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Accelerated epigenetic age 
is associated with whole‑brain 
functional connectivity 
and impaired cognitive 
performance in older adults
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Amalia M. Skyberg 2, Stephanie N. Giamberardino 3, Morgan E. Lynch 4, Brenda C. Straka 5, 
Travis S. Lillard 1, Simon G. Gregory 3, Jessica J. Connelly 1 & James P. Morris 1*

While chronological age is a strong predictor for health‑related risk factors, it is an incomplete 
metric that fails to fully characterize the unique aging process of individuals with different genetic 
makeup, neurodevelopment, and environmental experiences. Recent advances in epigenomic array 
technologies have made it possible to generate DNA methylation‑based biomarkers of biological 
aging, which may be useful in predicting a myriad of cognitive abilities and functional brain network 
organization across older individuals. It is currently unclear which cognitive domains are negatively 
correlated with epigenetic age above and beyond chronological age, and it is unknown if functional 
brain organization is an important mechanism for explaining these associations. In this study, 
individuals with accelerated epigenetic age (i.e. AgeAccelGrim) performed worse on tasks that 
spanned a wide variety of cognitive faculties including both fluid and crystallized intelligence (N = 103, 
average age = 68.98 years, 73 females, 30 males). Additionally, fMRI connectome‑based predictive 
models suggested a mediating mechanism of functional connectivity on epigenetic age acceleration‑
cognition associations primarily in medial temporal lobe and limbic structures. This research highlights 
the important role of epigenetic aging processes on the development and maintenance of healthy 
cognitive capacities and function of the aging brain.

The body and mind undergo significant changes as we age through the  lifespan1,2. These developmental trajecto-
ries are critical for healthy development, reducing risk of mortality, and overall well-being3–5. While chronological 
age is a strong predictor for health-related risk factors, it is an incomplete metric that fails to fully characterize 
the unique aging process of individuals with different genetic makeup, neurodevelopment, and environmental 
 experiences6,7. One of the most striking changes humans undergo as we age is general decline across a wide 
variety of cognitive faculties, including memory, reasoning, spatial visualization, and processing  speed8. The 
current research is focused on taking an interdisciplinary approach for understanding cognitive aging through 
an epigenetic and neuroimaging framework.

Recent advances in epigenomic array technologies have made it possible to generate DNA methylation-
based biomarkers of biological  aging9. These biomarkers, called epigenetic clocks, use DNA methylation values 
from CpG sites across the genome to estimate the biological age of a person or tissue. One major advantage of 
epigenetic clocks is that they can be measured from all sources of DNA, including peripheral tissues, and can be 
applied throughout the  lifespan10. The first epigenetic clock, Horvath’s multi-tissue age estimator, yields epigenetic 
age estimates highly correlated with chronological  age10. Biological aging can be differentiated from chronologi-
cal age by taking the residuals leftover from the linear relationship between epigenetic age and chronological 
age, which captures the information embedded in the biomarker unexplained by chronological age. A higher 
epigenetic age compared to an individual’s chronological age would indicate they are aging faster than expected. 
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This epigenetic age acceleration is associated with risk of mortality and various age-related diseases including 
cancer, cardiovascular diseases, and  dementia11. Additionally, it is possible to assess these biomarkers of aging 
prior to the onset of  disease12,13. After the publication of Horvath’s original multi-tissue age estimator (i.e. first-
generation clocks: acceleration denoted as AgeAccelerationResidual), many other epigenetic clocks have been 
developed that capture different aspects of aging and are sensitive to external environmental factors (i.e. second-
generation clocks)7. One second-generation clock is DNAmPhenoAge (acceleration denoted as AgeAccelPheno), 
which is trained on “phenotypic age” instead of chronological age. The phenotypic age is itself an estimator of 
biological age based on physiological measurements that are associated with increased  mortality14. The current 
research is utilizing DNAmGrimAge, an epigenetic clock that was developed to reflect physiological changes 
associated with aging, including known plasma protein biomarkers of aging, and is trained on time-to-death15. 
DNAmGrimAge age acceleration (denoted as AgeAccelGrim) stands out among epigenetic clocks in its capacity 
to predict mortality risk and clinically relevant measures of  aging15,16.

While most research has focused on clinically relevant outcomes related to epigenetic age, several studies 
have investigated the link between epigenetic aging processes and cognitive  abilities17–20. One study found that 
age-adjusted Horvath’s clock values negatively correlated with a single g-factor derived from cognitive items using 
principal components analysis in the Lothian Birth  cohort21. A similar finding was reported in another sample, 
and found that digit symbol substitution, symbol search 4-choice reaction time, and matrix reasoning survived 
inference criterion after mass-univariate hypothesis testing from a collection of cognitive  items22. A longitudinal 
twin-study found that twins with higher epigenetic age acceleration relative to their twin sibling experienced 
more cognitive decline, which directly points to a role of epigenetic modification in cognitive  aging23. However, 
a different twin-study using the original Horvath and Hannum methods did not find evidence for a link between 
epigenetic age acceleration and  cognition24.

A qualitative meta-analysis of the current literature, which includes a heterogenous collection of epigenetic 
clock and cognitive measurements, suggests that the link between epigenetic age acceleration and cognition is 
potentially promising but currently unclear and  inconsistent25. The pattern of results in the literature is heavily 
dependent upon the epigenetic clock chosen as well as the investigated cognitive domain, with second-generation 
epigenetic clocks typically outperforming first-generation epigenetic clocks for detecting  associations26. And 
while studies exist that have looked at structural brain changes such as BrainAge estimators, there is a dearth 
of research examining functional brain changes with functional magnetic resonance imaging (fMRI) for age 
accelerated  individuals27. This is important because differences in functional brain organization is a putative 
mechanism for explaining the potential link between epigenetic age and  cognition28.

With respect to individual differences in human brain activity, the aging process has been examined with 
resting-state functional connectivity (rsFC) in fMRI. Resting-state functional networks measure the temporal 
co-activation of low frequency blood-oxygen-level-dependent (BOLD) signals when individuals are “at rest” 
and have shown to be stable across  timepoints29,30. Studies on healthy adults have consistently documented 
aging-related decreases in long-range connectivity within the Default Mode Network (DMN), comprised of the 
medial prefrontal cortex, the posterior cingulate cortices, hippocampus and the inferior parietal  lobules31–35. 
These declines in connectivity were preserved after controlling for structural gray matter  volume33,36. In addition, 
aging has been associated with decreased connectivity in rsFC networks associated with attention, salience and/
or motor  regions36–38 and increased connectivity in networks related to sensorimotor and subcortical  structures38.

Variability in rsFC has also been found to map onto individual differences in cognitive  abilities39,40. In aging 
individuals, increased connectivity in the DMN have been related to better scores on a memory  task41, a cogni-
tive control  task42, a motor speed  task43, and an executive functioning and processing speed  task33. However 
increased connectivity does not always associate with better cognitive performance in this age group: Decreased 
interhemispheric coupling of language processing areas were found to be positively correlated with grammar 
 learning44 and decreased connectivity between the thalamus and basal ganglia were positively related with verbal 
episodic  memory45. Newer studies have cited interhemispheric connectivity and connectivity within the cingulo-
opercular network as important neural correlates of cognitive skills in aging  adults46,47. In summary, rsFC has 
utility in helping us understand age-related changes and variability in cognitive aging.

One particularly influential analysis approach for understanding individual differences in resting-state brain 
networks is the connectome-based predictive model (CPM)48. CPM leverages robust idiosyncrasies of functional 
connectivity across individuals to make phenotypic predictions. CPM is particularly suited for individual differ-
ences research, as the networks are highly predictive of an individual’s identity irrespective of nuisance artifacts 
such as head motion or anatomical  differences49. Successful analysis frameworks using CPM include predicting 
an individual’s ID, age, attention, and general intelligence, among other  phenotypes48,50,51. Because epigenetic 
age acceleration and chronological age capture unique components of the aging process, it is currently unclear 
due to the dearth of research whether or not epigenetic age acceleration is related to individual differences in 
functional brain connectivity. To our knowledge, no research group has published work on using rsFC to examine 
changes in AgeAccelGrim.

The approach for the current research is unique because we are investigating an entire cognitive battery and 
decomposing those items into interpretable latent factors using a network model, and then using neuroimaging 
as a tool to understand how these relationships may be represented in the brain. This is in contrast to the previ-
ous studies investigating the relationship between epigenetic age and cognition, which have either (1) performed 
principal components analysis to estimate a single g-factor based on only one principal component, (2) only 
analyzed statistical relationships at the item-level which may be limited by the idiosyncratic properties of the 
task relevant to that item, and (3) importantly, did not use fMRI to build connectome-based predictive models 
to characterize these relationships in the brain. In other words, it is unclear which cognitive domains are consist-
ently negatively correlated with epigenetic age acceleration, and it is unknown if functional brain organization 
is an important mechanism for explaining these associations. We are also including measures of crystallized 
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intelligence (e.g. vocabulary assessments), in order to disambiguate if the relationship between epigenetic age 
processes and cognition is driven solely by fluid intelligence constructs (i.e. processing speed, spatial reasoning, 
etc.) or  not52. This is an important distinction, given that crystallized intelligence typically does not decline with 
age and may not be as sensitive to the aging brain to the same degree as fluid intelligence, which will inform the 
scope of the effect of epigenetic processes on healthy cognition and brain  function53.

The first goal of the current research is to test whether epigenetic aging processes (as indexed by AgeAc-
celGrim) predict individual differences between people across multiple cognitive ability domains. We chose to 
look at AgeAccelGrim, because empirical evidence suggests that this clock is more consistently associated with 
cognitive abilities relative to other epigenetic  clocks25. Specifically, we hypothesize that individuals who are 
more age accelerated with respect to their epigenome will perform worse on a wide variety of cognitive assess-
ments that measure various facets of both fluid and crystallized intelligence. To answer this question, we used 
a subset of the Virginia Cognitive Aging Project (VCAP) cohort who provided samples for epigenetic analysis 
and underwent fMRI. VCAP is one of the world’s largest longitudinal studies of cognitive change with a sam-
ple of community-dwelling healthy older adults, and has recently been enriched by data collection protocols 
incorporating epigenomic and neuroimaging  data54. This subset of VCAP participants includes individuals with 
scores showing signs of cognitive decline and individuals with scores showing signs of cognitive improvement 
(estimated by their previous visits). To index cognitive performance across a wide variety of domains, we used the 
VCAP cognitive battery, which includes 15 scales that map onto the latent domains of processing speed, memory, 
spatial visualization, reasoning, and vocabulary (three scales for each domain). This will help clarify whether or 
not second-generation epigenetic clocks, such as AgeAccelGrim, do in fact negatively correlate with cognition.

The second goal of the current research is to test whether AgeAccelGrim can be predicted from an individual’s 
rsFC fMRI profile using ridge regression connectome-based predictive models (rCPM). We are specifically inter-
ested in whether or not individual differences in cognition account for the potential relationship between rsFC 
and AgeAccelGrim. If functional networks were identified as being predictive, we used graph-theoretic tools to 
estimate which brain regions are important for contributing to overall model performance. We hypothesize that 
functional connectivity of brain structures that can predict AgeAccelGrim are important functional hubs for 
higher-order cognitive abilities such as those measured by the VCAP cognitive battery. We aimed to determine 
whether the functional connectivity profiles are reflective of general cognitive abilities (i.e. g-factor), or a more 
specific process such as processing speed or memory. Answering these questions will enrich our understand-
ing of if and how epigenetic age acceleration relates to functional brain network connectivity in the context of 
cognitive differences across individuals. Furthermore, finding evidence in functional brain networks may help 
explain why there is a link between epigenetic aging and cognitive aging processes.

Results
Marginal correlations between AgeAccelGrim and all measured cognitive items are negative
In order to directly compare results from the item-level cognitive data to the latent-level cognitive data, we 
computed a simple Pearson’s correlation matrix between all cognitive items, latent variables, AgeAccelGrim, and 
chronological age (see Fig. 1). Participant level summary statistics for cognitive performance and demograph-
ics are included in Table 1. For this analysis, we are not making any conclusions based on significance testing, 
but rather describing the pattern of marginal associations between all of these variables before fitting statistical 
models. For this specific analysis, data are aggregated over session by taking the mean cognitive score across 
sessions. There are several important pieces of information to glean from this analysis. First, by design, there is 
no linear relationship between AgeAccelGrim and chronological age; these two random variables are orthogonal 
with each other. Second, the sign of the marginal correlation between AgeAccelGrim and all cognitive items are 
negative. As expected, the same is true for chronological age. Third, the correlation between all cognitive items 
are positive, exhibiting the classical pattern of a positive manifold in cognitive  testing55. Fourth, the latent vari-
ables estimated from bootEGA (denoted as Proc. speed, memory, spatial/reasoning, and vocabulary) capture 
the unique contributions of the items that belong in their respective communities, by exhibiting larger positive 
correlations within-community relative to between-community. Finally, because the latent variables themselves 
exhibit a degree of positive correlation, this motivates the use of a multivariate statistical model to account for 
the linear relationships between the response variables.

AgeAccelGrim negatively associates with cognitive performance conditioning on chronologi‑
cal age and relevant covariates
Results from the multivariate hierarchical Bayesian model indicate that AgeAccelGrim does in fact negatively 
correlate with cognitive performance across all four empirically derived latent domains (see Fig. 2 and Table 2). 
This finding suggests that accelerated epigenetic age is associated with between-person differences in worse 
cognitive performance across tasks that measure both fluid and crystallized intelligence. Using the analogous 
Bayesian procedure for computing adjusted probability values directly from the posterior distributions on the 
standardized regression coefficients, processing speed (β = − 0.31, p = 0.007), memory (β = − 0.33, p = 0.004), rea-
soning/ spatial visualization (β = − 0.26, p = 0.009), and vocabulary (β = − 0.24, p = 0.009) all survive our inference 
threshold of α = 0.05 using the False Discovery Rate (FDR) procedure for multiple comparisons (see Fig. S1 for 
posterior fits)56. This further corroborates with the evidence from Fig. 1 that demonstrates the marginal correla-
tion between AgeAccelGrim and every single cognitive survey administered has a negative sign. Results from the 
model provide further evidence for a direct relationship between AgeAccelGrim and cognitive performance by 
conditioning on chronological age, sex, time factors, and blood cell count indices. By design, AgeAccelGrim and 
chronological age are fully orthogonal to each other, which suggests that AgeAccelGrim explains a unique portion 
of the variance in the response variable not captured by chronological age, because both covariates are included 
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Figure 1.  AgeAccelGrim negatively correlates with all cognitive items measured. Shown is the raw correlation 
matrix between AgeAccelGrim, chronological age, the original cognitive items, and the 4 latent cognitive 
domains. Data is aggregated over the three sessions by taking the mean for this visualization. There is no linear 
relationship between AgeAccelGrim and chronological age. At the marginal level, both AgeAccelGrim and 
chronological age negatively associate to some degree with all of the cognitive items surveyed, as well as the 4 
latent domains. As expected, the cognitive items and latent cognitive domains are positively correlated with each 
other.

Table 1.  VCAP participant summary statistics. Cognitive measurements were averaged across the three 
sessions here for computing participant-level summary statistics.

Trait Minimum Mean Maximum SD

Age-related variables

 Age 59 68.98 81 5.68

 AgeAccelGrim  − 6.46  − 0.16 9.88 3.49

 DNAmGrimAge 54.77 64.95 79.84 5.52

 Time difference (days) 21 331.54 1288 124.13

Cognitive measurements

 DigSym 35 72.24 107.67 12.61

 PatCom 6.5 14.78 25.5 3.2

 LetCom 4.5 9.71 17.17 2.05

 Recall 17.33 34.32 46.67 6.2

 LogMem 21.67 48.33 64 8.32

 PAssoc 0.33 2.79 5.83 1.51

 MatRea 2 7.26 13.33 2.81

 Ship 4 12.86 18.67 2.91

 LetSet 3.33 11.36 14 1.87

 SpaRel 3.33 9.49 16.67 3.43

 PapFld 2 6.16 11 2.44

 FrmBrd 1 6.43 13 2.8

 Vocab 17.67 53.59 62.67 6.87

 SynVoc 3.33 7.82 9.67 1.47

 AntVoc 2.67 7.35 10 1.65
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Figure 2.  AgeAccelGrim negatively associates with all 4 latent cognitive domains after adjusting for 
chronological age and all covariates. Panel (A) shows the posterior estimates for the AgeAccelGrim regression 
coefficients for each response variable as black lines with uncertainty bands showing the uncertainty. Overlaid 
are the raw data used to fit the model, which includes session-level information. Panel (B) shows the density 
plots on the bottom of the entire posterior distribution of parameter values, with 95% credible intervals 
indicated by the lines underneath the density. There is very little overlap with 0, suggesting that the relationship 
between AgeAccelGrim, conditional on chronological age and all other covariates, is reliably negative. The 
actual posterior probability values are included in the main text.

Table 2.  Bayesian multivariate population parameter estimates and associated uncertainty. Bold cell entries 
indicate 95% credible intervals that do not overlap with 0.

β coefficient Proc. speed Memory Spatial/reasoning Vocabulary

Parameters of interest

 Intercept 0.15 [− 0.19, 0.49]  − 0.13 [− 0.46, 0.20] 0.05 [− 0.28, 0.39] 0.00 [− 0.31, 0.31]

 AgeAccelGrim  − 0.31 [− 0.51, − 0.11]  − 0.33 [− 0.52, − 0.13]  − 0.26 [− 0.45, − 0.06]  − 0.24 [− 0.43, − 0.06]

 Age  − 0.39 [− 0.58, − 0.21]  − 0.45 [− 0.62, − 0.27]  − 0.33 [− 0.51, − 0.15]  − 0.20 [− 0.37, − 0.04]

Covariates

 Time difference 0.03 [− 0.14, 0.20] 0.10 [− 0.06, 0.27] 0.14 [− 0.03, 0.30] 0.01 [− 0.14, 0.17]

 Session 0.06 [0.02, 0.10] 0.01 [− 0.03, 0.04] 0.02 [− 0.02, 0.07]  − 0.18 [− 0.23, − 0.12]

 Sex (female)  − 0.21 [− 0.63, 0.21] 0.18 [− 0.22, 0.58]  − 0.06 [− 0.47, 0.35] 0.09 [− 0.28, 0.47]

 NK 0.05 [− 0.22, 0.32] 0.18 [− 0.08, 0.43] 0.17 [− 0.09, 0.43] 0.07 [− 0.17, 0.30]

 Mono  − 0.11 [− 0.30, 0.07]  − 0.10 [− 0.28, 0.08]  − 0.11 [− 0.29, 0.07]  − 0.06 [− 0.22, 0.11]

 Gran  − 0.05 [− 0.41, 0.30] 0.03 [− 0.31, 0.36] 0.04 [− 0.31, 0.38] 0.14 [− 0.18, 0.45]

 PlasmaBlast 0.19 [− 0.07, 0.44] 0.11 [− 0.13, 0.35] 0.06 [− 0.19, 0.30] 0.01 [− 0.21, 0.24]

 CD8pCD28nCD45RAn  − 0.02 [− 0.24, 0.21] 0.02 [− 0.19, 0.23] 0.09 [− 0.12, 0.31] 0.06 [− 0.13, 0.27]

 CD8.naive 0.11 [− 0.14, 0.35] 0.03 [− 0.21, 0.26] 0.02 [− 0.22, 0.25] 0.09 [− 0.14, 0.31]

 CD4.naive  − 0.12 [− 0.38, 0.14]  − 0.10 [− 0.35, 0.15]  − 0.04 [− 0.29, 0.22]  − 0.17 [− 0.40, 0.06]
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in the model estimation. As expected, chronological age was also negatively related to all four cognitive domains. 
The standardized AgeAccelGrim β coefficient maximum a-posterior (MAP) estimates for all four cognitive vari-
ables fall between − 0.24 and − 0.33. This suggests that a one standard deviation increase in AgeAccelGrim results 
in approximately one-fourth/one-third of a standard deviation decrease across all measured cognitive faculties.

Both AgeAccelGrim and age can be predicted from functional connectomes, and these results 
are accounted for via individual differences in cognition
Using rCPM, we are able to significantly predict AgeAccelGrim (median Spearman’s ρ = 0.313, non-parametric 
p = 0.021) and chronological age (median Spearman’s ρ = 0.364, non-parametric p = 0.012) from resting-state 
functional connectivity. Figure 3 shows the distributions of model performance, and suggests that controlling for 

Figure 3.  rCPM significantly predicts AgeAccelGrim, age, and memory/ spatial reasoning. Using both fMRI 
resting state input scans, rCPM can predict epigenetic age and chronological age, as well as memory and spatial 
reasoning (which are highly positively correlated). The phenotype (blue) distributions for the AgeAccelGrim 
analysis controlled for age, sex and the time difference between blood draw/brain scan and cognitive assessment, 
and conversely the age analysis controlled for AgeAccelGrim, sex, and the time difference. The control-adjusted 
(orange) distributions for AgeAccelGrim and Age additionally controlled for all four cognitive factors. The 
phenotype (blue) distributions of the cognitive factors controlled for sex and time difference. The control-
adjusted (orange) distributions for all four cognitive factors additionally controlled for Age and AgeAccelGrim. 
These results show that the functional connectome contains information uniquely relevant for both epigenetic 
age and chronological age, and that information is shared with individual differences in cognition, particularly 
memory.
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cognition mitigates the ability to predict AgeAccelGrim and age, suggesting that functional connectivity in the 
brain is a potential mediating mechanism that explains the relationship between AgeAccelGrim and cognition. 
In particular, it seems to be the case that memory (median Spearman’s ρ = 0.391, non-parametric p = 0.005) and 
spatial visualization/ reasoning (median Spearman’s ρ = 0.316, non-parametric p = 0.012) are able to be predicted 
from functional connectomes and share the most information with epigenetic age and chronological age-func-
tional connectivity associations. In contrast, processing speed (median Spearman’s ρ = 0.194, non-parametric 
p = 0.101) and vocabulary abilities (median Spearman’s ρ = 0.138, non-parametric p = 0.183) were not able to be 
predicted from resting-state functional connectomes. Figure S2 shows example representations computed when 
fitting rCPM models, which are highly correlated with simple bivariate correlations between pairwise connectiv-
ity and AgeAccelGrim, and suggest interpretability of the resulting coefficients.

The most important brain regions within the connectome for predicting AgeAccelGrim and 
Age support memory processes
Using eigenvector centrality to estimate which brain regions are important within the rCPM model, we found 
that the top five brain regions used to predict AgeAccelGrim and memory are similar, and that these structures 
largely support memory processes. Table 3 shows the most important brain regions in terms of functional con-
nectivity that support a healthy aging process indexed by less epigenetic age acceleration and better memory 
performance. These brain regions include medial temporal lobe structures such as the hippocampus, parahip-
pocampal cortex, anterior temporal lobe, orbitofrontal cortex, and retrosplenial cortex. Table 4 shows the most 
important brain regions that indicate a more at-risk aging process indexed by more epigenetic age acceleration 
and worse memory performance. Interestingly, this model returned some similar nearby patches of subcortex 
including hippocampal regions within the medial temporal lobe, as well as the caudate nucleus and amygdala. 
Because of the similarity of results across both the positive and negative weight models, particularly for the 
medial temporal lobes, it appears that more functional connectivity in some medial temporal lobe structures 
is indicative of healthy aging while in others less functional connectivity. Figures 4 and 5 show that networks 
for more epigenetic age acceleration and worse memory (and vice versa) have similar structure, as indexed by 
opposing color patterns particularly in the limbic system, but also in cerebellum, brainstem, and subcortical 
connections to proximal lobes. Fig. S3 shows that this structure is specific to AgeAccelGrim, by demonstrating 
that chronological age does not show the same opposing color pattern in the Hinton diagrams with respect to 
the memory networks. Table S1 includes the most important regions for predicting older age and younger age, 
which also include hippocampus, parahippocampus, and orbitofrontal cortex, as well as the caudate. Importantly, 
the important brain regions detected with AgeAccelGrim and age are different nodes in the network, thus adding 
unique information and complementary information when considered together.

Discussion
Our findings provide evidence that epigenetic age acceleration is associated with differences in cognitive abilities 
for both fluid and crystallized intelligence, and that functional connectivity profiles that predict AgeAccelGrim 
are similar to functional connectivity profiles that predict memory abilities. Specifically, individuals with more 
epigenetic age acceleration tended to perform worse on tasks that spanned a wide variety of cognitive faculties, 
and brain regions crucial for successful memory formation were most important for predicting AgeAccelGrim 
in the aging brain. These differences cannot be explained by chronological age alone, in that AgeAccelGrim and 

Table 3.  Most important functional connectivity regions for better memory and less accelerated epigenetic 
age. Bold values indicate the top two nodes that are shared across these phenotypes, and the remaining 
structures are largely implicated in learning and memory processes.

Node # X Y Z Region Lobe Centrality Top neurosynth terms

Better memory

 94 35.6  − 14.7  − 18.4 Hippocampus Limbic 0.17 Hippocampus, hippocampal, memory

 136  − 5.8 18.2  − 21.6 Orbitofrontal Prefrontal 0.16 Subgenual, major depression, depression

 195  − 37.8  − 13.2  − 29.3 Inferior temporal gyrus Motor 0.14 Anterior temporal, temporal, medial 
temporal

 18 26.6 19.6  − 21.3 Pars orbitalis Prefrontal 0.13 Cortex ofc, ofc, orbitofrontal

 3 5.1 34.9  − 17.4 Orbitofrontal Prefrontal 0.12 Orbitofrontal, orbitofrontal cortex, medial 
orbitofrontal

 125 14 8.3  − 9.5 Putamen Prefrontal 0.12 Reward, ventral striatum, striatum

Less age accelerated

 94 35.6  − 14.7  − 18.4 Hippocampus Limbic 0.20 Hippocampus, hippocampal, memory

 136  − 5.8 18.2  − 21.6 Orbitofrontal Prefrontal 0.15 Subgenual, major depression, depression

 268  − 6.1  − 18.9  − 36.8 Brainstem Brainstem 0.14 N/A

 227  − 7.5  − 42.1 13.3 Agranular retrolimbic Limbic 0.13 Retrosplenial cortex, retrosplenial, posterior 
cingulate

 229  − 21.5  − 36.9 5.7 Hippocampus Limbic 0.13 Hippocampus, hippocampal, learning task

 96 29.3  − 19.6  − 26.3 Parahippocampal Limbic 0.12 Medial temporal, hippocampus, parahip-
pocampal
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chronological age are orthogonal variables, and both were included/controlled for in each statistical model. This 
suggests that epigenetic age explains a unique portion of variance of cognitive ability that chronological age 
does not capture, and this relationship may be explained by connectivity of memory brain structures primarily 
within the limbic system. Furthermore, at the behavioral level the effect of epigenetic age on cognition seems 
to negatively correlate with multiple domains and is not limited to fluid intelligence metrics. Interestingly the 
estimated slope values for AgeAccelGrim and chronological age were relatively close in standardized value across 
the domains, which may suggest that both factors are similarly important for predicting cognitive performance.

While AgeAccelGrim was associated with all cognitive factors, evidence from the brain using state-of-the-art 
rCPM functional connectivity analysis suggested that memory-related cognitive processes shared information 
with functional connectomes predicting AgeAccelGrim. This was reflected in the brain systems identified as 

Table 4.  Most important functional connectivity regions for worse memory and accelerated epigenetic age. 
Bold values indicate the top nodes (as well as 2nd memory node and 4th AgeAccelGrim node) that are shared 
across these phenotypes, and the remaining cortical structures are largely implicated in learning and memory 
processes.

Node # X Y Z Region Lobe Centrality Top neurosynth terms

Worse memory

 59 43.4  − 26.5  − 24.6 InfTempGyrus Temporal 0.19 Photographs, temporal lobe, medial temporal

 234  − 30.5  − 23.9  − 26.6 Parahipp Limbic 0.19 Lobe mtl, hippocampal, mtl

 122 13.7  − 4.2 20.9 Caudate Subcortical 0.14 Caudate, caudate nucleus, nucleus

 58 40.3  − 11.3  − 35.8 InfTempGyrus Motor 0.13 Face recognition, medial temporal, temporal lobe

 217  − 23.6  − 41.3 19.9 NA Limbic 0.13 N/A

 230  − 32.1  − 40.2  − 4 Hippocampus Limbic 0.13 Hippocampal, medial temporal, hippocampus

More age accelerated

 59 43.4  − 26.5  − 24.6 InfTempGyrus Temporal 0.21 Photographs, temporal lobe, medial temporal

 2 9.6 17.8  − 19.5 OrbFrontal Prefrontal 0.15 Interpersonal, frontotemporal, cognitive emotional

 120 21.2  − 36.4 22.6 NA Subcortical 0.15 N/A

 92 31.2 3.7  − 21.6 Amygdala Limbic 0.14 Amygdala, amygdala insula, fear

 234  − 30.5  − 23.9  − 26.6 Parahipp Limbic 0.14 Lobe mtl, hippocampal, mtl

 127 12.3  − 27.7 13.5 Thalamus Subcortical 0.13 Caudate nucleus, thalamic, insula inferior

Figure 4.  Networks reflective of memory performance and AgeAccelGrim show largely opposite patterns at the 
lobe-level. Hinton plot visualizations show that memory and AgeAccelGrim have opposing network structure 
patterns, suggesting that better memory and less accelerated epigenetic age (and vice versa) are captured 
through similar lobe-level connections through the functional connectome. Size corresponds to the sum of 
edges in the “high”- and “low” networks standardized by the number of possible edges between each pair of 
regions. Color corresponds to the difference between edges in the high- and low-phenotype networks, such 
that red corresponds to edges mostly in the better memory/more epigenetic age accelerated network and blue 
corresponds to edges mostly in the worse memory/less epigenetic age accelerated network. In particular, the 
limbic, cerebellar, and brainstem networks, as well as the subcortical connections to those three networks, have 
opposing strength. These results are in line with the hypothesis that epigenetic age acceleration and memory 
performance are negatively correlated at least in part due to functional brain activity differences.
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important using rCPM, which largely implicated sub-cortical structures in the medial temporal lobe and limbic 
system. Connectivity within these nearby structures has been previously shown to change through aging and 
relates to cognitive  outcomes57–59. Furthermore, the direction of connectivity (positive vs. negative) depends 
on the exact structures measured in these systems, such as the head, tail, or body of the  hippocampus60. Model 
systems work corroborates with human studies, such that differential connectivity in CA1 and CA3 regions 
of the hippocampus in rats undergoing resting-state fMRI is associated with age-related memory  deficits61. 
Taken together, these brain structures are known to be important for aging and cognitive change, and here we 
demonstrate that epigenetic age acceleration captures a unique portion of this functional brain organization as 
it pertains to these differences.

There are several limitations to the current research. Ideally, epigenetic age indices are tracked longitudinally 
in temporal synchrony with cognitive measurements and fMRI to assess within-person dynamics of these three 
factors through time. Access to this data could facilitate answering the question if epigenetic age acceleration 
precedes or follows cognitive decline within an individual as they age. While this would not be a fully causal 
explanation, it would provide insight into understanding which of these factors is first impacted by the aging 
process. We hypothesize that epigenetic age acceleration does in fact precede deficits in cognitive performance 
and differential functional connectivity, but more studies would need to be designed to provide evidence for an 
answer to that question. Another potential limitation of this study is the focus on one specific epigenetic clock. 
Our specific interest in using AgeAccelGrim for hypothesis testing on cognitive and functional brain differences 
was developed apriori. However, we have included results for both Horvath’s clock and PhenoAge in Figs. S5, S6 
and Table S2, which show that these two clocks are in fact also negatively associated with cognition, but not above 
and beyond the effects of chronological age and AgeAccelGrim. We are not claiming that AgeAccelGrim is the 
only clock to investigate in this research context, and acknowledge that further advancements in the future will be 
developed that improve upon the innovations of AgeAccelGrim. Another limitation of this study is the participant 
sample, which consists of a relatively small sample of healthy older adults. The population sample for the original 
GrimAge work consisted of 50% White/Caucasian, 40% African American, and 10%  Hispanic15. The majority 
of our studied sample was White/Caucasian, which is a potential limitation for the current research. Estimating 

Figure 5.  Networks reflective of memory performance and AgeAccelGrim show largely opposite patterns at 
the edge-level. Circle plot diagrams show that memory and AgeAccelGrim have opposing network structure 
patterns, suggesting that better memory and less accelerated epigenetic age (and vice versa) are captured 
through similar edge-level connections through the functional connectome. Edges in the positive networks are 
visualized in red, and edges in the negative network are visualized in blue. Darker lines correspond to edges with 
higher strength (absolute value). The hemispheres are split vertically in each panel and are displayed from right 
to left.
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the average association between epigenetic age acceleration, cognition, and functional brain connectivity would 
require a larger and more racially diverse sample from across the lifespan, as well as across the entire spectrum 
of general health. An important avenue for future research would be to determine if the relationship between 
epigenetic age acceleration, cognition, and functional brain connectivity would be heightened or diminished if 
a sample fully representative of the population with respect to health and race were assessed.

Future work should incorporate epigenetic and neuroimaging data in a prospective model to assess how 
pathological cognitive aging diverges from healthy cognitive aging. This could manifest as mild cognitive impair-
ment (MCI) or more severe cases such as Alzheimer’s disease and Alzheimer’s disease related dementias (AD/
ADRD). A future goal is to be able to estimate the likelihood of healthy and pathological development using 
epigenetic age, so that we can build better systems for predictive diagnostics and early intervention for specific 
persons. This could be accomplished through a rich and interdisciplinary individual differences approach to 
studying cognitive aging, by tracking epigenomic, phenotypic, and neuroimaging data together through time 
longitudinally. While further research is necessary for direct applications of these findings, epigenetic age accel-
eration together with neuroimaging in the future could be used as an important factor to consider for assessing 
risk of cognitive decline for individuals. The current research provides evidence that this could be a promising 
future approach for prospectively predicting cognitive decline risk, as the collection of epigenetic age and brain 
data becomes less expensive, and the quantification of this specific risk is analyzed with a sample representative 
of the general population In the future and following more research on this topic, these epigenetic age and neu-
roimaging measurements could be used as tools for diagnostics toward potential intervention, to help prevent 
cognitive decline for individuals at high risk who have yet to show symptoms. In summary, this research provides 
further evidence for the important role of epigenetic aging processes on the development and maintenance of 
healthy cognitive capacities, and suggests that functional connectivity within relevant brain structures for these 
capacities is differentially modulated through epigenetic age.

Methods
Participant sample
Protocols for data collection and analysis were evaluated and approved by the University of Virginia Health 
Sciences Institutional Review Board (Protocol HS19498). All participants provided written informed consent 
before participation. Participants underwent a 60-min scan protocol that consisted of functional and structural 
acquisition sequences. Participants were then led to a clinic where blood was drawn from a phlebotomist for 
downstream epigenetic analysis. No clinical data was collected from participants. The cognitive data collection, 
typically happened on a different day due to time constraints, and is described below.

The VCAP cognitive battery was measured longitudinally, across short and long time-scales using a variable 
retest interval and measurement burst design. For each occasion, participants’ cognitive abilities were surveyed 
three times in two-hour sessions, with each session being separated by two weeks. For the current research, we 
are only examining the occasion (three sessions per participant, N = 103) that is closest in time to the provided 
epigenetic sample and fMRI scan. Only 98 out of the 103 participants underwent fMRI, thus the neuroimaging 
analysis and results are based on the 98 participants who completed our fMRI protocol, while the behavioral 
results include all 103 participants. 73 females and 30 males with an average age of 68.98 years completed the 
study with the following race distribution: 90% Caucasian, 6% African American, 3% Native American, 1% Asian.

Cognitive measurements
Each cognitive scale name has an associated abbreviation in parentheses for its name which is used in all figures 
and tables in order to conserve space. Descriptions of these tasks were abbreviated from descriptions previously 
 published8. Sum scores of each cognitive task were computed as the basis for the bootEGA model.

Processing speed
The three instruments used to assess processing speed were Digit Symbol Substitution (DigSym), Pattern Com-
parison (PatCom), and Letter Comparison (LetCom). DigSym involves referencing a code table to write symbols 
arbitrarily paired with digits as quickly as  possible62. PatCom involves determining if two line patterns are the 
same or different as quickly as  possible63. LetCom involves determining if two letter strings are the same or dif-
ferent as quickly as  possible63.

Memory
The three instruments used to assess memory were Word Recall (Recall), Logical Memory (LogMem), and Paired 
Associates (PAssoc). Recall requires listening to a list of 12 unrelated words and then immediately recalling as 
many as  possible64. LogMem requires listening to a story and then immediately recalling as many details of 
that story as  possible64. PAssoc requires listening to six pairs of unrelated words, and then recalling the second 
member of the pair after being cued by the first  member65.

Spatial visualization
The three instruments used to assess spatial visualization were Spatial Relations (SpaRel), Paper Folding (PapFld), 
and Form Boards (FrmBrd). SpaRel involves identifying which three-dimensional figures corresponds to which 
two-dimensional figure if it were  assembled66. PapFld involves selecting the pattern of holes that would result if 
a piece of paper were to be folded and a hole were punched in the specified  location67. FrmBrd involves selecting 
pieces that could be constructed to fill a designated  form67.
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Reasoning
The three instruments used to assess reasoning were Matrix Reasoning (MatRea), Shipley Abstraction (Ship), 
and Letter Sets (LetSet). MatRea requires choosing a solution from alternatives to complete the missing cell in a 
matrix of geometric  patterns68. Ship requires determining the best option for completing a pattern from a series 
of  elements69. LetSet requires identifying the outlier among sets of letters that does not follow the same pattern/ 
rule as the  others67.

Vocabulary
The three instruments used to assess vocabulary were WAIS Vocabulary (Vocab), Synonym Vocabulary (Syn-
Voc), and Antonym Vocabulary (AntVoc). Vocab asks participants to provide a definition for each word where 
scores are either incorrect, incomplete, partially correct, or  correct62. SynVoc asks participants to identify which 
of five words is the synonym to the target  word70. AntVoc asks participants to identify which of five words is the 
antonym to the target  word70.

Epigenetic age
Eight and a half milliliters of whole blood were drawn into a PAXgene Blood DNA Tube (PreAnalytiX, Hombre-
chtikon, Switzerland). Samples were stored at 20 °C for short-term storage (up to 3 months) then transferred to 
− 80 °C for long-term storage. DNA was extracted using the PAXgene Blood DNA kit (PreAnalytiX, Hombre-
chtikon, Switzerland) according to manufacturer instructions. DNA concentration was determined by Quant-
iT™  PicoGreen® dsDNA reagent (Thermofisher Scientific, Waltham, MA, USA) per manufacturers instruction. 
Florescence was detected using a Tecan Infinite M200 Pro microplate reader (Tecan, Switzerland). 500 ng of DNA 
was bisulfite treated using a Zymo EZ DNA Methylation kit (Zymo Research, Irvine, CA) using PCR conditions 
for Illumina’s Infinium Methylation assay (95 °C for 30 s, 50 °C for 60 min × 16 cycles). DNA methylation was 
assayed using the Illumina Infinium MethylationEPIC BeadChips. Briefly, a total of 4μL of bisulfite converted 
DNA was hybridized to Illumina BeadChips using the manufacturer’s protocols. Samples were denatured and 
amplified overnight for 20 to 24 h. Fragmentation, precipitation, and resuspension of the samples followed 
overnight incubation, before hybridization to EPIC BeadChips for 16 to 24 h. BeadChips were then washed to 
remove any unhybridized DNA and labeled with nucleotides to extend the primers to the DNA sample. Following 
the Infinium HD Methylation protocol, the BeadChips were imaged using the Illumina iScan system (Illumina).

Raw .idat files were read and preprocessed using the minfi package in  R71,72. The data set was preprocessed 
using noob for background subtraction and dye-bias normalization. All methylation values with detection 
P > 0.01 were set to missing (median sample: 765 probes, range: 319 to 4453), and probes with > 1% missing values 
(n = 6663) were removed from further analysis. All samples were checked and confirmed to ensure that predicted 
sex matched reported sex. Additionally, samples were checked for excessive missing data (> 5%) and unusual cell 
mixture estimates, which was estimated using the Houseman method as implemented in minfi73,74. All samples 
passed these quality controls. Principal components analysis, as implemented in the shinyMethyl package in R, 
was used to examine batch  effects75. The first seven principal components were examined using plots and poten-
tial batch effects were tested using linear models. Principal components 3 and 6, which accounted for 2.38% and 
1.65% of total variance respectively, were associated with position on the array (PC3: F(7, 100) = 6.668, p = 1.77e–6, 
adjusted R2 = 0.271; PC6: F(7, 100) = 2.328, p = 0.030, adjusted R2 = 0.080). Principal components 1, 4, and 5, which 
accounted for 3.63%, 1.89%, and 1.77% of the total variance were associated with bisulfite conversion plate 
(PC1: F(1, 106) = 9.918, p = 0.002, adjusted R2 = 0.077; PC4: F(1, 100) = 34.04, p = 5.932e–8, adjusted R2 = 0.236; PC5: 
F(1, 100) = 31.07, p = 1.91e–7, adjusted R2 = 0.219). Principal components 4 and 5 were associated with array (PC4: 
F(13, 94) = 4.332, p = 1.14e–5, adjusted R2 = 0.288; PC5: F(13, 94) = 4.229, p = 1.06e–5, adjusted R2 = 0.282). Bisulfite 
conversion plate and array number were associated with each other, as samples on the same array originated from 
the same bisulfite conversion plate. Because samples were randomized across plates and arrays, and proportions 
of variance explained by associated principal components were low, no batch correction method was used. The 
ewastools package in R was used to assess Illumina quality control metrics and call genotypes and donor IDs to 
ensure the identity of repeated samples from the same  individual76. All samples passed Illumina quality controls.

To determine assay variability, we included one set of five technical replicates and an additional three sets of 
two technical replicates. After quality control filters and normalization procedures were applied, the 5000 CpGs 
with the most variable M values were used as input for calculating Pearson’s correlation coefficients among all 
pairwise combinations of samples. Pearson’s correlation of unrelated samples (different individuals) were below 
0.8, while correlations of technical replicates ranged from 0.988 to 0.994, indicating high agreement between 
technical replicates.

Unnormalized betas were filtered to include CpGs specified by Horvath as necessary for calculation of various 
clocks. The betas were uploaded to Horvath’s online DNA methylation age calculator (https:// dnama ge. genet ics. 
ucla. edu), which provides measures of Horvath’s multi-tissue age estimator, DNA methylation GrimAge, and cell 
type  abundance10,15. A sample annotation file was included. The options to normalize data and apply advanced 
analysis were selected. Technical replicates were used to determine measurement error of DNAmAge, the output 
of Horvath’s multi-tissue age estimator. The absolute difference of DNAmAge between technical replicate pairs 
was taken, as was the highest absolute difference in the set of five technical replicates. The median of the absolute 
difference was 2.02 years (range: 0.44–5.73 years), comparable to previous reports of measurement error being 
approximately 2.41  years77.

https://dnamage.genetics.ucla.edu
https://dnamage.genetics.ucla.edu
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Functional magnetic resonance imaging
Imaging parameters and acquisition
MRI scanning was performed at the University of Virginia Fontaine Research Park on a Siemens 3 Tesla MAG-
NETOM Prisma Fit high-speed imaging device equipped with a 32-channel head-coil. First, high-resolution 
T1-weighted anatomical images were acquired using Siemens’ magnetization-prepared rapid-acquired gra-
dient echo (MPRAGE) pulse sequence with the following specifications: echo time (TE) = 2.98 ms; repeti-
tion time (TR) = 2300 ms; flip angle (FA) = 9°; image matrix = 240 mm × 256 mm; slice thickness = 1 mm; 208 
slices. Then, whole-brain functional images were acquired using a T2*-weighted echo planar imaging (EPI) 
sequence sensitive to BOLD contrast with the following specifications: TE = 30 ms; TR = 800 ms; FA = 52°; image 
matrix = 90 mm × 90 mm; slice thickness = 2.4 mm; slice gap = 2.4 mm; 660 slices. We collected two 610 volume 
resting-state functional runs, totaling 976 s of resting-state functional imaging data for each participant. A black 
crosshair on a gray background was presented using an LCD AVOTEC projector onto a screen located behind 
the participant’s head and viewed through an integrated head-coil mirror.

Pre‑processing with fMRIPrep
Results included in this manuscript come from preprocessing performed using fMRIPrep 21.0.2 
(RRID:SCR_016216)78, which is based on Nipype 1.6.1 (RRID:SCR_002502)79. Many internal operations of 
fMRIPrep use Nilearn 0.8.180, mostly within the functional processing workflow. For more details of the pipeline, 
see the section corresponding to workflows in fMRIPrep’s documentation. For each participant, the T1-weighted 
(T1w) image was corrected for intensity non-uniformity (INU) with  N4BiasFieldCorrection81, distributed with 
ANTs 2.3.3 (RRID:SCR_004757)82, and used as T1w-reference throughout the workflow. The T1w-reference 
was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), 
using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter 
(WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 6.0.5.1:57b01774, 
RRID:SCR_002823)83. Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) 
was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-extracted ver-
sions of both T1w reference and the T1w template. The following template was selected for spatial normalization: 
ICBM 152 Nonlinear Asymmetrical template version 2009c (RRID:SCR_008796; TemplateFlow ID: MNI152NLin-
2009cAsym)84. A deformation field to correct for susceptibility distortions was estimated based on fMRIPrep’s 
fieldmap‑less approach. The deformation field is that resulting from co-registering the EPI reference to the same-
subject T1w-reference with its intensity  inverted85,86. Registration is performed with antsRegistration (ANTs 
2.3.3), and the process regularized by constraining deformation to be nonzero only along the phase-encoding 
direction, and modulated with an average fieldmap  template87.

For each of the two BOLD resting-state runs per subject, the following preprocessing was performed. First, 
a reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. 
Head-motion parameters with respect to the BOLD reference (transformation matrices, and six correspond-
ing rotation and translation parameters) were estimated before any spatiotemporal filtering using mcflirt (FSL 
6.0.5.1:57b01774)88. The estimated fieldmap was then aligned with rigid-registration to the target EPI (echo-
planar imaging) reference run. The field coefficients were mapped on to the reference EPI using the transform. 
BOLD runs were slice-time corrected to 0.351 s (0.5 of slice acquisition range 0–0.703 s) using 3dTshift from 
AFNI (RRID:SCR_005927)89. The BOLD reference was then co-registered to the T1w reference using mri_coreg 
(FreeSurfer) followed by flirt (FSL 6.0.5.1:57b01774)90 with the boundary-based registration cost-function91. 
Co-registration was configured with six degrees of freedom.

Several confounding time-series were calculated based on the preprocessed BOLD: framewise displacement 
(FD), DVARS and three region-wise global signals. FD was computed using two formulations following Power 
(absolute sum of relative  motions92) and Jenkinson (relative root mean square displacement between  affines88). 
FD and DVARS were calculated for each functional run, both using their implementations in Nipype92. The 
three global signals were extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of 
physiological regressors were extracted to allow for component-based noise correction (CompCor)93. Principal 
components were estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine 
filter with 128 s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
tCompCor components were then calculated from the top 2% variable voxels within the brain mask. For aCom-
pCor, three probabilistic masks (CSF, WM and combined CSF + WM) were generated in anatomical space. The 
implementation  differs93 in that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks 
are subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is obtained by threshold-
ing the corresponding partial volume map at 0.05, and it ensures components are not extracted from voxels 
containing a minimal fraction of GM. Finally, these masks are resampled into BOLD space and binarized by 
thresholding at 0.99 (as in the original implementation). Components are also calculated separately within the 
WM and CSF masks. For each CompCor decomposition, the k components with the largest singular values are 
retained, such that the retained components’ time series are sufficient to explain 50 percent of variance across 
the nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped from consid-
eration. The head-motion estimates calculated in the correction step were also placed within the corresponding 
confounds file. The confound time series derived from head motion estimates and global signals were expanded 
with the inclusion of temporal derivatives and quadratic terms for  each94. Frames that exceeded a threshold of 
0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers.

The BOLD time-series were resampled into standard space, generating a preprocessed BOLD run in MNI152N‑
Lin2009cAsym space. All resamplings can be performed with a single interpolation step by composing all the per-
tinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction when available, 
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and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were performed using 
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other 
 kernels95.

Parcellation and image preparation
At the parcellation step, functional images were high-pass filtered at 0.008 Hz and cleaned with the following 
fMRIPrep confound derivatives to account for global BOLD signal outside of gray matter (csf, white_matter), pri-
mary data-driven estimated noise components (tcompcor, a_comp_cor_00, a_comp_cor_01) and motion-related 
parameters (trans_x, trans_x_power2, trans_y, trans_y_power2, trans_z, trans_z_power2, rot_x, rot_x_power2, 
rot_y, rot_y_power2, rot_z, rot_z_power2). For both resting-state functional scans, parcellation was performed 
by taking the framewise average of the voxel-wise signals in each of the 268 nodes from the Shen  atlas96. The 
Shen atlas is a functionally defined parcellation that covers the whole brain, including cortex, subcortex, and 
cerebellum. The two resting-state scans were concatenated along the time dimension before calculating con-
nectivity, as this can improve reliability of  estimates97. We calculated Fisher Z transformed Pearson correlation 
coefficients between the activity time courses of all possible pairs of nodes to construct 268 × 268 symmetric 
functional connectivity matrices. Only the lower triangle of each functional connectivity matrix was extracted 
and vectorized, discarding the constant diagonal, resulting in 35,778 unique connections/edges, which served 
as input features (i.e. columns in the design matrix) to rCPM.

Statistical analysis
Bootstrap exploratory graph analysis
In order to reduce the dimensionality of the cognitive measurements into a latent space, we applied bootEGA 
using the EGAnet package in  R98. bootEGA is a community detection and network analysis method to evaluate 
the dimensional structure estimated using Exploratory Graph Analysis (EGA)99,100. The general approach of 
bootEGA is to generate bootstrap samples and apply EGA to each replicate sample, forming a sampling distri-
bution of EGA results. EGA models a collection of variables through estimation of a sparse regularized partial 
correlation matrix using the graphical LASSO (GLASSO)  procedure101.

The parametric bootstrap procedure begins by estimating a network using EGA and then generating new 
replicate data from a multivariate normal distribution (with the same number of cases as the original data). 
EGA is then applied to the replicate data, continuing iteratively until the desired number of samples is achieved 
(1000 iterations used). The result is a sampling distribution of EGA networks. From this sampling distribution, 
a median (or typical) network structure was estimated by computing the median value of each edge across the 
replicate networks, resulting in a single network. Such a network represents the “typical” network structure of 
the sampling distribution. The Louvain community detection algorithm was then applied, resulting in dimen-
sions that would be expected for a typical network from the EGA sampling distribution (identical community 
membership estimated by the Walktrap algorithm for comparison)102. One metric for structural consistency is 
item stability or the robustness of each item’s placement within each empirically derived dimension. Item stability 
is estimated by computing the proportion of times each item is placed in each dimension. This metric provides 
information about which items are leading to structural consistency (replicating often in their empirically derived 
dimension) or inconsistency (replicating often in other dimensions).

We computed standardized network community scores for each community from the model-implied graph 
from EGA. The standardized network community scores are linear combinations of the original measurements 
within the cognitive battery. These network scores are compressed representations of the original data and are 
analogous to component vectors from principal components analysis or factor scores from factor  analysis103. 
Each cognitive dimension derived from EGA (four, in this case) has its own network score vector. This means 
each participant has four network scores for each session, and each network score is computed as a linear com-
bination of the weighted items that load onto each community.

The results from Bootstrap Exploratory Graph Analysis (bootEGA) suggest four distinct communities, which 
roughly map to the cognitive domains of processing speed, memory, reasoning/ spatial visualization, and vocabu-
lary (see Fig. 6). These latent variable communities were stably estimated, such that items consistently loaded into 
the same factor across repeated iterations (for metrics that demonstrate high stability, please see Fig. S4). The 
dimensionality assessment of four communities from bootEGA corroborates with the Scree plot in Fig. 6 using 
eigenvalue–eigenvector decomposition. The number of eigenvalues greater than 1 is a rough heuristic estimate 
of the number of distinct communities contained in a collection of variables (in this case, 4). The likely reason 
for the reasoning and spatial visualization factors to be collapsed into the same community is the inclusion of the 
matrix reasoning item, which loads most strongly onto this latent variable and requires spatial abilities to solve 
appropriately. It is also common to find that reasoning and spatial visualization abilities are highly positively 
correlated with each  other104. It is important to note that the four derived latent factors are not orthogonal, and 
items from different communities can have non-zero weights onto other communities. This makes sense to allow 
from a cognitive perspective, as we do not expect any of these domains to be fully independent of each other.

Hierarchical Bayesian model approach
In order to model cognitive performance as a function of AgeAccelGrim, chronological age, sex, and blood cell 
count covariates (abbreviated as NK, Mono, Gran, PlasmaBlast, CD8pCD28nCD45Ran, CD8.naive, CD4.naive), 
we fit a multivariate hierarchical Bayesian generalized linear model with a Student-T likelihood. Because blood 
cell counts are known to influence DNAmGrimAge, we account for these age-related changes in immune cell 
populations to ensure the epigenetic age acceleration parameters are not merely indicative of blood cell  counts105. 
We used the Student-T likelihood as an alternative to the traditional Gaussian likelihood, because the Student-T 
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alternative is more robust to outliers and converges to the Gaussian solution when Gaussian assumptions are in 
fact  met106. Interpreting the coefficients of Student-T regression (also known as robust regression in a Bayesian 
framework) is similar to traditional regression with a Gaussian likelihood. Each latent cognitive domain response 
variable was jointly estimated in a multivariate model to account for correlation across each domain.

We used the brms software package in R and the state-of-the-art Hamiltonian Monte-Carlo No-U-Turn 
sampler (NUTS) for Bayesian computation and  inference107,108. Default priors on the intercepts were generated 
by Student-T (ν = 3, μ = 0.2, σ = 2.5), and the σ scale parameters were generated by Student-T (ν = 3, μ = 0, σ = 2.5). 
Priors for the ν degrees of freedom parameter were generated by γ (α = 2, β = 0.1), with special treatment of the 
vocabulary prior γ (α = 12, β = 0.1), due to its consistent underestimation of ν which would lead to unstable 
posteriors without being addressed. Priors for the correlation matrices between fixed and random effects were 
generated by LKJ-Cholesky (η = 1). We ran 7 independent Markov chains each with 20,000 total iterations, 
including 10,000 warm-up iterations. We fixed the target average proposal acceptance probability to 99% to 
improve the quality of sampling and thus the resulting posterior distributions. Convergence of the posteriors 
were confirmed with all R ̂≈ 1.0, which assesses agreement across the Markov chains. Posterior predictive checks 
were used to assess model  adequacy109.

Posterior distributions on the parameters can be inspected and inference can be employed using credible 
intervals (the Bayesian alternative to Frequentist confidence intervals). Additionally, we can simply look at the 
ratio of posterior density on respective sides of 0. Counting the number of observations in the sampled posterior 
distribution for a given parameter on the side of 0 that has the minority, and then multiplying that count by 2, 
results in a Bayesian analogue to a two-tailed Frequentist p-value. The hypothesis function in brms returns these 
posterior probabilities for  inference107. This procedure is not directly sensitive to the prior relative to alternative 
procedures such as bayes factors, making it a more attractive option when the priors are used simply for regu-
larization and are not informed by domain  knowledge110.

There are several motivating factors for using Bayesian techniques for the current research. First, we can 
apply regularization priors to the regression coefficients as a way to employ shrinkage and mitigate potential for 

Figure 6.  Four latent domains estimated from the cognitive battery using bootEGA. Panel (A) shows the 
estimated graph of the cognitive battery, where distinct colors reflect distinct communities and the size of the 
edges between nodes reflects the strength of the connection. Panel (B) shows the regularized partial correlation 
matrix that is a numeric representation of the graph, where white space indicates no connection between those 
nodes, and the cell entries represent edge strength between each node. This is the adjacency matrix for the graph 
and was estimated using GLASSO. Panel (C) shows the eigenvalue–eigenvector decomposition of the cognitive 
battery, providing additional supporting evidence that there are approximately 4 latent variables among the 
original set of items.
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over-fitting, generated by β ~ N (μ = 0, σ = 10). Second, we can easily model hierarchy through probability distribu-
tions which allows for accurate estimation of subject-specific parameters, which we used to estimate intercepts 
and slopes through session to account for potential practice-effect noise. Third, we have explicit control over 
the probability distribution of the likelihood. This allows us to use more robust techniques such as Student-T 
regression. Overall, these three factors generally lead to more conservative and robust inference relative to the 
Frequentist  approach111. Last, we can fit this hierarchical model in a multivariate context, which typically requires 
Bayesian sampling-based approaches rather than optimization-based techniques given there is scarce software 
support or implementation applying this specific Frequentist optimization problem.

Ridge regression connectome‑based predictive modeling
It has been shown that treating connectivity vectors as columns for predicting behavior using ridge regression 
tends to perform better than other popular connectome-based modeling  approaches112. Ridge regression is a 
linear supervised learning technique that regularizes model coefficients toward 0 with the canonical L2 norm. 
The regularization degree is governed by a single parameter, λ, where large values perform more shrinkage 
and small values perform less shrinkage. We performed rCPM using a repeated (N = 100) outer K-fold (K = 10) 
cross-validation procedure where individuals were split into 10 folds, models were trained using 9 of the folds, 
and then evaluated on the held-out fold. Within each cross-validation split, we tuned λ with an inner twofold 
cross-validation loop to conservatively estimate optimal regularization strength and overall prediction fit. The 
phenotypic outcomes were residualized with respect to confound/ nuisance variables specific for each analysis.

Prediction performance for the rCPM models were evaluated using the Spearman correlation, since suc-
cessful rank prediction across participants was considered most important. To assess the statistical significance 
of prediction performance, we generated null distributions of expected performance metrics due to chance by 
permuting behavioral scores with respect to individuals and ran the rCPM pipeline for 1000 iterations. Then, 
we calculated a non-parametric p-value, which tallies the number of times the performance metric for each of 
the 1000 iterations of the null distribution exceeds the median performance metric of the 100 true iterations. 
The coefficient matrices were treated as networks to estimate importance of specific brain regions by calculating 
eigenvector centrality on the ridge regression coefficient matrix averaged across cross-validation iterations and 
separated by positive and negative sign. The top 2% of coefficients for both the positive and negative sign were 
used for the network visualizations.

Data availability
Deidentified data is available upon request. Please contact Andrew J. Graves (ajg3eh@virginia.edu) for additional 
data and/ or code requests. Analysis code and pre-processed data are available on GitHub (https:// github. com/ 
andrew- graves/ ageac celgr im_ cog_ brain).
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