue. Cross‑modal retrieval aims to 
identify a common latent space where different modalities, such as image‑text pairs, exhibit close 
alignment. The primary challenge, however, often lies in the representation of tissue features. While 
language models can be trained relatively easily, visual models frequently struggle due to the scarcity 
of labeled data. To address this issue, the innovative concept of harmonization has been introduced, 
extending the learning scheme distillation without supervision, known as DINO. The harmonization 
of scale refines the DINO paradigm through a novel patching approach, overcoming the complexities 
posed by gigapixel whole slide images in digital pathology. Experiments conducted on diverse 
datasets have demonstrated that the proposed approach significantly enhances cross‑modal retrieval 
in tissue imaging. Moreover, it exhibits vast potential for other fields that rely on gigapixel imaging.

The rapid growth in data volume and variety, coupled with deep learning advancements, has led to real-world 
applications relying on integrating multi-modal  data1,2. These applications demand comprehensive data from 
various sources, but current models typically handle only one data type, limiting their versatility. Meeting the 
rising need for multi-modal models is crucial in academia and industry. These models process diverse data, 
enhancing decision-making and efficiency across sectors.

Single-modal search, e.g., image search, has been approached via search engines like  Yottixel3,4. Multimodal 
learning integrates data from various types like text, images, and  audio5. It aims to comprehend and link diverse 
data, providing comprehensive insights by merging different modes. Cross-modal retrieval, a specialized form 
of multimodal learning, fetches entities from one modality using a query from another, presenting unique chal-
lenges in bridging semantic gaps and managing inconsistencies across modalities. Both multimodal learning and 
cross-modal retrieval contribute to understanding and integrating diverse data for decision-making. Cross-modal 
retrieval, gaining popularity, uncovers connections between data from different sources, crucial for applications 
like medical diagnosis, recommendations, and multimedia search engines.

Designing cross-modal networks is challenging as they must learn inter-modal correspondences and indi-
vidual modality  representations6,7. Images and text are common modalities, often conveying complementary 
information. Cross-modal retrieval models leveraging this data offer nuanced contexts, enhancing information 
retrieval. These models integrate diverse data sources, enabling generalizable problem representations, improving 
decision-making in various tasks. Extracting meaningful embeddings from sparsely labeled data, especially in 
complex domains like medicine, is crucial. Cross-modal networks that learn from diverse data sources without 
heavy reliance on labeled data have transformative potential. In healthcare, these models could integrate diverse 
patient data, aiding comprehensive understanding and informed decision-making, revolutionizing patient care.

Cross-modality retrieval tasks, involving matching descriptions to images or vice versa, are a recent area of 
study. Early efforts like  MDNet8 mapped images to diagnostic reports but faced limitations with small private 
datasets. Gamper et al.9 developed the ARCH dataset, utilizing medical articles and textbooks, amassing 7000+ 
image-caption pairs. Other studies explored similar tasks in pathology using innovative techniques, leveraging 
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large-scale internet data. However, skepticism arises due to potential data quality issues. Despite recent advance-
ments, models trained on high-quality datasets can show a better performance in some specific  tasks10 .

Cross-modal data retrieval and fusion enhance decision-making in diverse fields. Robust models that handle 
various data types are crucial as data volume rises. Advancements in cross-modal retrieval are essential to fully 
leverage multi-modal data, ensuring improved outcomes in real-world scenarios.

The common solution to understand the relationship between image and text is to map the visual semantic 
 embeddings11,12 of an image and the corresponding words, phrases, sentences into a common latent embedding 
space11,13–18. In these methods, the goal is generally to find a common space in which the corresponding repre-
sentations of image-text pairs are as close as possible, hence making the recognition of their relationship easier.

To gain a better understanding of the similarity between the two modalities, recent studies investigate the use 
of the attention mechanism. The term “attention” refers to a process that simulates cognitive attention to highlight 
the most relevant features of the input data while fading the rest. Attention-based topologies assume that the 
model, generally an artificial neural network, should dedicate additional computational resources to that minor 
but significant portion of the data. Which part of the data is more significant than others is determined by the 
context and can be learned by gradient descent on training  data19. The majority of studies in this category have 
employed cross-attention mechanisms, which allow the model to selectively attend to the parts of an instance 
that are relevant to the context from the other  modal7,20,21. Some methods attempt to refine their representation 
regarding the information of the other  modality6.

Nonetheless, these methods may not be able to find the optimal representation due to the semantic gap 
between the representation of images and texts. Moreover, ambiguity in texts is a common challenge posing 
a learning obstacle to the model if it uses an injective  embedding21. Aside from that, humans use a hierarchi-
cal structure to organize and store diverse semantic concepts. However, the majority of the currently available 
approaches group semantics together in a consistent  manner7,21. An approach for observing semantic concepts 
in a hierarchical framework that captures low-level features first and, subsequently, higher-level features could 
mimic human intuition more realistically. Another challenge, as mentioned above, is the difficulty and expense 
associated with obtaining labeled data. This makes extracting meaningful embeddings a considerable hurdle. 
To tackle this issue, some methods have explored the self-supervised learning  paradigm22. The majority of 
these approaches define a pretext task based on unlabeled inputs to generate informative and comprehensible 
 representations23,24. However, designing these pretext tasks requires a different approach due to the distinct nature 
of histopathology data and its formatting as Whole Slide Image (WSI).

This study addresses the mentioned problems by introducing an iterative regime that not only captures related 
information from the other modality but also extracts the most significant attributes by considering their context. 
This approach enables the model to simultaneously capture information relevant to both modalities, leading to 
the extraction of richer latent embeddings for each instance. Moreover, training the model iteratively allows it to 
gradually capture higher-level features based on those acquired in previous steps. Refining the extracted features 
through the intersection between modalities further enhances the model’s representations.

To overcome the obstacle of labelled data scarcity, particularly for gigapixel images, this study proposes a 
self-supervised approach utilizing a novel patching scheme. This scheme aims to adapt to the intrinsic features 
of WSI and assist the model in generating more robust embeddings for the visual component. The entire model 
is trained using an end-to-end regime, which improves the accuracy and efficiency of the  model25,26.

Building on the foundation of addressing these critical issues, this study introduces a concept that merges SSL 
techniques, specifically leveraging the DINO  approach27, with a novel patch sampling strategy that is uniquely 
suited for WSIs. This strategy is further integrated with cross-modality retrieval network and the unique design 
of it enables the capability of an end-to-end training paradigm.

Extensive experiments have been carried out on public datasets including  PatchGastricADC2228 and 
 LC2500029, as well as a private dataset from GRH (Grand River Hospital, Kitchener, ON) to evaluate the effective-
ness of the proposed method. these datasets consist of histopathology images along with their corresponding cap-
tions/reports/primary diagnoses, which are extracted from histopathology textbooks, the PubMed  repository30, 
originate from clinical practice in GRH case.

Results
A comprehensive evaluation of the proposed method in comparison to alternative approaches was undertaken by 
applying two strategies tailored to the specific nature of the datasets. The datasets in question, namely GRH and 
LC25000, encompass images that have been classified according to primary diagnosis and can serve as a definitive 
classification criterion. This can help us to compare the proposed approach with other models like  KimiaNet31. 
As a result, in the conducted experiments on these datasets, the primary diagnosis was utilized as a descriptor 
for the proposed method, and to facilitate a fair comparison with other techniques without compromising the 
task’s generality, the primary diagnosis was mapped into labels compatible with other classification approaches.

Moreover, the proposed method was demonstrated to function as a bi-directional retriever for both GRH and 
LC25000 datasets by feeding the primary diagnosis as a description into the model. This allowed an evaluation 
of its performance in different settings, offering a more robust and comprehensive assessment of its efficiency 
and applicability.

In relation to the PatchGastricADC22 dataset, which is characterized by paired image-description entries at 
the WSI level, the provided descriptions were employed as text inputs. This was informed by the unique structure 
and specific attributes of this dataset, which is amenable to a deeper level of analysis courtesy of the substantial 
data encapsulated within the descriptions. Consequently, other existing cross-modal retrieval methodologies 
were used as points of reference for comparison and evaluation. This approach ensured that the evaluation bench-
mark remained constant, facilitating a rigorous comparison rooted in the specific characteristics of the dataset.
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The versatility and adaptability of the proposed method to different dataset configurations were highlighted, 
further validating its utility in various machine-learning scenarios.

In the subsequent sections, a thorough delineation of the procedural specifics associated with the methodol-
ogy’s implementation is provided, in addition to an in-depth presentation of the experimental results derived 
from each of the datasets. The aim of these discussions is to illuminate the complexities of the proposed approach, 
underscore its practical utility, and confirm its resilience when applied to diverse datasets and configurations.

GRH benchmark dataset
To conduct experiments on the GRH dataset which contains 173 WSIs , obtained from a wide-ranging patient 
population diagnosed with an array of breast cancer subtypes at the GRH. These primary diagnoses are classified 
into 22 distinct categories, marking the broad spectrum of breast cancer sub types. Rigorous pre-processing steps 
were employed, where patches of size 448 by 448 pixels in 20X magnification were extracted from WSIs based 
on Figure 9. The student model was trained using six stringent data augmentation techniques ( τH ), whereas the 
teacher model had a relatively relaxed regiment with two less intensive augmentations ( τM) from the same patch 
as will be described in the patching Section. Regardless of the specific augmentation technique implemented, 
the final processed image was adjusted to fit a uniform size of 224 by 224 pixels. Padding was added when nec-
essary to ensure a consistent dimension across all images. In the cross-modal network the center crop of each 
patch has been selected as the input to the model. A similar augmentation set as τM is applied on this input for 
uniformity. The suite of augmentations applied to this dataset encompasses a range of transformations. These 
include Random Crop, Random Vertical and Horizontal Flip randomly at p = 0.5 , as well as Color Jitter, which 
further encompasses changes in Brightness, Contrast, Saturation, and Hue. The intensity of these augmentations 
is strategically regulated, being categorized under either Hyper or Mild augmentation sets based on the severity 
of the transformation required. For the image representation extraction and SSL component, the student and 
teacher models utilized a Vision Transformer (ViT) architecture with 12 Transformer encoding blocks and 768 
for the hidden states. Weight initialization for both student and teacher networks was facilitated through a pre-
trained ViT model using the dataset featured in the “KimiaNet”  paper31. The last six blocks of the student and 
teacher models are set to be trainable and frozen the rest.

The text encoder component utilizes a robust network built on BERT, featuring 12 Transformer layers. Weight 
initialization for both the student and teacher text encoders leverages  BioBert32 to ensure optimal performance, 
with fine-tuning restricted to the last two blocks. An empirical approach led to the determination of optimal 
values for β and γ in Eq. (8), where the most desirable performance was observed at β = 0.3 and γ = 1 . This 
configuration subtly de-emphasized the SSL component within the loss function. Given that the primary objec-
tive of the function is to identify and match paired images and texts, this adjustment allowed the model to focus 
more on its primary task while still benefiting from the auxiliary guidance of the SSL component.

To mitigate any potential bias and maintain the fairness of the comparison, six experimental iterations were 
carried out, each with a different test dataset, and assigned the rest of the dataset as train and validation sets. To 
further validate these comparisons, it was ensured that each test set included all 22 primary diagnoses. Model 
training was accomplished using the AdamW  optimizer33, with an initial learning rate of 1e − 6 . The learning rate 
was adapted to decay by a factor of 0.5 when the evaluation metric (R@sum) ceased to improve. The configuration 
for the rest of the model remains consistent with the optimal parameters identified in the LILE  experiments34. 
This includes the number of iteration steps (denoted as K) and the weight factor (represented by α ) within the 
loss function. The selection of these parameters is driven by the previous findings, thus ensuring that the model 
is effectively tuned for peak performance. This configuration continuity allows for a more robust evaluation and 
comparison across datasets. A comprehensive account of the findings from this setup can be found in Table 1.

The experiments on the GRH dataset were conducted in two different schemes. As shown in Table 1, the 
proposed method is compared with other methods in patch-based and WSI-based configurations. For the 

Table 1.  comparison among the proposed method and other state-of-the-art approaches, examining their 
performance in both patch-based and WSI-based retrieval tasks on the GRH dataset. Best results highlighted 
in bold.

Method Text retrieval Image retrieval

R@1 R@3 R@5 R@10 R@1 R@3 R@5 R@10 R@sum

Patch based

  KimiaNet31 24.1± 3.6 43.3± 2.3 51.2± 2.2 72.3± 1.9 N/A N/A N/A N/A N/A

  BioMedCLIP35 12.6± 1.4 31.1± 3.7 42.7± 3.9 66.7± 5.3 18.4± 1.7 34.0± 3.2 41.9± 3.6 60.2± 4.2 307.6± 10.3

  LILE34 29.3± 4.3 50.0± 3.5 63.6± 2.0 80.2± 1.9 39.2± 4.7 53.6± 4.2 57.5± 4.6 61.5± 3.1 434.9± 15.1

 LILE + DINO 31.6± 4.2 53.8± 3.1 65.4± 2.5 81.9± 1.0 40.1± 6.7 57.6± 5.6 63.9± 4.8 64.8± 3.1 459.1± 23.7

 LILE + H − DINO 31.9± 3.7 54.2± 3.1 65.8± 2.4 82.3± 1.0 43.2± 6.8 59.8± 4.1 64.4 ± 4.8 65.9± 3.5 467.5± 18.8

WSI based

  KimiaNet31 42.3± 5.3 66.3± 3.2 70.4± 3.0 78.1± 2.1 N/A N/A N/A N/A N/A

  BioMedCLIP35 32.4± 2.1 48.4± 3.2 68.3± 3.4 74.1± 3.0 N/A N/A N/A N/A N/A

  LILE34 50.0± 6.1 70.1± 4.2 76.4± 2.4 81.8± 2.9 N/A N/A N/A N/A N/A

 LILE + DINO 53.7± 7.3 75.7± 4.3 83.2± 3.1 90.9± 2.6 N/A N/A N/A N/A N/A

 LILE + H − DINO 54.5± 6.4 77.3± 4.5 84.1± 2.3 92.5± 3.3 N/A N/A N/A N/A N/A
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patch-based strategy, each patch needs to predict the correct primary diagnosis related to itself. In an alternate 
setup, the problem was approached through a WSI retrieval lens, replacing the individual patch-based retrieval. 
The strategy being used places considerable emphasis on majority voting for the prediction of the WSI primary 
diagnosis. This approach, which is largely derived from strategies employed in patch-based experiments, is 
centred around the accumulation of predictions made for individual patches. The process unfolds as follows: for 
each patch, a determination is initially made regarding whether it has accurately retrieved its correct primary 
diagnosis, with various thresholds applied in the recall metric. If the true primary diagnosis is found among 
the top “K” retrieved diagnoses, the patch is identified as correctly retrieving the actual text. If not, the patch 
is assigned the label corresponding to the first retrieved primary diagnosis. Subsequently, a label is assigned to 
a WSI, reflecting the most common label among its constituent patches. This strategy provided a more holistic 
interpretation of the WSI, as it accounted for the collective intelligence of all patches in a WSI, rather than treating 
each patch in isolation. This perspective shift aimed at enhancing the overall retrieval performance by considering 
the consensus of predictions within a WSI, thus adding another dimension of robustness to the proposed method.

In the analysis of KimiaNet, a pre-trained model that had been subjected to comprehensive training using the 
vast TCGA  dataset36 was employed. This model underwent further fine-tuning using the training data, with the 
parameters of the last fully connected layer set to be trainable. For the experiments conducted on  BioMedCLIP35, 
their pre-trained model without any additional fine-tuning is utilized. Their model was trained on 15 million 
pairs of images and text extracted from articles published on PubMed.

The proposed method, incorporating structure into its backbone and employing the H-DINO strategy for 
self-supervision, demonstrated superior performance in both patch-based and WSI-based tasks compared to 
other approaches. A comparative analysis, pitching the proposed LILE + DINO method against the without 
any self-supervision, demonstrated the potency of SSL in boosting model performance. The inclusion of SSL 
significantly elevated the R@sum metric, which measures the model’s overall effectiveness, by a notable 32.6 
margin. Furthermore, a comparison drawn between the LILE + H − DINO and the LILE + DINO methods 
underscored the value of implementing a patching method specifically devised for WSIs. This tailored approach 
to patching further enhanced the R@sum performance metric by an additional 8.4, highlighting its crucial 
role in optimizing the model’s overall performance. This specialized approach notably improved the model’s 
performance by providing a more robust embedding representation for the patches. An independent samples 
t-test was conducted to assess the differences in performance between the proposed LILE + H − DINO method 
and LILE + DINO. The analysis yielded a t-statistic of 3.6 and a p-value of 0.00033, indicating that a statistically 
significant improvement in the R@sum metric was observed with LILE + H − DINO over LILE + DINO. This 
result compellingly demonstrates the superior efficacy of LILE + H − DINO. Furthermore, the study presented in 
LILE  paper34 demonstrated that the LILE model surpassed the performance of the CLIP  model37. Consequently, 
the CLIP model’s results were omitted from reporting in subsequent experiments.

When considering text-to-WSI retrieval, the nature of the training and testing data, which are primarily 
patches, made it unfeasible to retrieve a WSI based on its primary diagnosis. This is due to the inherent fact 
that all patches extracted from the same WSI share an identical primary diagnosis, leading to a uniform result. 
Consequently, no results have been reported in this direction, and this aspect is noted as “N/A” (Not Applica-
ble). Further, it is worth mentioning that the KimiaNet and other models exclusively trained for images lack 
the capability to retrieve images when given text, leading to an absence of reported results for these models. 
However, within the scope of patch-based retrieval, the models that are built upon display the compelling fea-
ture of bidirectional functionality. This characteristic highlights the distinct superiority of cross-modal retrieval 
models over traditional classification networks, such as KimiaNet, as they possess the capacity to operate fluidly 
in both retrieval directions.

It should be noted that WSIs are predominantly utilized for diagnostic purposes by medical practitioners, 
including oncologists and pathologists. Consequently, greater emphasis is placed on the performance of the 
model in the WSI-based approach as compared to patch-based results. As seen in the table, the results for the 
WSI-based approach considerably outperformed those for the patch-based method. This phenomenon could 
be attributed to the power of majority voting. A WSI was assigned to a label if the majority of its patches voted 
for that specific label, implying that even if some patches were incorrectly predicted, the overall true label could 
still be accurately identified.

To further corroborate the efficacy of the proposed method, confusion matrices for R@1, R@3, and R@5 
in patch-based strategy are presented in Fig. 1. Moreover, the comprehensive performance of the model in the 
context of WSI retrieval at various recall thresholds – R@1, R@3, and R@5 – is visualized in confusion matrices, 
as depicted in Fig. 2. To generate the confusion matrices that are displayed, the same methodology described 
in relation to Table 1 is employed. This approach allows for a consistent and comparative representation of the 
data across different visualizations.

These figures enable an in-depth understanding of the model’s capability to assign diagnoses at different levels 
of recall accurately. From the confusion matrices can be understood that the proposed approach can distinguish 
more of its classes, and by going from R@1 to R@3 and R@5, i.e., looking at more retrievals, one can achieve 
more reliable predictions. Classifying 22 primary diagnoses of breast cancer is extremely challenging as they are 
all related to one anatomical organ, and they exhibit many similarities in their texture. As a result, R@3 and R@5 
can provide more accurate results and be practical for pathologists and doctors to be relied on. Furthermore, it 
is noteworthy that each primary diagnosis can occasionally be misconstrued as a different primary diagnosis. 
This phenomenon could potentially serve as an additional source of information for pathologists. By allowing 
for the possibility of alternative diagnoses, insights that might be obscured if only the correct primary diagnosis 
were provided can instead be unveiled, thus supporting a more comprehensive understanding of the pathology 
in question.
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More examination of the confusion matrices reveals that two primary diagnoses, namely, Caribiform Carci-
noma and Lobular Carcinoma in Situ, pose significant challenges. A contributing factor to the misclassification 
of Caribiform Carcinoma pertains to the limited representation of this diagnosis in the GRH dataset. With only 
three WSIs corresponding to this diagnosis, the dataset configuration for each training run is such that one WSI 
is set aside for testing, and another for validation, leaving just a single WSI for training. As depicted in Fig. 3, 
which showcases three random patches extracted from these three WSIs, the structural and feature variation 
across each WSI is quite significant. Consequently, training the model using a single WSI fails to provide a 
comprehensive representation of the primary diagnosis, thereby making it challenging to correctly identify this 
diagnosis in other WSIs.

If more data corresponding to this specific primary diagnosis were to be included in the training set, it would 
be reasonable to anticipate improved diagnostic accuracy. By enhancing the diversity and volume of the train-
ing data, the model would be equipped with a more holistic understanding of the diagnosis, thus improving its 
ability to identify and classify new instances accurately.

In another experiment, the robustness and adaptability of the proposed model were demonstrated through 
an analysis of the generated embeddings and the real-world application of these findings. The dataset used for 
this experiment was sourced from the World Health Organization (WHO), which was not part of the original 
training set but provided real medical reports all related to the same primary diagnosis.

The top three results from the text-to-image (t2i) retrieval process are displayed in Fig. 4. The capability of 
the model to retrieve accurate and relevant images given a description of a specific primary diagnosis is clearly 

Figure 1.  This confusion matrix depicts the retrieval performance of the proposed method for patch-
level classification across 22 distinct primary diagnoses, specifically at an R@5 recall level. It provides a 
comprehensive visual representation of how accurately the model classifies each diagnosis and demonstrates 
how the results are distributed across true and predicted classifications, hence offering a deeper understanding 
of the model’s performance.
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Figure 2.  This confusion matrix provides a visualization of the retrieval performance at the R@5 level of the 
proposed method for the WSI-level classification across 22 distinct primary diagnoses. It serves as a detailed 
display of the model’s accuracy in diagnosis classification. By presenting the distribution of results across true 
and predicted classes, it enables a profound understanding of the overall efficacy and precision of the model.

Figure 3.  Three randomly selected patches from three distinct Cribriform Carcinoma WSIs present in the GRH 
dataset. The noticeable differences in structure and the significant variations among these images illuminate the 
challenge of accurate classification, ultimately contributing to lower accuracy rates.
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illustrated by these results. These examples demonstrate how the model can identify and understand similar 
semantic structures between images and their corresponding descriptions. Not only does this enhance the overall 
precision of the model, but it also demonstrates its ability to adapt to and comprehend new, intricate concepts.

In additional sets of experiments conducted on the GRH dataset, a focus was placed on evaluating the model 
based on metrics more aligned with the diagnostic considerations of pathologists in order to ensure real-world 
clinical applications were closely reflected. One of the key metrics, recall@K (R@k), which was reported previ-
ously, was utilized for this evaluation. The successful retrieval was defined by the premise that the correct item 
was found within the top K retrieved items. This measure of success was then used to cast a ‘vote’ among the 
patches of a WSI.

Taking the approach a step further, another strategy was adopted. This method involved the top “V” retrieved 
primary diagnoses for each image patch being gathered. Here, “V” functions as a voting threshold, representing 
the number of retrieved items deemed informative enough to contribute to the majority vote in the ultimate 
step. Subsequently, these items were multiplied by their corresponding normalized similarity scores. The primary 
diagnoses retrieved for each WSI were then organized based on the frequency of their occurrence among the 
top “V” diagnoses, which were weighted by their scores across all patches within that specific WSI. Following 
this, the recall@K evaluation was applied to ascertain if the accurate primary diagnosis was among the top “K” 
retrieved items. This layered evaluation technique, termed Recall@K@V, provided a multidimensional and more 
nuanced analysis of retrieval success and presented a more comprehensive picture of retrieval performance. Such 
a metric can be of assistance to pathologists when ordering immunohistochemistry; Recall@K@V is a good 
quantification to select the right biomarkers.

This innovative and advanced evaluation strategy facilitated the procurement of a more detailed and nuanced 
understanding of the model’s performance. The results of this experiment, which offer an extensive analysis of 
Recall@K@V evaluations, are depicted in Fig. 5. The strategic expansion of the traditional approach allowed for 
a thorough and informative dissection of the model’s performance.

Figure 5 illustrates the impact of modulating the voting threshold, termed “V”, on the task of determining 
a WSI’s primary diagnosis over a range of Recall@K values. The voting threshold specifies the number of top-
retrieved items per patch taken into account in the decision-making process. By adjusting “V”, the breadth of 
information contributing to the final diagnostic decision can be fine-tuned, offering a nuanced perspective on 
the retrieval performance. The visual representation shows an initial trend of improved performance with an 
increasing voting threshold, underlining the value of a more inclusive decision-making process. Multiple “V” 
thresholds were examined to investigate this relationship, ranging from a conservative limit of 1 (i.e., only the 
top-retrieved item per patch contributes to the final decision) to a comprehensive limit of 22, encompassing 

Figure 4.  Visualizing image retrieval using real-world medical descriptions extracted from the WHO dataset, 
which wasn’t included in the original training set. Under each description, the associated primary diagnosis is 
displayed. To the right, the top three images retrieved by the model are presented alongside their corresponding 
primary diagnoses. This illustration showcases the model’s ability to retrieve and match images based on textual 
medical descriptions accurately.
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all primary diagnoses in the database. The effects of these different thresholds are colour-coded for ease of 
comparison.

However, it is critical to note that there appears to be a limit to the benefit of this expansion. As demonstrated 
by the figure, a voting threshold greater than five signifies the beginning of an observable performance decline. 
This observed decline aligns with expectations, considering that the similarity scores across primary diagnoses 
tend to cluster after the top few candidates. Essentially, including too many lower-ranked diagnoses dilutes the 
influence of the most probable ones, leading to less accurate final decisions. Thus, a careful balance is required 
when choosing the voting threshold to optimally leverage the multi-voting scheme’s advantages while avoiding 
the pitfalls of over-inclusion.

Continuing to add votes past the optimal threshold tends to introduce excess noise into the voting system. 
This “over-voting” counter-productively decreases the precision of the voting mechanism and consequently 
reduces the final recall score. Hence, while expanding the voting pool can initially enhance diagnostic accuracy, 
careful moderation is necessary to prevent a decline in performance. The comparative performance of differ-
ent methodologies on the GRH dataset, as measured by this particular metric, is detailed in Table 2. The “V” 
threshold within the Recall@K@V metric has been set to five for these evaluations. This setting was chosen as it 
consistently delivered the most advantageous results across different trials, as seen in Fig. 5. A clear observation 
from these comparisons is that the proposed LILE + H − DINO method excels beyond other approaches across 
varying recall thresholds. Notably, its superior performance holds up regardless of the recall threshold applied, 
further underscoring the robustness and generalization capability of the model. This reliable higher performance 
of the LILE + H − DINO model illustrates its potency and adaptability across diverse retrieval contexts in the 
GRH dataset.

Table 2.  Comparative analysis of WSI-based performance on the GRH dataset using Recall@K@V metric 
with a “V” threshold of five—illustrating the superior performance and adaptability of the proposed 
LILE + H − DINO method across diverse recall thresholds. Best results highlighted in bold.

R@1 R@3 R@5 R@10

KimiaNet31 43.0± 5.0 63.6± 2.3 69.1± 2.5 78.5± 2.3

LILE34 50.8± 6.2 70.0± 5.6 76.0± 1.8 81.5± 2.4

LILE + DINO 56.6± 5.5 72.5± 5.4 80.9± 3.2 89.9± 3.5

LILE + H − DINO 57.2± 5.2 74.1± 4.7 81.8± 4.0 91.9± 4.0

90

85

80

75

70

65

60

55

R@1 R@3 R@5 R@10
Metrics

R@1 
R@2 
R@3 
R@5 

Sc
or

es

Figure 5.  This figure illustrates the Recall@K@V values for various combinations of V and K. In this process, 
the most relevant primary diagnoses are first sorted for each patch based on a given V value. Subsequently, the 
Recall@K is computed for each WSI using the frequency of the most common primary diagnosis identified 
for that WSI. The results of this process are showcased in the figure for multiple voting thresholds (V), which 
include 1, 2, 3, 5, 10, 15, and 22. The selection of these thresholds is significant as the number of primary 
diagnoses is capped at 22. Additionally, the figure also displays these results across varying levels of Recall (K), 
specifically 1, 3, 5, and 10. This visualization provides a comprehensive overview of how alterations in the voting 
threshold and recall level influence the Recall@K@V values, thereby highlighting the nuanced interplay of these 
parameters in the evaluation process.
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PatchGastricADC22 benchmark dataset
In the processing of the PatchGastricADC22 dataset which contains 991 WSIs from Mita hospital in Tokyo, Japan. 
All cases within this dataset have been diagnosed as adenocarcinoma and verified by three independent patholo-
gists., patches of 300 by 300 pixels in size and 20X magnification were utilized. The description of each extracted 
patch was linked to the corresponding WSI it was obtained from. The primary distinction in this approach is 
manifested in the input selection for the model, which acts as an anchor for the training of the retrieval part. 
Instead of a center crop being traditionally employed, variability is introduced: for each iteration in the training 
process, a random crop of dimensions 224 by 224 pixels is chosen from the original 300 by 300 patch and input-
ted into the model. This methodology is based on the assumption that a subset of the original patch, specifically 
the 224 by 224 pixels crop, can adequately represent the accompanying descriptive text. Moreover, this method 
infuses a layer of randomness into the training process, potentially fostering an enhanced generalization abil-
ity for the model. However, during the test phase, a center crop is utilized. The overall model architecture was 
maintained in alignment with the configuration adopted for the GRH experiments. Pre-trained models from 
a classification task using the dataset featured in the “KimiaNet”  paper31 were applied to both the student and 
teacher networks, while the  BioBert32 was employed as the text encoder. The only variable in this arrangement 
was the number of trainable blocks in the vision component, where the last eight blocks were selected for adjust-
ment. For the text encoder, the last two blocks were set as trainable.A learning rate of 5× 10−5 was applied, 
incorporating an adaptive adjustment strategy. This strategy involved reducing the learning rate by a factor of 0.5 
upon detecting a plateau in the improvement of the evaluation metric (R@sum)., and the batch size was set at 64.

Random cropping with a size of 224 by 224 for extracted different views is applied. The data augmentation 
methodology implemented with the GRH dataset was mirrored here, with six Hyper augmentations ( τH ) being 
applied to the student model and two less stringent ones ( τM) to the teacher model. These augmentations include 
Random Crop, Random Vertical and Horizontal Flip, and Color Jitter (affecting Brightness, Contrast, Saturation, 
and Hue). The strength of these transformations was controlled, falling into either Hyper or Mild augmentation 
sets, depending on the desired extent of change. Optimal results were achieved when the parameters of the loss 
function were finely tuned, setting γ to 1 and β to 0.5. Given that the central goal of the model is to effectively 
locate and pair corresponding images and texts, this particular adjustment aids the model in concentrating on 
its main task.

Table 3 documents the performance of the model in patch-based and WSI-based retrieval compared to other 
methods. This table provides insights into the efficacy of the suggested method and its relative performance in 
comparison with other techniques.

To evaluate the performance of the proposed approach and compare it with other methods, LILE is been 
used as the baseline and compared LILE + H − DINO with LILE + DINO and  BioMedCLIP35 which is one of the 
foundation models for vision and vision language tasks that trained on large paired medical data. Notably, there 
are no pre-existing reported results for this dataset, which underscores the novelty of this research. Furthermore, 
for the sake of comparison, only the BioMedCLIP model was utilized in this instance due to its public availability 
and its standing as one of the SOTA techniques for cross-modal retrieval tasks in the medical field.

The same voting scheme proposed for the GRH dataset is applied for this dataset with a voting threshold of 
five for WSI-based retrieval tasks. The results show the efficacy of the combination of H-DINO in both patch-
based and WSI-based tasks which outperformed all the other approaches. In this experiment, the pre-trained 
BioMedCLIP  model35, which was trained on a large volume of figure-caption pairs extracted from biomedical 
research articles in PubMed Central, was employed without further fine-tuning. To facilitate the application of 
the BioMedCLIP model for WSI-based retrieval, the identical procedure used for other methods was diligently 
implemented. The results of BioMedCLIP, as expected, are the lowest among other approaches as it is only 
trained with images and text extracted from research articles, and it can show the importance of data in training 
models. The comparative evaluation of the proposed method, LILE + H − DINO, with LILE and LILE + DINO, 
offers some notable insights.

Table 3.  A comparison of the proposed method and other state-of-the-art approaches on the 
PatchGastricADC22 dataset, evaluating their performance in patch-based and WSI-based retrieval tasks. Best 
results highlighted in bold.

Method Text retrieval Image retrieval

R@1 R@3 R@5 R@10 R@1 R@3 R@5 R@10 R@sum

Patch based

 BioMedCLIP (zero-shot)35 6.0 17.8 28.7 53.2 10.1 22.4 29.8 51.2 219.2

  LILE34 18.2 37.8 49.1 78.2 28.5 46.9 48.3 68.2 375.2

 LILE + DINO 19.6 40.4 53.8 80.0 34.2 50.6 55.0 70.0 403.5

 LILE + H − DINO 20.8 42.2  54.8 81.3  40.0 55.0 55.0 75.0 424.1

WSI based

 BioMedCLIP (zero-shot)35 14.6 26.2 32.3 64.5 N/A N/A N/A N/A N/A

  LILE34 32.4 46.1 64.3 85.8 N/A N/A N/A N/A N/A

 LILE + DINO 35.0 49.5 66.2 88.3 N/A N/A N/A N/A N/A

 LILE + H − DINO 36.7  52.3 67.8 93.2 N/A N/A N/A N/A N/A
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Among the methods charted in the table, a distinct performance advantage was exhibited by the proposed 
LILE + H − DINO. It outpaced both LILE and LILE + DINO at various recall thresholds, including R@sum, 
registering a lead of 48.9 and 20.6, respectively. This performance margin underscores the significance of incor-
porating self-supervised learning (SSL) and a tailored patching scheme in the proposed methodology, elements 
that played a pivotal role in enhancing retrieval accuracy.

On another note, a characteristic of this dataset is that each description is associated with all patches extracted 
from the corresponding WSI. Consequently, retrieving a WSI from a description is not feasible, as the correlation 
doesn’t lend itself to direct WSI retrieval. Therefore, the corresponding entries in Table 3 are marked as “N/A” 
(Not Applicable), indicating the inapplicability of certain metrics in this context.

The dataset under consideration contains authentic captions penned by pathologists, offering a practical appli-
cation scenario for the proposed approach. Furthermore, the challenge escalates when distinguishing between 
descriptions and images pertaining to the same type of adenocarcinoma. The similarity in the nature of the 
images and text can blur the differentiation, thereby posing a considerable challenge. This is especially promi-
nent when comparing the performance to that of the GRH dataset. The complex task of accurately matching the 
nuanced visual patterns in the images with the precise medical terminology in the captions can lead to reduced 
performance, reinforcing the intrinsic difficulty of the task. Nonetheless, successfully tackling this challenge can 
provide valuable insights for advancing cross-modal retrieval techniques in real-world clinical settings.

LC25000 benchmark dataset
The LC25000 dataset was employed as another benchmark to evaluate the effectiveness of the proposed method-
ology. This dataset contains 25000 patches with the dimension of 768 by 768. All patches are in 20X magnification. 
In line with model requirements, these patches were resized to 448 by 448 pixels. The methodology previously 
detailed for the GRH dataset was adhered to, ensuring consistent operations across all datasets. As mentioned for 
the PatchGastricADC22 dataset, instead of the center 224 by 224 pixels crop feed into the model, a random crop 
has been fed to the cross-modal retrieval network as the same characteristic applied for the LC25000 dataset. One 
limitation that arose with the LC25000 dataset was the absence of information regarding the WSI from which 
the patches were extracted. This resulted in the reporting of only patch-based retrieval outcomes for this dataset.

The preparation of views for both the student and teacher networks was undertaken in an identical manner 
to previous operations for the GRH and PatchGastricADC22 datasets, including the number of views and aug-
mentations that have been applied. An exhaustive and systematic experimental analysis has ascertained optimal 
parameter settings tailored for this dataset. In the context of the image encoder, the student and teacher networks, 
fine-tuned on the last six blocks of a pre-trained ViT trained on the dataset featured in the “KimiaNet”  paper31, 
showed the best results. On the other hand, the last two blocks of  BioBert32 were found to be most effective for 
the text encoder.

In terms of optimizing the loss function, the parameters were carefully calibrated. The parameter γ was set 
to 1, while the parameter β was set to 0.4, granting a slightly lesser emphasis to the SSL part in the loss function. 
A learning rate set at 5× 10−5 was adopted, with an adaptive reduction approach. This approach halved the 
learning rate when no further enhancements in the evaluation metric (R@sum) were observed., offering a good 
balance between training speed and model stability. The batch size was also set to be 64.

Comparisons were made between the performance of the proposed method and other existing methods. The 
insights derived from these comparisons have been collated and presented in Table 4. The findings affirm the 
proposed method’s robustness and effectiveness when applied to this benchmark dataset, supporting its valid-
ity across various scenarios. Notably, the  MD38, CNN and  SVM39, and MRFO and  EO40 methods are unable to 
be applied in the image retrieval direction, and they do not provide results for R@3 and R@5. The absence of 
reported results for these models further highlights this limitation. The outcomes of this experiment are note-
worthy and closely matched, largely due to the straightforward nature of the task, which involves recognition 
among merely five distinct categories. In this context, the distinguishing factor among various methodologies 
primarily lies in the R@1 metric (the strict classification case), given that all methods achieved a perfect score 
of 100 for R@3 and R@5. Consequently, R@10 has not been reported, considering that with only five primary 
diagnoses, any recall threshold above 5 would invariably yield a score of 100.

Table 4.  A comparison of the proposed method and other state-of-the-art approaches on the LC25000 
dataset, evaluating their performance in patch-based retrieval tasks. Best results highlighted in bold.

Method Text retrieval Image retrieval

R@1 R@3 R@5 R@1 R@3 R@5 R@sum

Patch based

  MD38 98.4 N/A N/A N/A N/A N/A N/A

 CNN and  SVM39 94.0 N/A N/A N/A N/A N/A N/A

 MRFO and  EO40 99.6 N/A N/A N/A N/A N/A N/A

  LILE34 99.3 100 100 100 100 100 599.3

 LILE + DINO 99.7 100 100 100 100 100 599.7

 LILE + H − DINO 99.8 100 100 100 100 100 599.8
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Despite the high level of competition, the proposed model, LILE + H − DINO, manages to inch ahead, 
albeit by a narrow margin. It surpasses the performance of MRFO and EO, as cited  in40, by 0.2 for R@1, and 
outperforms LILE and LILE + DINO by 0.5 and 0.1, respectively, for R@1, which subsequently impacts the R@
sum score.

This marginal yet significant superiority is particularly noteworthy given the circumstance where scores are 
concentrated near the ideal score of 100. The model’s ability to offer this subtle performance boost in a context 
where the scope for enhancement is minimal indicates its capacity to yield exceptional results in more complex 
scenarios.

Furthermore, image retrieval results have only been provided for architectures. This is because other 
approaches have only been capable of functioning in a single direction - specifically, classifying images based 
on their primary diagnosis. This further highlights the versatility and capability of networks in the context of 
image retrieval tasks.

Discussion
Efficient, versatile retrieval across diverse modalities, like images and texts, is a key goal in cross-modal retrieval 
tasks for real-world applications. Scarce labelled data makes these tasks more challenging. To address this, a 
method to extract robust embeddings for both image and text modalities was proposed. The unique aspect of 
this approach is the integration of SSL within knowledge distillation for cross-modal retrieval tasks and an end-
to-end training regime.

Central to the proposed framework is the emphasis on deriving rich feature embeddings from images through 
SSL, with a specific focus on the DINO architecture. We introduce a novel patching strategy, termed “harmoniz-
ing DINO” or H-DINO, tailored for pathology WSIs. This advanced method systematically uncovers and assimi-
lates critical features across modalities, leading to the development of more robust embeddings. Such enriched 
feature representations are pivotal in enhancing performance across cross-modality tasks, demonstrating the 
significant impact of high-quality embeddings on retrieval effectiveness. Consequently, a refined methodology 
is developed that progressively identifies and captures the most important features across modalities, both in 
isolation and relative to one another.

A multi-head self-attention module enhances the network’s understanding of its modality, and the output 
is directed to a cross-attention module for aligning text and image modalities. An iterative alignment scheme 
using a memory network is employed in the proposed LILE + H − DINO strategy to augment features based on 
significant data segments highlighted by the self-attention and cross-attention modules. Moreover, A novel loss 
function is introduced, incorporating SSL and cross-modal retrieval objectives with weighted significance to 
balance these interconnected objectives.

The effectiveness of SSL in cross-modal retrieval is demonstrated, and the integration of tailored patching 
for WSIs enhances performance. Harmonizing patching preserves contextual integrity and structural consist-
ency, contributing to richer image interpretation. Performance differences between LILE, LILE + DINO, and 
LILE + H − DINO illustrate the benefits of merging SSL and the tailored patching scheme.

The proposed methodology gains significance from its application across varied datasets, including the chal-
lenging GRH breast cancer dataset, which features 22 primary diagnoses and presents significant hurdles due 
to its diagnostic range and subtle anatomical differences. Its real-world value is highlighted through its use on 
a dataset of pathologist-composed images and descriptions, showcasing its practical utility. Additionally, the 
method’s versatility and effectiveness are affirmed by its successful performance on a simpler dataset with just 
five primary diagnoses, underscoring its adaptability and wide-ranging applicability.

However, a potential avenue for future research lies in evaluating the retrieved images and texts through the 
lens of content similarity. Solely interpreting the results based on the categories of retrieved content is insufficient. 
This approach underscores the need for a more nuanced analysis that accounts for the intricate relationships and 
similarities between the contents, thereby providing a comprehensive understanding of the model’s performance. 
Another promising direction for future research involves incorporating diverse clinical information or additional 
data modalities into cross-modality tasks, enhancing the comprehensiveness and applicability of the analysis.

Method
The proposed methodology is integrated with several critical components, collaboratively aimed at addressing 
cross-modality retrieval challenges in the pathology domain. Detailed insights into their design and operation 
will be provided in subsequent sections.

The architecture from  LILE34 which designed for cross-modality tasks is utilized as the backbone of the 
proposed network. The Transformer architecture is employed for both image and text encoding backbones, 
with self-attention modules being leveraged to highlight key features of images and text. Additionally, in line 
with  LILE34 and other  methodologies6,7, cross-attention modules are employed to extract important segments 
from images and text, considering their relevance to the other modality, namely text and images, respectively. 
Moreover, as previous  studies6,34 suggested, a gated memory is applied to refine extracted features for images and 
text regarding the output of the cross-attention module in an iterative scheme. The architecture of the proposed 
method is depicted in Fig. 6.

As was highlighted in the introduction, the scarcity of adequately labelled data for model training is recog-
nized as a prevailing challenge in the medical  field41. This challenge is notably apparent in the visual modality, 
even though numerous dependable medical language models recently have been  introduced32,42. To address 
this, an self supervised learning (SSL) paradigm to derive image features is introduced in this study. Within the 
proposed network, the DINO  approach27 has been adapted by introducing a unique patching technique named 
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harmonizing DINO, abbreviated as H-DINO, for WSIs. However, other SSL approaches such as  CTransPath43 
can be modified and applied in here as well. This technique is further detailed in the patching section.

The DINO framework authors suggested, creating various crops from a single  image44. This resulted in set V, 
holding multiple views of the image, including two global and several local views at reduced resolution.

Considering WSI’s unique needs and patch extraction in histopathology, the set V was revised. The original 
DINO paper used 96 × 96 local patches and 224 × 224 global ones. Yet, altering the magnification of patches 
from a WSI at 20x, common in digital pathology, could introduce inconsistencies. To mitigate this, a tailored 

DINO

Multi-Head Self-
Attention

P m m text-2-image
similarity matrix

Similarity Measurement
L m

Multi-Head Self-
Attention

L m m
similarity matrix

Similarity Measurement
P m

Compound Spitz\u2019s
nevus. Fascicles of
spindle and epithelioid
melanocytes are present
in association with
epidermal hyperplasia
and dull pink globules at
the dermal-epidermal
junction.

Multi-Head Self-
Similarity Measurement

Memory

Multi-Head Self-
Attention

Similarity Measurement

Memory

Figure 6.  The architecture of H − DINO + LILE for image-text data is shown. It comprises H-DINO 
architecture and BioBERT to extract features for both vision and text modalities and LILE backbone to align 
feature representation of pair images and text.
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patching solution named H-DINO, aligning with WSI techniques, is introduced. The architecture is shown in 
Fig.7, with further details in the patching section.

Patching
In pursuit of this extension to DINO, an approach has been adopted where the extraction of patches is carried out 
on a scale larger than the final size intended to be inputted into the network. This is accomplished by enlarging 
the patch size around the specific location based on the dataset and patching method. The visualization of this 
step can be seen in Fig. 8. Subsequently, two categories of views—more global and more local—are extracted 
from the expanded patch, with each being subjected to its respective set of transformations. The distinction 
between these views is fundamentally determined by the size of the cropped region. The cropping range for the 
more local views is set between 50 and 140, while for the more global views, the cropping size is set between 
140 and 224. Given that uniformity in magnification is maintained in all selected patches, the core features of 
these patches remain unaltered. This departure from the DINO’s patching approach is crucial for computational 
pathology. This consistency in the patches magnification ensures that each patch holds its unique representa-
tion and characteristics intact, which in turn assists in maintaining the consistency of the information it offers.

Moreover, the uniformity in magnification also guides the network’s learning process in a meaningful way. 
By processing patches that are expected to share similar attributes, the network learns to map related concepts 
or visual features closer to each other in its internal representation space. This capacity is expected to be central 
to the network’s ability to distinguish between different classes and categories and, thereby, crucial to achieving 
high performance on classification or retrieval tasks in the forthcoming experiments.

These transformations are carefully selected to match the specific network into which the patch will be 
integrated. A comprehensive visualization of this entire process can be found in Fig. 9. This figure depicts the 

global
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Figure 7.  Diagram of the H-DINO Architecture: Illustrating both the student and teacher networks. For the 
sake of clarity, only one patch per view is represented.

Expanding

Figure 8.  Patch extraction and expansion from a WSI: The process begins with mask overlay, patch extraction, 
expansion, and transformation.
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interplay among the extraction, enlargement, and transformation of patches, all contributing to the distinct 
approach that has been adopted in the design.

After the patch selection, the more robust and less noisy patches are passed through the teacher model, while 
all the patches that have been generated in the patch selection stage are passed through the student model. In 
the proposed framework, as delineated in the DINO  paper27, both the teacher and student networks share an 
identical architectural design, yet they are characterized by distinct sets of parameters: θs for the student network 
and θt for the teacher network. The training process for these networks is conducted concurrently, adhering to 
the methodology outlined in Eqs. (6) and (7).

In addition to deriving robust feature representations for images, feature representation for the text modality 
must also be extracted. Consequently, a Transformer architecture was employed, as suggested by the authors of 
the BioBERT  paper32. The selection of BioBert as the text encoder is justified by its comprehensive training on 
a broad collection of medical literature, including content related to pathology. However, a potentially superior 
alternative could be the adoption of a model that has been explicitly trained on a substantial compilation of 
pathology reports.

Loss function
The proposed loss function guides the training of the entire model in an end-to-end paradigm which helps 
the network to have better performance and more  flexibility45. It means that the proposed loss function should 
contain two parts, one set of loss functions specifically designed for training the cross-modal retrieval model.
and another loss function dedicated to training the SSL network and another

The first part should draw paired image-text data closer within the shared space while making the unpaired 
data far from each other.

For each iteration step k , the similarity score between an image I and text T is determined in a manner akin 
to the method proposed by  LILE34:

In the equation above, α is a scalar weight parameter that moderates the influence of the similarity score compo-
nents. S(v,v−→T)(vi ,T) and S(w,w−→I)(I ,wi) are defined as the similarity score between image regions and text T, 
and text tokens and image I, respectively.In the evaluation of similarity between image and text embeddings, a 
diverse array of metrics can be utilized. However, drawing from insights in recent  studies35,35,46,47, cosine similar-
ity emerges as the preferred method due to its effectiveness and alignment with recent findings in the field and 
is applied to the suggested solution. These similarity scores are calculated as

Where each element of Ax captures the most important parts of the corresponding xi from modality X which 
can be image or text given the other modality as context.

Further enhancements in the similarity score can be achieved by incorporating S(v,T)(vi ,T) and S(w,I)(I ,wi) . 
These two terms are expressed in
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Figure 9.  View Selection and augmentation pipeline: left shows random view selection for Hyper ( τH ) and Mild 
( τM ) augmentation, right displays their respective pipelines with varied intensity levels.
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This inclusion allows the model to maintain the semantic meaning of each instance while concurrently striving 
to minimize the distance between paired instances. To consolidate all k steps, the final similarity score between 
image I and text T is derived as

Here k is the number of matching steps that will be set as a hyper-parameter.
Ultimately, the cross-modality retrieval loss is computed as

This strategy has been widely recognized and applied in image-text matching domains, with numerous studies 
demonstrating its  effectiveness11,48–50. In Eq. (5), � is a margin, and [x]+ = max(0, x) . S(I, T) from Eq. (4) gauges 
the similarity between image I and text T, forming a symmetric similarity matrix S of size n× n , where n is the 
mini-batch size during training.

Meanwhile, the second part of the loss function aims to force the vision model to generate a more robust 
feature representation for the given images using an SSL method as described in DINO  paper27. In the training 
procedure, the loss will be minimized with respect to θs:

The proposed patching scheme generates multiple views of a given image, which are assembled into a set V. 
This set is characterized by the inclusion of two distinct subsets of image views, differentiated by the type of 
augmentation applied. One subset comprises views generated through the application of “Mild Augmentation” 
( τM ), while the other uses “Hyper augmentation” ( τH).

In the context of Eq. (6), x is a selection made from the subset of views created through the τM technique. In 
contrast, x′ is chosen from the collective set of all views, excluding the specific view selected for x. Eq. (6) seeks 
to minimize the distribution distance between these various views of the same image, which is a critical step 
towards achieving a more robust image understanding. This minimization process ultimately assists the model 
in distinguishing subtle differences within the image and understanding how different elements of the image 
relate to each other.

The proposed loss function here can be applied on any number of patches; however, as the authors in the 
DINO paper have suggested, the proposed method only used two patches for the teacher network. In the 
approach under discussion, the absence of an initial teacher model, denoted by gθt , necessitates its iterative 
construction from previous versions of the student network. As suggested by the authors in the DINO paper, 
an approach that remarkably aligns with this framework involves applying an EMA to the student weights and 
a strategy often referred to as a momentum encoder. The update rule for this strategy, as described in the DINO 
 paper27, is given by

where � undergoes a gradual transition from 0.996 to 1 during the training process, following a cosine schedule. 
This dynamic tuning of � orchestrates the continuous updating of the teacher network parameters ( θt ) based on 
the concurrently evolving student network parameters ( θs ). This symbiotic process effectively transfers learned 
representations and knowledge between the teacher and student networks, promoting consistent learning pro-
gress and model robustness.

After calculating the loss functions for the self-supervised task based on Eq. (6) and the cross-modal task 
based on Eq. (5), the total loss is computed as follows:

The weight parameters, denoted by scalars β and γ , play a crucial role in determining the impact of each loss 
term. They regulate and moderate the influence of these terms on the overall loss function Lssl.
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Data availibility
Some datasets analysed during the current study are available in the PatchGastricADC22 repository, https:// 
zenodo. org/ recor ds/ 60214 42, and in LC25000 repository, https:// github. com/ tampa path/ lung_ colon_ image_ 
set. The GRH dataset from Grand River Hospital (Kitchener, ON, Canada) analysed during the current study is 
not publicly available due patient privacy guidelines at GRH.
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