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Online speech synthesis 
using a chronically implanted 
brain–computer interface 
in an individual with ALS
Miguel Angrick 1*, Shiyu Luo 2, Qinwan Rabbani 3, Daniel N. Candrea 2, Samyak Shah 1, 
Griffin W. Milsap 4, William S. Anderson 5, Chad R. Gordon 5,6, Kathryn R. Rosenblatt 1,7, 
Lora Clawson 1, Donna C. Tippett 1,8,9, Nicholas Maragakis 1, Francesco V. Tenore 4, 
Matthew S. Fifer 4, Hynek Hermansky 10,11, Nick F. Ramsey 12 & Nathan E. Crone 1*

Brain–computer interfaces (BCIs) that reconstruct and synthesize speech using brain activity recorded 
with intracranial electrodes may pave the way toward novel communication interfaces for people 
who have lost their ability to speak, or who are at high risk of losing this ability, due to neurological 
disorders. Here, we report online synthesis of intelligible words using a chronically implanted brain-
computer interface (BCI) in a man with impaired articulation due to ALS, participating in a clinical trial 
(ClinicalTrials.gov, NCT03567213) exploring different strategies for BCI communication. The 3-stage 
approach reported here relies on recurrent neural networks to identify, decode and synthesize speech 
from electrocorticographic (ECoG) signals acquired across motor, premotor and somatosensory 
cortices. We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the 
participant from a vocabulary of 6 keywords previously used for decoding commands to control a 
communication board. Evaluation of the intelligibility of the synthesized speech indicates that 80% 
of the words can be correctly recognized by human listeners. Our results show that a speech-impaired 
individual with ALS can use a chronically implanted BCI to reliably produce synthesized words while 
preserving the participant’s voice profile, and provide further evidence for the stability of ECoG for 
speech-based BCIs.

A variety of neurological disorders, including amyotrophic lateral sclerosis (ALS), can severely affect speech 
production and other purposeful movements while sparing cognition. This can result in varying degrees of 
communication impairments, including Locked-In Syndrome (LIS)1,2, in which patients can only answer yes/
no questions or select from sequentially presented options using eyeblinks, eye movements, or other residual 
movements. Individuals such as these may use augmentative and alternative technologies (AAT) to select among 
options on a communication board, but this communication can be slow, effortful, and may require caregiver 
intervention. Recent advances in implantable brain-computer interfaces (BCIs) have demonstrated the feasibil-
ity of establishing and maintaining communication using a variety of direct brain control strategies that bypass 
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weak muscles, for example to control a switch  scanner3,4, a computer  cursor5, to write  letters6 or to spell words 
using a hybrid approach of eye-tracking and attempted movement  detection7. However, these communication 
modalities are still slower, more effortful, and less intuitive than speech-based BCI  control8.

Recent studies have also explored the feasibility of decoding attempted speech from brain activity, output-
ting text or even acoustic speech, which could potentially carry more linguistic information such as intonation 
and prosody. Previous studies have reconstructed acoustic speech in offline analysis from linear regression 
 models9,  convolutional10 and recurrent neural  networks11,12, and encoder-decoder  architectures13. Concatenative 
approaches from the text-to-speech synthesis domain have also been  explored14,15, and voice activity has been 
identified in electrocorticographic (ECoG)16 and stereotactic EEG  recordings17. Moreover, speech decoding has 
been performed at the level of American English  phonemes18, spoken  vowels19,20, spoken  words21 and articula-
tory  gestures22,23.

Until now, brain-to-speech decoding has primarily been reported in individuals with unimpaired speech, such 
as patients temporarily implanted with intracranial electrodes for epilepsy surgery. To date, it is unclear to what 
extent these findings will ultimately translate to individuals with motor speech impairments, as in ALS and other 
neurological disorders. Recent studies have demonstrated how neural activity acquired from an ECoG  grid24 
or from  microelectrodes25 can be used to recover text from a patient with anarthria due to a brainstem stroke, 
or from a patient with dysarthria due to ALS, respectively. Prior to these studies, a landmark study allowed a 
locked-in volunteer to control a real-time synthesizer generating vowel  sounds26. More recently, Metzger et al.27 
demonstrated in a clinical trial participant diagnosed with quadriplegia and anarthria a multimodal speech-
neuroprosthetic system that was capable of synthesizing sentences in a cued setting from silent speech attempts. 
In our prior work, we presented a ‘plug-and-play’ system that allowed a clinical trial participant living with ALS to 
issue commands to external devices, such as a communication board, by using speech as a control  mechanism28.

In related work, BCIs based on non-invasive modalities, such as electroencephalography (EEG), functional 
near-infrared spectroscopy (fNIRS) or functional magnetic resonance imaging (fMRI) have been investigated for 
speech decoding applications. These studies have largely focused on imagined  speech29 to avoid contamination 
by movement  artifacts30. Recent work by Dash et al., for example, reported speech decoding results for imagined 
and spoken phrases from 3 ALS patients using magnetoencephalography (MEG)31. While speech decoding 
based on non-invasive methodologies is an important branch in the BCI field as they do not require a surgery 
and may be adopted by a larger population more easily, their current state of the art comes with disadvantages 
compared to implantable BCI’s as they lack either temporal or spatial resolution, or are currently not feasible 
for being used at home.

Here, we show that an individual living with ALS and participating in a clinical trial of an implantable BCI 
(ClinicalTrials.gov, NCT03567213) was able to produce audible, intelligible words that closely resembled his own 
voice, spoken at his own pace. Speech synthesis was accomplished through online decoding of ECoG signals 
generated during overt speech production from cortical regions previously shown to represent articulation and 
phonation, following similar previous  work11,19,32,33. Our participant had considerable impairments in articula-
tion and phonation. He was still able to produce some words that were intelligible when spoken in isolation, but 
his sentences were often unintelligible. Here, we focused on a closed vocabulary of 6 keywords, originally used 
for decoding spoken commands to control a communication board. Our participant was capable of producing 
these 6 keywords individually with a high degree of intelligibility. We acquired training data over a period of 6 
weeks and deployed the speech synthesis BCI in several separate closed-loop sessions. Since the participant could 
still produce speech, we were able to easily and reliably time-align the individual’s neural and acoustic signals to 
enable a mapping between his cortical activity during overt speech production processes and his voice’s acoustic 
features. We chose to provide delayed rather than simultaneous auditory feedback in anticipation of ongoing 
deterioration in the patient’s speech due to ALS, with increasing discordance and interference between actual 
and BCI-synthesized speech. This design choice would be ideal for a neuroprosthetic device that remains capable 
of producing intelligible words as an individual’s speech becomes increasingly unintelligible, as was expected in 
our participant due to ALS.

Here, we present a self-paced BCI that translates brain activity directly to acoustic speech that resembles 
characteristics of the user’s voice profile, with most synthesized words of sufficient intelligibility to be correctly 
recognized by human listeners. This work makes an important step in adding more evidence that recent speech 
synthesis from neural signals in patients with intact speech can be translated to individuals with neurological 
speech impairments, by first focusing on a closed vocabulary that the participant can reliably generate at his 
own pace, before generalizing towards unseen words. Synthesizing speech from the neural activity associated 
with overt speech allowed us to demonstrate the feasibility of reproducing the acoustic features of speech when 
ground truth is available and its alignment with an acoustic target is straightforward, in turn setting a standard 
for future efforts when ground truth is unavailable, as in the Locked In Syndrome. Moreover, because our speech 
synthesis model was trained on data that preceded testing by several months, our results also support the stability 
of ECoG as a basis for speech BCIs.

Approach
In order to synthesize acoustic speech from neural signals, we designed a pipeline that consisted of three recur-
rent neural networks (RNNs) to (1) identify and buffer speech-related neural activity, (2) transform sequences 
of speech-related neural activity into an intermediate acoustic representation, and (3) eventually recover the 
acoustic waveform using a vocoder. Figure 1 shows a schematic overview of our approach. We acquired ECoG 
signals from two electrode grids that covered cortical representations for speech production including ventral 
sensorimotor cortex and the dorsal laryngeal area (Fig. 1A). Here, we focused only on a subset of electrodes 
that had previously been identified as showing significant changes in high-gamma activity associated with overt 
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speech production (see Supplementary Fig. 2). From the raw ECoG signals, our closed-loop speech synthesizer 
extracted broadband high-gamma power features (70–170 Hz) that had previously been demonstrated to encode 
speech-related information useful for decoding speech (Fig. 1B)10,14.

We used a unidirectional RNN to identify and buffer sequences of high-gamma activity frames and extract 
speech segments (Fig. 1C,D). This neural voice activity detection (nVAD) model internally employed a strategy 
to correct misclassified frames based on each frame’s temporal context, and additionally included a context win-
dow of 0.5 s to allow for smoother transitions between speech and non-speech frames. Each buffered sequence 
was forwarded to a bidirectional decoding model that mapped high-gamma features onto 18 Bark-scale cepstral 
 coefficients34 and 2 pitch parameters, henceforth referred to as LPC  coefficients35,36 (Fig. 1E,F). We used a bidi-
rectional architecture to include past and future information while making frame-wise predictions. Estimated 
LPC coefficients were transformed into an acoustic speech signal using the LPCNet  vocoder36 and played back 
as delayed auditory feedback (Fig. 1G).

Figure 1.  Overview of the closed-loop speech synthesizer. (A) Neural activity is acquired from a subset of 64 
electrodes (highlighted in orange) from two 8 × 8 ECoG electrode arrays covering sensorimotor areas for face 
and tongue, and for upper limb regions. (B) The closed-loop speech synthesizer extracts high-gamma features 
to reveal speech-related neural correlates of attempted speech production and propagates each frame to a 
neural voice activity detection (nVAD) model (C) that identifies and extracts speech segments (D). When the 
participant finishes speaking a word, the nVAD model forwards the high-gamma activity of the whole extracted 
sequence to a bidirectional decoding model (E) which estimates acoustic features (F) that can be transformed 
into an acoustic speech signal. (G) The synthesized speech is played back as acoustic feedback.
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Results
Synthesis performance
When deployed in sessions with the participant for online decoding, our speech-synthesis BCI was reliably 
capable of producing acoustic speech that captured many details and characteristics of the voice and pacing of 
the participant’s natural speech, often yielding a close resemblance to the words spoken in isolation from the 
participant. Figure 2A provides examples of original and synthesized waveforms for a representative selection 
of words time-aligned by subtracting the duration of the extracted speech segment from the nVAD. Onset tim-
ings from the reconstructed waveforms indicate that the decoding model captured the flow of the spoken word 
while also synthesizing silence around utterances for smoother transitions. A comparison between voice activity 
for spoken and synthesized speech revealed a median Levenstein distance of 235 ms, hinting that the synthesis 
approach was capable of generating speech that adequately matched the timing of the spoken counterpart. Fig-
ure 2B shows the corresponding acoustic spectrograms for the spoken and synthesized words, respectively. The 
spectral structures of the original and synthesized speech shared many common characteristics and achieved 
average correlation scores of 0.67 (± 0.18 standard deviation) suggesting that phoneme and formant-specific 
information were preserved.

We conducted 3 sessions across 3 different days (approximately 5 and a half months after the training data 
was acquired, each session lasted 6 min) to repeat the experiment with acoustic feedback from the BCI to the 

Figure 2.  Evaluation of the synthesized words. (A) Visual example of time-aligned original and reconstructed 
acoustic speech waveforms and their spectral representations (B) for 6 words that were recorded during one 
of the closed-loop sessions. Speech spectrograms are shown between 100 and 8000 Hz with a logarithmic 
frequency range to emphasize formant frequencies. (C) The confusion matrix between human listeners and 
ground truth. (D) Distribution of accuracy scores from all who performed the listening test for the synthesized 
speech samples. Dashed line shows chance performance (16.7%).
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participant (see Supplementary Video 1 for an excerpt). Other experiment parameters were not changed. All 
synthesized words were played back on loudspeakers while simultaneously recorded for evaluation.

To assess the intelligibility of the synthesized words, we conducted listening tests in which human listeners 
played back individual samples of the synthesized words and selected the word that most closely resembled each 
sample. Additionally, we mixed in samples that contained the originally spoken words. This allowed us to assess 
the quality of the participant’s natural speech. We recruited a cohort of 21 native English speakers to listen to 
all samples that were produced during our 3 closed-loop sessions. Out of 180 samples, we excluded 2 words 
because the nVAD model did not detect speech activity and therefore no speech output was produced by the 
decoding model. We also excluded a few cases where speech activity was falsely detected by the nVAD model, 
which resulted in synthesized silence and remained unnoticed to the participant.

Overall, human listeners achieved an accuracy score of 80%, indicating that the majority of synthesized 
words could be correctly and reliably recognized. Figure 2C presents the confusion matrix regarding only the 
synthesized samples where the ground truth labels and human listener choices are displayed on the X- and 
Y-axes respectively. The confusion matrix shows that human listeners were able to recognize all but one word at 
very high rates. “Back” was recognized at low rates, albeit still above chance, and was most often mistaken for 
“Left”. This could have been due in part to the close proximity of the vowel formant frequencies for these two 
words. The participant’s weak tongue movements may have deemphasized the acoustic discriminability of these 
words, in turn resulting in the vocoder synthesizing a version of “back” that was often indistinct from “left”. In 
contrast, the confusion matrix also shows that human listeners were confident in distinguishing the words “Up” 
and “Left”. The decoder synthesized an intelligible but incorrect word in only 4% of the cases, and all listeners 
accurately recognized the incorrect word. Note that all keywords in the vocabulary were chosen for intuitive 
command and control of a computer interface, for example a communication board, and were not designed to 
be easily discriminable for BCI applications.

Figure 2D summarizes individual accuracy scores from all human listeners from the listening test in a his-
togram. All listeners recognized between 75 and 84% of the synthesized words. All human listeners achieved 
accuracy scores above chance (16.7%). In contrast, when tested on the participant’s natural speech, our human 
listeners correctly recognized almost all samples of the 6 keywords (99.8%).

Anatomical and temporal contributions
In order to understand which cortical areas contributed to identification of speech segments, we conducted a 
saliency  analysis37 to reveal the underlying dynamics in high-gamma activity changes that explain the binary 
decisions made by our nVAD model. We utilized a method from the image processing  domain38 that queries 
spatial information indicating which pixels have contributed to a classification task. In our case, this method 
ranked individual high-gamma features over time by their influence on the predicted speech onsets (PSO). We 
defined the PSO as the first occurrence when the nVAD model identified spoken speech and neural data started 
to get buffered before being forwarded to the decoding model. The absolute values of their gradients allowed 
interpretations of which contributions had the highest or lowest impact on the class scores from anatomical and 
temporal perspectives.

The general idea is illustrated in Fig. 3B. In a forward pass, we first estimated for each trial the PSO by propa-
gating through each time step until the nVAD model made a positive prediction. From here, we then applied 
backpropagation through time to compute all gradients with respect to the model’s input high-gamma features. 
Relevance scores |R| were computed by taking the absolute value of each partial derivative and the maximum 
value across time was used as the final score for each  electrode38. Note that we only performed backpropagation 
through time for each PSO, and not for whole speech segments.

Results from the saliency analysis are shown in Fig. 3A. For each channel, we display the PSO-specific rel-
evance scores by encoding the maximum magnitude of the influence in the size of the circles (bigger circles mean 
stronger influence on the predictions), and the temporal occurrence of that maximum in the respective color 
coding (lighter electrodes have their maximal influence on the PSO earlier). The color bar at the bottom limits 
the temporal influence to − 400 ms prior to PSO, consistent with previous reports about speech  planning39 and 
articulatory  representations19. The saliency analysis showed that the nVAD model relied on a broad network of 
electrodes covering motor, premotor and somatosensory cortices whose collective changes in the high-gamma 
activity were relevant for identifying speech. Meanwhile, voice activity information encoded in the dorsal laryn-
geal area (highlighted electrodes in the upper grid in Fig. 3A)19 only mildly contributed to the PSO.

Figure 3C shows relevance scores over a time period of 1 s prior to PSO for 3 selected electrodes that strongly 
contributed to predicting speech onsets. In conjunction with the color coding from Fig. 3A, the temporal asso-
ciations were consistent with previous studies that examined phoneme decoding over fixed window sizes of 400 
 ms18 and 500  ms40,41 around speech onset times, suggesting that the nVAD model benefited from neural activity 
during speech planning and phonological  processing39 when identifying speech onset. We hypothesize that the 
decline in the relevance scores after − 200 ms can be explained by the fact that voice activity information might 
have already been stored in the long short-term memory of the nVAD model and thus changes in neural activity 
beyond this time had less influence on the prediction.

Discussion
Here we demonstrate the feasibility of a closed-loop BCI that is capable of online synthesis of intelligible words 
using intracranial recordings from the speech cortex of an ALS clinical trial participant. Recent  studies10,11,13,27 
suggest that deep learning techniques are a viable tool to reconstruct acoustic speech from ECoG signals. We 
found an approach consisting of three consecutive RNN architectures that identify and transform neural speech 
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correlates into an acoustic waveform that can be streamed over the loudspeaker as neurofeedback, resulting in 
an 80% intelligibility score on a closed-vocabulary, keyword reading task.

The majority of human listeners were able to correctly recognize most synthesized words. All words from 
the closed vocabulary were chosen for a prior  study28 that explored speech decoding for intuitive control of a 
communication board rather than being constructed to elicit discriminable neural activity that benefits decoder 
performance. The listening tests suggest that the words “Left” and “Back” were responsible for the majority of 
misclassified words. These words share very similar articulatory features, and our participant’s speech impair-
ments likely made these words less discriminable in the synthesis process.

Saliency analysis showed that our nVAD approach used information encoded in the high-gamma band across 
predominantly motor, premotor and somatosensory cortices, while electrodes covering the dorsal laryngeal 
area only marginally contributed to the identification of speech onsets. In particular, neural changes previously 
reported to be important for speech planning and phonological  processing19,39 appeared to have a profound 
impact. Here, the analysis indicates that our nVAD model learned a proper representation of spoken speech 
processes, providing a connection between neural patterns learned by the model and the spatio-temporal dynam-
ics of speech production.

Our participant was chronically implanted with 128 subdural ECoG electrodes, roughly half of which covered 
cortical areas where similar high-gamma responses have been reliably elicited during overt  speech18,19,40,42 and 
have been used for offline decoding and reconstruction of  speech10,11. This study and others like  it24,27,43,44 explored 
the potential of ECoG-based BCIs to augment communication for individuals with motor speech impairments 
due to a variety of neurological disorders, including ALS and brainstem stroke. A potential advantage of ECoG for 
BCI is the stability of signal quality over long periods of  time45. In a previous study of an individual with locked-in 
syndrome due to ALS, a fully implantable ECoG BCI with fewer electrodes provided a stable switch for a spell-
ing application over a period of more than 3  years46. Similarly, Rao et al. reported robust responses for ECoG 
recordings over the speech-auditory cortex for two drug-resistant epilepsy patients over a period of 1.5  years47. 
More recently, we showed that the same clinical trial participant could control a communication board with 
ECoG decoding of self-paced speech commands over a period of 3 months without retraining or  recalibration28. 
The speech synthesis approach we demonstrated here used training data from five and a half months prior to 
testing and produced similar results over 3 separate days of testing, with recalibration but no retraining in each 
session. These findings suggest that the correspondence between neural activity in ventral sensorimotor cortex 
and speech acoustics were not significantly changed over this time period. Although longitudinal testing over 

Figure 3.  Changes in high-gamma activity across motor, premotor and somatosensory cortices trigger 
detection of speech output. (A) Saliency analysis shows that changes in high-gamma activity predominantly 
from 300 to 100 ms prior to predicted speech onset (PSO) strongly influenced the nVAD model’s decision. 
Electrodes covering motor, premotor and somatosensory cortices show the impact of model decisions, 
while electrodes covering the dorsal laryngeal area only modestly added information to the prediction. Grey 
electrodes were either not used, bad channels or had no notable contributions. (B) Illustration of the general 
procedure on how relevance scores were computed. For each time step t, relevance scores were computed 
by backpropagation through time across all previous high-gamma frames Xt. Predictions of 0 correspond to 
no-speech, while 1 represents speech frames. (C) Temporal progression of mean magnitudes of the absolute 
relevance score in 3 selected channels that strongly contributed to PSOs. Shaded areas reflect the standard error 
of the mean (N = 60). Units of the relevance scores are in  10–3.
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longer time periods will be needed to explicitly test this, our findings provide additional support for the stability 
of ECoG as a BCI signal source for speech synthesis.

Our approach used a speech synthesis model trained on neural data acquired during overt speech production. 
This constrains our current approach to patients with speech motor impairments in which vocalization is still 
possible and in which speech may still be intelligible. Given the increasing use of voice banking among people 
living with ALS, it may also be possible to improve the intelligibility of synthetic speech using an approach similar 
to ours, even in participants with unintelligible or absent speech. This speech could be utilized as a surrogate but 
would require careful alignment to speech attempts. Likewise, the same approach could be used with a generic 
voice, though this would not preserve the individual’s speech characteristics. Here our results were achieved with-
out the added challenge of absent ground truth, but they serve as an important demonstration that if adequate 
alignment is achieved, direct synthesis of acoustic speech from ECoG is feasible, accurate, and stable, even in a 
person with dysarthria due to ALS. Nevertheless, it remains to be seen how long our approach will continue to 
produce intelligible speech as our patient’s neural responses and articulatory impairments change over time due 
to ALS. Previous studies of long-term ECoG signal stability and BCI performance in patients with more severe 
motor impairments suggest that this may be  possible3,48.

Although our approach allowed for online, closed-loop production of synthetic speech that preserved our 
participant’s individual voice characteristics, the bidirectional LSTM imposed a delay in the audible feedback until 
after the patient spoke each word. We considered this delay to be not only acceptable, but potentially desirable, 
given our patient’s speech impairments and the likelihood of these impairments worsening in the future due to 
ALS. Although normal speakers use immediate acoustic feedback to tune their speech motor  output49, individu-
als with progressive motor speech impairments are likely to reach a point at which there is a significant, and 
distracting, mismatch between the subject’s speech and the synthetic speech produced by the BCI. In contrast, 
providing acoustic feedback immediately after each utterance gives the user clear and uninterrupted output that 
they can use to improve subsequent speech attempts, if necessary.

While our results are promising, the approach used here did not allow for synthesis of unseen words. The 
bidirectional architecture of the decoding model learned variations of the neural dynamics of each word and was 
capable of recovering their acoustic representations from corresponding sequences of high-gamma frames. This 
approach did not capture more fine-grained and isolated part-of-speech units, such as syllables or phonemes. 
However, previous  research11,27 has shown that speech synthesis approaches based on bidirectional architec-
tures can generalize to unseen elements that were not part of the training set. Future research will be needed to 
expand the limited vocabulary used here, and to explore to what extent similar or different approaches are able 
to extrapolate to words that are not in the vocabulary of the training set.

Our demonstration here builds on previous seminal studies of the cortical representations for articulation 
and  phonation19,32,40 in epilepsy patients implanted with similar subdural ECoG arrays for less than 30 days. 
These studies and others using intraoperative recordings have also supported the feasibility of producing syn-
thetic speech from ECoG high-gamma  responses10,11,33, but these demonstrations were based on offline analysis 
of ECoG signals that were previously recorded in subjects with normal speech, with the exception of the work 
by Metzger et al.27 Here, a participant with impaired articulation and phonation was able to use a chronically 
implanted investigational device to produce acoustic speech that retained his unique voice characteristics. This 
was made possible through online decoding of ECoG high-gamma responses, using an algorithm trained on 
data collected months before. Notwithstanding the current limitations of our approach, our findings here pro-
vide a promising proof-of-concept that ECoG BCIs utilizing online speech synthesis can serve as alternative 
and augmentative communication devices for people living with ALS. Moreover, our findings should motivate 
continued research on the feasibility of using BCIs to preserve or restore vocal communication in clinical popu-
lations where this is needed.

Materials and methods
Participant
Our participant was a male native English speaker in his 60s with ALS who was enrolled in a clinical trial 
(NCT03567213), approved by the Johns Hopkins University Institutional Review Board (IRB) and by the FDA 
(under an investigational device exemption) to test the safety and preliminary efficacy of a brain-computer 
interface composed of subdural electrodes and a percutaneous connection to external EEG amplifiers and com-
puters. All experiments conducted in this study complied with all relevant guidelines and regulations, and were 
performed according to a clinical trial protocol approved by the Johns Hopkins IRB. Diagnosed with ALS 8 
years prior to implantation, our participant’s motor impairments had chiefly affected bulbar and upper extrem-
ity muscles and had resulted in motor impairments sufficient to render continuous speech mostly unintelligible 
(though individual words were intelligible), and to require assistance with most activities of daily living. Our 
participant’s ability to carry out activities of daily living were assessed using the ALSFRS-R  measure50, resulting 
in a score of 26 out of 48 possible points (speech was rated at 1 point, see Supplementary Data S5). Further-
more, speech intelligibility and speaking rate were evaluated by a certified speech-language pathologist, whose 
detailed assessment may be found in the Supplementary Note. The participant gave informed consent after being 
counseled about the nature of the research and implant-related risks and was implanted with the study device 
in July 2022. Additionally, the participant gave informed consent for use of his audio and video recordings in 
publications of the study results.

Study device and implantation
The study device was composed of two 8 × 8 subdural electrode grids (PMT Corporation, Chanhassen, MN) 
connected to a percutaneous 128-channel Neuroport pedestal (Blackrock Neurotech, Salt Lake City, UT). Both 
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subdural grids contained platinum-iridium disc electrodes (0.76 mm thickness, 2-mm diameter exposed surface) 
with 4 mm center-to-center spacing and a total surface area of 12.11  cm2 (36.6 mm × 33.1 mm).

The study device was surgically implanted during a standard awake craniotomy with a combination of local 
anesthesia and light sedation, without neuromuscular blockade. The device’s ECoG grids were placed on the 
pial surface of sensorimotor representations for speech and upper extremity movements in the left hemisphere. 
Careful attention was made to assure that the scalp flap incision was well away from the external pedestal. Cortical 
representations were targeted using anatomical landmarks from pre-operative structural (MRI) and functional 
imaging (fMRI), in addition to somatosensory evoked potentials measured intraoperatively. Two reference wires 
attached to the Neuroport pedestal were implanted in the subdural space on the outward facing surface of the 
subdural grids. The participant was awoken during the craniotomy to confirm proper functioning of the study 
device and final placement of the two subdural grids. For this purpose, the participant was asked to repeatedly 
speak a single word as event-related ECoG spectral responses were noted to verify optimal placement for the 
implanted electrodes. On the same day, the participant had a post-operative CT which was then co-registered 
to a pre-operative MRI to verify the anatomical locations of the two grids.

Data recording
During all training and testing sessions, the Neuroport pedestal was connected to a 128-channel NeuroPlex-
E headstage that was in turn connected by a mini-HDMI cable to a NeuroPort Biopotential Signal Processor 
(Blackrock Neurotech, Salt Lake City, UT, USA) and external computers. We acquired neural signals at a sampling 
rate of 1000 Hz.

Acoustic speech was recorded through an external microphone (BETA® 58A, SHURE, Niles, IL) in a room 
isolated from external acoustic and electronic noise, then amplified and digitized by an external audio interface 
(H6-audio-recorder, Zoom Corporation, Tokyo, Japan). The acoustic speech signal was split and forwarded to: 
(1) an analog input of the NeuroPort Biopotential Signal Processor (NSP) to be recorded at the same frequency 
and in synchrony with the neural signals, and (2) the testing computer to capture high-quality (48 kHz) record-
ings. We applied cross-correlation to align the high-quality recordings with the synchronized audio signal from 
the NSP.

Experiment recordings and task design
Each recording day began with a syllable repetition task to acquire cortical activity to be used for baseline nor-
malization. Each syllable was audibly presented through a loudspeaker, and the participant was instructed to 
recite the heard stimulus by repeating it aloud. Stimulus presentation lasted for 1 s, and trial duration was set 
randomly in the range of 2.5 s and 3.5 s with a step size of 80 ms. In the syllable repetition task, the participant 
was instructed to repeat 12 consonant–vowel syllables (Supplementary Table S4), in which each syllable was 
repeated 5 times. We extracted high-gamma frames from all trials to compute for each day the mean and standard 
deviation statistics for channel-specific normalization.

To collect data for training our nVAD and speech decoding model, we recorded ECoG during multiple 
blocks of a speech production task over a period of 6 weeks. During the task, the participant read aloud single 
words that were prompted on a computer screen, interrupted occasionally by a silence trial in which the par-
ticipant was instructed to say nothing. The words came from a closed vocabulary of 6 words ("Left", "Right", 
"Up", "Down", "Enter", "Back", and “…” for silence) that were chosen for a separate study in which these spoken 
words were decoded from ECoG to control a communication  board28. In each block, there were ten repetitions 
of each word (60 words in total) that appeared in a pseudo-randomized order by having a fixed set of seeds to 
control randomization orders. Each word was shown for 2 s per trial with an intertrial interval of 3 s. The par-
ticipant was instructed to read the prompted word aloud as soon as it appeared. Because his speech was slow, 
effortful, and dysarthric, the participant may have sometimes used some of the intertrial interval to complete 
word production. However, offline analysis verified at least 1 s between the end of each spoken word and the 
beginning of the next trial, assuring that enough time had passed to avoid ECoG high-gamma responses leaking 
into subsequent trials. In each block, neural signals and audibly vocalized speech were acquired in parallel and 
stored to disc using  BCI200051.

We recorded training, validation, and test data for 10 days, and deployed our approach for synthesizing speech 
online five and a half months later. During the online task, the synthesized output was played to the participant 
while he performed the same keyword reading task as in the training sessions. The feedback from each synthe-
sized word began after he spoke the same word, avoiding any interference with production from the acoustic 
feedback. The validation dataset was used for finding appropriate hyperparameters to train both nVAD and the 
decoding model. The test set was used to validate final model generalizability before online sessions. We also 
used the test set for the saliency analysis. In total, the training set was comprised of 1570 trials that aggregated to 
approximately 80 min of data (21.8 min are pure speech), while the validation and test set contained 70 trials each 
with around 3 min of data (0.9 min pure speech). The data in each of these datasets were collected on different 
days, so that no baseline or other statistics in the training set leaked into the validation or test set.

Signal processing and feature extraction
Neural signals were transformed into broadband high-gamma power features that have been previously reported 
to closely track the timing and location of cortical activation during speech and language  processes42,52. In this 
feature extraction process, we first re-referenced all channels within each 64-contact grid to a common-average 
reference (CAR filtering), excluding channels with poor signal quality in any training session. Next, we selected 
all channels that had previously shown significant high-gamma responses during the syllable repetition task 
described above. This included 64 channels (Supplementary Fig. S2, channels with blue outlines) across motor, 
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premotor and somatosensory cortices, including the dorsal laryngeal area. From here, we applied two IIR But-
terworth filters (both with filter order 8) to extract the high-gamma band in the range of 70 to 170 Hz while 
subsequently attenuating the first harmonic (118–122 Hz) of the line noise. For each channel, we computed 
logarithmic power features based on windows with a fixed length of 50 ms and a frameshift of 10 ms. To esti-
mate speech-related increases in broadband high-gamma power, we normalized each feature by the day-specific 
statistics of the high-gamma power features accumulated from the syllable repetition task.

For the acoustic recordings of the participant’s speech, we downsampled the time-aligned high-quality micro-
phone recordings from 48 to 16 kHz. From here, we padded the acoustic data by 16 ms to account for the shift 
introduced by the two filters on the neural data and estimated the boundaries of speech segments using an 
energy-based voice activity detection  algorithm53. Likewise, we computed acoustic features in the LPC coefficient 
space through the encoding functionality of the LPCNet vocoder. Both voice activity detection and LPC feature 
encoding were configured to operate on 10 ms frameshifts to match the number of samples from the broadband 
high-gamma feature extraction pipeline.

Network architectures
Our proposed approach relied on three recurrent neural network architectures: (1) a unidirectional model that 
identified speech segments from the neural data, (2) a bidirectional model that translated sequences of speech-
related high-gamma activity into corresponding sequences of LPC coefficients representing acoustic information, 
and (3)  LPCNet36, which converted those LPC coefficients into an acoustic speech signal.

The network architecture of the unidirectional nVAD model was inspired by Zen et al.54 in using a stack of 
two LSTM layers with 150 units each, followed by a linear fully connected output layer with two units represent-
ing speech or non-speech class target logits (Fig. 4). We trained the unidirectional nVAD model using truncated 
backpropagation through time (BPTT)55 to keep the costs of single parameter updates manageable. We initial-
ized this algorithm’s hyperparameters k1 and k2 to 50 and 100 frames of high-gamma activity, respectively, such 
that the unfolding procedure of the backpropagation step was limited to 100 frames (1 s) and repeated every 50 
frames (500 ms). Dropout was used as a regularization method with a probability of 50% to counter overfitting 
 effects56. Comparison between predicted and target labels was determined by the cross-entropy loss. We limited 
the network training using an early stopping mechanism that evaluated after each epoch the network perfor-
mance on a held-out validation set and kept track of the best model weights by storing the model weights only 
when the frame-wise accuracy score was bigger than before. The learning rate of the stochastic gradient descent 
optimizer was dynamically adjusted in accordance with the RMSprop  formula57 with an initial learning rate of 
0.001. Using this procedure, the unidirectional nVAD model was trained for 27,975 update steps, achieving a 
frame-wise accuracy of 93.4% on held-out validation data. The architecture of the nVAD model had 311,102 
trainable weights.

The network architecture of the bidirectional decoding model had a very similar configuration to the uni-
directional nVAD but employed a stack of bidirectional LSTM layers for sequence  modelling11 to include past 
and future contexts. Since the acoustic space of the LPC components was continuous, we used a linear fully con-
nected output layer for this regression task. Figure 4 contains an illustration of the network architecture of the 
decoding model. In contrast to the unidirectional nVAD model, we used standard BPTT to account for both past 
and future contexts within each extracted segment identified as spoken speech. The architecture of the decoding 
model had 378,420 trainable weights and was trained for 14,130 update steps using a stochastic gradient descent 
optimizer. The initial learning rate was set to 0.001 and dynamically updated in accordance with the RMSProp 

Figure 4.  System overview of the closed-loop architecture. The computational graph is designed as a directed 
acyclic network. Solid shapes represent ezmsg units, dotted ones represent initialization parameters. Each unit 
is responsible for a self-contained task and distributes their output to all its subscribers. Logger units run in 
separate processes to not interrupt the main processing chain for synthesizing speech.
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formula. Again, we used dropout with a 50% probability and employed an early stopping mechanism that only 
updated model weights when the loss on the held-out validation set was lower than before.

Both the unidirectional nVAD and the bidirectional decoding model were implemented within the PyTorch 
framework. For LPCNet, we used the C-implementation and pretrained model weights by the original authors 
and communicated with the library via wrapper functions through the Cython programming language.

Closed-loop architecture
Our closed-loop architecture was built upon ezmsg, a general-purpose framework which enables the imple-
mentation of streaming systems in the form a directed acyclic network of connected units, which communicate 
with each other through a publish/subscribe software engineering pattern using asynchronous coroutines. Here, 
each unit represents a self-contained operation which receives many inputs, and optionally propagates its output 
to all its subscribers. A unit consists of a settings and state class for enabling initial and updatable configura-
tions and has multiple input and output connection streams to communicate with other nodes in the network. 
Figure 4 shows a schematic overview of the closed-loop architecture. ECoG signals were received by connecting 
to BCI2000 via a custom ZeroMQ (ZMQ) networking interface that sent packages of 40 ms over the TCP/IP 
protocol. From here, each unit interacted with other units through an asynchronous message system that was 
implemented on top of a shared-memory publish-subscribe multi-processing pattern. Figure 4 shows that the 
closed-loop architecture was comprised of 5 units for the synthesis pipeline, while employing several additional 
units that acted as loggers and wrote intermediate data to disc.

In order to play back the synthesized speech during closed-loop sessions, we wrote the bytes of the raw PCM 
waveform to standard output (stdout) and reinterpreted them by piping them into SoX. We implemented our 
closed-loop architecture in Python 3.10. To keep the computational complexity manageable for this streamlined 
application, we implemented several functionalities, such as ringbuffers or specific calculations in the high-
gamma feature extraction, in Cython.

Contamination analysis
Overt speech production can cause acoustic artifacts in electrophysiological recordings, allowing learning 
machines such as neural networks to rely on information that is likely to fail once deployed—a phenomenon 
widely known as Clever  Hans58. We used the method proposed by Roussel et al.59 to assess the risk that our ECoG 
recordings had been contaminated. This method compares correlations between neural and acoustic spectro-
grams to determine a contamination index which describes the average correlation of matching frequencies. 
This contamination index is compared to the distribution of contamination indices resulting from randomly 
permuting the rows and columns of the contamination matrix—allowing statistical analysis of the risk when 
assuming that no acoustic contamination is present.

For each recording day among the train, test and validation set, we analyzed acoustic contamination in the 
high-gamma frequency range. We identified 1 channel (Channel 46) in our recordings that was likely contami-
nated during 3 recording days  (D5,  D6, and  D7), and we corrected this channel by taking the average of high-
gamma power features from neighboring channels (8-neighbour configuration, excluding the bad channel 38). 
A detailed report can be found in Supplementary Fig. S1, where each histogram corresponds to the distribution 
of permuted contamination matrices, and colored vertical bars indicate the actual contamination index, where 
green and red indicate the statistical criterion threshold (green: p > 0.05, red: p ≤ 0.05). After excluding the neu-
ral data from channel 46, Roussel’s method suggested that the null hypothesis could be rejected, and thus we 
concluded that no acoustic speech has interfered with neural recording.

Listening test
We conducted a forced-choice listening test similar to Herff et al.14 in which 21 native English speakers evaluated 
the intelligibility of the synthesized output and the originally spoken words. Listeners were asked to listen to one 
word at a time and select which word out of the six options most closely resembled it. Here, the listeners had the 
opportunity to listen to each sample many times before submitting a choice. We implemented the listening test 
on top of the BeaqleJS  framework60. All words that were either spoken or synthesized during the 3 closed-loop 
sessions were included in the listening test, but were randomly sampled from a uniform distribution for unique 
randomized sequences across listeners. Supplementary Fig. S3 provides a screenshot of the interface with which 
the listeners were working.

All human listeners were only recruited through indirect means such as IRB-approved flyers placed on cam-
pus sites and had no direct connection to the PI. Anonymous demographic data was collected at the end of the 
listening test asking for age and preferred gender. Overall, recruited participants were 23.8% male and 61.9% 
female (14% other or preferred not to answer) ranging between 18 to 30 years old.

Statistical analysis
Original and reconstructed speech spectrograms were compared using Pearson’s correlation coefficients for 80 
mel-scaled spectral bins. For this, we transformed original and reconstructed waveforms into the spectral domain 
using the short-time Fourier transform (window size: 50 ms, frameshift: 10 ms, window function: Hanning), 
applied 80 triangular filters to focus only on perceptual differences for human  listeners61, and Gaussianized the 
distribution of the acoustic space using the natural logarithm. Pearson correlation scores were calculated for 
each sample by averaging the correlation coefficients across frequency bins. The 95% confidence interval (two-
sided) was used in the feature selection procedure while the z-criterion was Bonferroni corrected across time 
points. Lower and upper bounds for all channels and time points can be found in the supplementary data. Con-
tamination analysis is based on permutation tests that use t-tests as their statistical criterion with a Bonferroni 
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corrected significance level of α = 0.05/N, where N represents the number of frequency bins multiplied by the 
number of selected channels.

Overall, we used the SciPy stats package (version 1.10.1) for statistical evaluation, but the contamination 
analysis has been done in Matlab with the statistics and machine learning toolbox (version 12.4).

Data availability
Neural data and anonymized speech audio are publicly available at http:// www. osf. io/ 49rt7/. This includes experi-
ment recordings used as training data and experiment runs from our closed-loop sessions. Additionally, we also 
included supporting data used for rendering the figures in the main text and in the supplementary material.

Code availability
Corresponding source code for the closed-loop BCI and scripts for generating figures can be obtained from the 
official Crone Lab Github page at: https:// github. com/ crone lab/ delay ed- speech- synth esis. This includes source 
files for training, inference, and data analysis/evaluation. The ezmsg framework can be obtained from https:// 
github. com/ iscoe/ ezmsg.
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