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Vegetation index and livestock 
practices as predictors of malaria 
transmission in Nigeria
Oluyemi Okunlola 1,2, Segun Oloja 2, Ayooluwade Ebiwonjumi 3 & Oyetunde Oyeyemi 4*

Nigeria is the most malaria-endemic country in the world. Vegetation and livestock practices have 
been linked to malaria transmission but little is known about these in Nigeria. The study aimed to 
evaluate the influence of vegetation and livestock as predictors of malaria transmission in Nigeria. 
Secondary data obtained from the Nigerian Demographic and Health Survey’s Geospatial Covariate 
Datasets Manual were used for the analysis. The survey was carried out successfully in 1389 clusters 
of thirty (30) households each using a two-stage stratified random sampling design. Hierarchical 
beta regression models were used to model the associations between malaria incidence, enhanced 
vegetation index (EVI), and livestock practices. The correlation coefficients for vegetation index 
and livestock-related variables ranged from − 0.063 to 0.074 and varied significantly with the incidence 
of malaria in Nigeria (P < 0.001). The model showed vegetation index, livestock goats, and sheep as 
positive predictors of malaria transmission. Conversely, livestock chicken and pigs were observed to 
reduce the risk of malaria. The study recommends the need to take into account local differences in 
transmission when developing malaria early warning systems that utilize environmental and livestock 
predictors.
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Malaria is a disease with serious public health impacts and has significant implications on the quality of life 
and the  economy1. The global cases of malaria and associated deaths were estimated at 247 million and 619,000 
respectively, in  20212. The African Region of the WHO bears a disproportionately large share of the global malaria 
burden. In 2021, the region had 95% of the malaria cases and 96% of the malaria deaths. The number of malaria 
deaths in Nigeria in 2021 is estimated at around 200,000, which is 31.9% of the worldwide total. Annually, over 
60 million people are infected with malaria, and US$1.1 billion is lost due to malaria-related absenteeism and 
productivity  losses3.

Over the years, malaria intervention programs implemented at both national and global levels have proven 
successful in reducing malaria transmission within the endemic regions of most sub-Saharan African  countries4. 
While the impact of certain sociocultural and environmental variables in malaria transmission has been 
 evaluated5–7, other possible factors such as vegetation index and livestock practices are inadequately addressed 
in many African countries including Nigeria.

Despite Nigeria being the most populated country in Africa and with rich vegetation diversity and index, 
few reports have identified vegetation index as a predictor of malaria  risk8. As previous studies have shown, 
vegetation cover can affect malaria transmission and mosquito abundance by providing an outdoor resting place 
for the  vector9. In addition, there is a dart of information on the impact of livestock on malaria transmission in 
the country. Nigeria is the highest producer of livestock in Africa and livestock contributed significantly to the 
country’s GDP in the third quarter of the year  202210. The livestock sector is expected to undergo transforma-
tion as part of the Economic Recovery and Growth Plan, with the Agricultural Promotion Policy 2016–2020 
prioritizing investments in the dairy and poultry sectors to commercialize output and close demand–supply 
 gaps11. However, the long-term consequences of livestock sector change may have a severe influence on public 
health, environmental, and social outcomes due to some unknown and unpredictable elements defining its 
development  trajectory11.
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While transmission of zoonotic diseases is one of the most recorded public health implications of the livestock 
sector, the possibility of animal-human malarial transmission patterns is hardly emphasized in sub-Saharan 
African countries. As a result, malaria intervention programs are yet to integrate interventions in animals into the 
region’s operational implementation policies. Evidence from some malaria-endemic countries such as southern 
Tanzania, Indonesia, southern Malawi, and southwestern Ethiopia has revealed conflicting outcomes on the 
influence of livestock on malaria transmission and  severity12–15. Specifically, certain medium-sized livestock 
such as goats, sheep, dogs, and pigs, and small-sized livestock like poultry have been reported to reduce malaria 
 transmission13,16. There is evidence suggesting that cattle play a role in increasing mosquito density and the 
transmission of  malaria17.

Unfortunately, no study is currently available in this regard in Nigeria despite being the most malaria-endemic 
country in the world and the highest livestock producer in Africa. Therefore, it becomes difficult to evaluate the 
contribution of livestock to malaria transmission in the country.

This study evaluated the contributions of vegetation index and livestock to the risk of malaria transmission in 
Nigeria. This becomes important as the study could provide useful information to support the current national 
policies on malaria control in Nigeria.

Materials and methods
Study area
The study was conducted in Nigeria. Nigeria is located between latitudes 4° 16′ and 13° 53′ North and longi-
tudes 2° 40′ and 14° 41′ East. The country has a total land area of approximately 923,768 square kilometers and 
a population density of 212.04 people per square kilometer. Malaria is one of the country’s most serious public 
health issues, and the country’s climatic conditions make it ideal for recurrent malaria  transmission6. In Nigeria, 
the common livestock animals are poultry birds, cattle, small ruminants (goats, sheep), pigs, and rabbits, and in 
some parts of the northern region of the country, donkeys, camels, and horses. The most commonly reared ones 
are chickens, cattle, goats, and  sheep18. In the third quarter of 2022, the contribution of livestock production 
to Nigeria’s GDP experienced an increase of 1.55 percent compared to the same period of the previous  year10. 
Despite the close interaction between humans and livestock, their possible contribution to malaria transmission 
is yet to be explored in Nigeria.

Data source and sampling procedures
The study relied on the Nigerian Demographic and Health Survey’s Geospatial Covariate Datasets Manual, in 
which certain variables in the survey were aggregated at the cluster level to facilitate the computation of indices, 
incidence, and prevalence. Data access was granted upon request for download via the DHS program website, 
https:// dhspr ogram. com/. Malaria incidence (MIN), enhanced vegetation index (EVI), and livestock ownership 
indices for cattle (LSCI), chicken (LSCH), goat (LSGO), sheep (LSSH) and pig (LSPI) were the variables of interest 
in this study. The dependent variable is MIN, while the other variables are predictors. The survey was carried out 
successfully in 1389 clusters of thirty (30) households each using a two-stage stratified random sampling design.

Malaria incidence was computed by calculating the average number of people per cluster who had clinical 
symptoms of Plasmodium falciparum malaria during the survey year. Surface maps of livestock distribution that 
provide global livestock densities that have been adjusted to match Food and Agriculture Organization (FAO) 
national estimates for the reference year 2006 were obtained from the 2007 Gridded Livestock of the World 
(GLW) database to obtain livestock  indices19. The surface maps were created using improved and detailed sub-
national livestock data (derived from various national census reports and livestock surveys), new and higher 
resolution predictor variables, and revised modeling methods that included a more systematic evaluation of 
model accuracy and the representation of uncertainties associated with predictions. Wint and  Robinson20 go into 
more detail about the modeling method, whereas Benjamin et al.21 provided detailed information on the variables 
in the DHS geospatial covariates datasets manual. These materials can be consulted for additional information.

Models
In this study, the evaluation of different livestock as risk factors for malaria incidence was carried out using a 
hierarchical Bayesian regression model which adjusted for the contextual and geographical effects in the data. 
The regression function was formulated as follows:

where ∝i are the coefficients of the linear model and ei stochastic error associated with the model.
Therefore, the general form of the linear model was obtained through the transformation of the above equa-

tions and expressed in the general form given as:

However, the general linear model specification is not appropriate in this case because the response vari-
able is bounded and takes values between 0 and 1. The transformation (3) in a spatial generalized linear mixed 
model is given as;

(1)MIN = f (EVI , LSCA, LSCH , LSGO, LSPI, LSSH)

(2)MIN = ∝0 +∝1EVI +∝2LSCA+∝3LSCH +∝4LSGO +∝5LSPI +∝6LSSH + ei

(3)Y = Xβ+ ∈

(4)g(µ) = Xβ + ϕ

https://dhsprogram.com/
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The g(µ) is the link function, Xβ is the linear predictor where ϕ is the random effect term. The invertible link 
function, g(µ) is controlled by the statistical distribution of the response variable. As a custom in generalized 
linear model (GLM), the response variable must have its probability distribution in the exponential family. The 
dependent variable in the current study is a proportion and so a beta distribution was assigned and consequently 
logit link function was used. The probability density function and the logit link function are respectively given as;

The symbol ϕ was introduced to capture spatial variation because the data used in the study are measure at dif-
ferent spatial units (cluster in this case). This is in line with the common belief that measurements in neigbouring 
cluster have a tendency of having similar values of malaria incidence. The most popular way to represent spatial 
proximity in lattice data is to construct adjacent matrix in which two areas are defined to be spatially related if 
they have border that touch on the map and non-neighbour if there is no such relationship, resulting to a n× n 
binary matrix. Several approaches are available in disease mapping to accommodate geographical relationship 
disease mapping. This study use Leroux global prior, one of the most popular and efficient global priors. With this 
prior, the spatial dependence effects is the conditional expectation ϕc , that is,E(ϕc/ϕ−c) . This is interpreted as the 
weighted average of the random effects in its adjacent clusters. The full conditional for all set C random effects 
produce a unique Gaussian Markov Random Field (GMRF) with a multivariate normal distribution given as;

The precision matrix, 
∑

 for the Leroux prior is defined as;

The quantity G and �max  in Eq. (8) are matrix and eigenvalue, respectively. To ensure correct model specifica-
tion, the matrix G is defined as follows;

Substituting Eq. (8) into Eq. (9) and simplifying the resulting expression yields;

The hyper-parameters θ1 = log(τ ) ∼ logGamma(1, 0.001) and θ2 = logit(ρ) ∼ N(0, 0.1)
According to Gómez-Rubio22, “the structure of the precision matrix is a convex combination of an identity 

matrix In (to represent i.i.d spatial effect) and the precision of an intrinsic CAR R (to represent a spatial pattern)”.
The model is implemented in R software using fast and accurate integrated nested Laplace approximation 

(INLA) through R-INLA  package23. However, it should be noted that direct implementation of the model was 
not possible in R-INLA, but was achieved through the “generic1” latent effect with the condition that the first 
expression in Eq. (9) holds.

Results
Table 1 shows the descriptive analysis of the variables such as malaria incidence (MIN), enhanced vegetation 
index (EVI), livestock cattle (LSCA), chicken (LSCH), goat (LSGO), pig (LSPI), and sheep (LSSH) under investi-
gation in this study. The mean values of MIN, EVI, LSCA, LSCH, LSGO, LSPI, and LSSH are presented in Table 1. 
The correlation coefficients for enhanced vegetation index and livestock-related variables ranged from − 0.063 to 
0.074 and varied significantly with the incidence of malaria in Nigeria (P < 0.001) (Table 2). The low-level values 

(5)f
(

y
)

=
1

B(α,β)
yα−1

(

1− y
)β−1

, 0 < y < 1, α,β > 0, B(α,β) =
ŴαŴβ

Ŵα+β

(6)log
�

1− �
= η = Xβ + ϕ

(7)C ∼ N(0,
∑

)

(8)
∑−1

=
1

τ

(

In −
ρ

�max
G

)

; ρǫ[0, 1)

(9)G = In − R;R = diag(ni)−Wand�max = 1

(10)
∑−1

=
1

τ

(

In −
ρ

1

)

In − R =
1

τ
(In − ρ(In − R)) =

1

τ
((1− ρ)In + ρR)

Table 1.  Descriptive analysis. MIN Malaria incidence, EVI enhanced vegetation index, LSCI livestock cattle, 
LSCH livestock chicken, LSGO livestock goat, LSSH livestock sheep, LSPI livestock pigs.

MIN EVI LSCI LSCH LSGO LSSH LSPI

Mean 0.351 3131.506 14.923 376.245 64.195 39.040 13.622

Median 0.362 3209.333 4.521 205.473 34.671 8.604 1.018

Maximum 0.611 4962.000 323.468 6224.752 1324.266 525.382 454.892

Minimum 0.097 1131.583 0.106 0.217 0.257 0.051 0.000

Std. dev 0.091 795.800 25.115 624.046 99.307 68.185 37.231

Skewness − 0.277 0.068 4.524 4.712 6.120 2.797 6.305

Kurtosis − 0.195 − 1.030 37.994 28.459 55.063 8.900 53.048
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of the correlation coefficient between pairs of independent variables indicated the absence of multicollinearity, a 
serious problem in regression analysis. The posterior means and the 95% credible interval of each covariate and 
the intercept term is presented in Table 3. The exponentiated quantity can be interpreted as the relative risk of 
malaria incidence attributed to the specific independent variable. Consequently, an increase of 1 unit in livestock 
cattle, chicken, and pig is associated with a decrease of 0.03%, 3%, and 0.26% risk of malaria incidence, respec-
tively. Whereas, an increase of 1-unit enhanced vegetation index, livestock goats and sheep are associated with 
corresponding increases of 85%, 0.1%, and 2% risk of malaria incidence, respectively. The specific relative risk of 
malaria incidence of each location considered in the study is mapped in Fig. 1. The gray, black, blue, green, and 
red bubbles are used to depict locations with a very low, low, moderate, high, and very high residual relative risk.

Discussion
Despite considerable resources invested in malaria control programs in Nigeria, their success has been  limited24. 
Between 2017 and 2020, malaria cases increased by 5.3%, with a corresponding 4.7% rise in associated deaths 
among the at-risk  population25. While environmental variables influencing malaria transmission have been 
somewhat explored in Nigeria, the impact of vegetation index remains poorly understood. To our knowledge, 
no study has assessed the relationship between livestock and malaria transmission in Nigeria, despite reported 
associations elsewhere in sub-Saharan  Africa12,14,15.

Our study reveals vegetation index as a positive predictor of malaria transmission. This is consistent with 
findings from Eritrea, Ethiopia, and  Uganda26–28. In addition to commonly assessed factors like temperature 
and rainfall, vegetation cover has emerged as a significant factor influencing malaria transmission, potentially 
by providing resting places for mosquito  vectors29. The dense vegetation structure characteristic of tropical 
rainforests in southern Nigeria may contribute to heightened malaria transmission in the region. Conversely, in 
regions with limited moisture content, such as some parts of northern Nigeria, vegetation greenness may serve 
as an indirect indicator of rainfall, facilitating mosquito breeding and increasing malaria transmission  risk27. 
Consequently, the interplay of vegetation and other drivers identified in our previous studies likely contributes 
to the widespread incidence of malaria across Nigeria’s  regions6.

The strategy of using environmental measures to mitigate malaria transmission, rooted in the concept of 
zooprophylaxis—redirecting malaria vectors away from humans—has long been  advocated30. However, this 
approach can inadvertently heighten human exposure to malaria if it increases opportunities for mosquitoes to 
feed on alternative hosts. By fostering greater numbers of animals near mosquito breeding sites, blood meals 
become more accessible, potentially attracting more mosquitoes, enhancing their survival, and elevating the 
risk of disease transmission to humans, a phenomenon termed  zoopotentiation12. Regional variations in these 
concepts have led to conflicting observations.

Our study, employing spatial beta regression models as detailed in Table 3, identifies livestock goats and 
sheep as positive predictors of malaria transmission in Nigeria, while livestock cattle, chicken, and pigs emerge 
as negative predictors. This suggests that the concept of zoopotentiation may apply to goats and sheep as malaria 

Table 2.  Correlation between malaria incidence and predictors of transmission. MIN Malaria incidence, EVI 
enhanced vegetation index, LSCI livestock cattle, LSCH livestock chicken, LSGO livestock goat, LSPI livestock 
pigs, LSSH livestock sheep.

Variable MIN EVI LSCI LSCH LSGO LSSP LSPI

MIN 1

EVI − 0.063* 1

LSCI 0.093** − 0.470** 1

LSCH − 0.205** 0.249** − 0.079** 1

LSGO − 0.004 − 0.310** 0.532** 0.129** 1

LSSP 0.074** − 0.503** 0.685** − 0.069* 0.540** 1

LSPI 0.000 0.124** − 0.060* 0.054 − 0.090** − 0.158** 1

Table 3.  Result of spatial generalized linear mixed beta regression. MIN Malaria incidence, EVI enhanced 
vegetation index, LSCI livestock cattle, LSCH livestock chicken, LSGO livestock goat, LSSH livestock sheep, 
LSPI livestock pigs,

Mean SD 0.5quant 0.025quant 0.975quant kld

Intercept − 5.47504 0.61421 − 6.73936 − 5.47360 − 4.22147 0

EVI 0.61647 0.04375 0.53066 0.61647 0.70227 0

LSCI − 0.00035 0.00925 − 0.01849 − 0.00035 0.01779 0

LSCH − 0.02910 0.00815 − 0.04509 − 0.02910 − 0.01310 0

LSGO 0.00123 0.00944 − 0.01729 0.00123 0.01975 0

LSSP 0.01958 0.00923 0.00148 0.01958 0.03767 0

LSPI − 0.00265 0.00333 − 0.00919 − 0.00265 0.00389 0
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risk factors, although the impact of sheep was not statistically significant in this analysis. As previously noted, 
the presence of these livestock may elevate the relative abundance of mosquitoes carrying Plasmodium  species31. 
The varied host selection by vectors targeting these livestock could heighten the potential for human exposure 
to Plasmodium. Moreover, keeping animals within or near households can attract more vectors due to the odors 
and heat they  emit12. Furthermore, physical disturbances caused by large livestock such as cattle, such as puddles 
and hoof prints, may exacerbate zoopotentiation by creating additional larval habitats and thereby increasing 
adult vector density in close proximity to human  residences13.

The significant negative influence of livestock cattle on malaria transmission underscores their potential for 
zooprophylaxis. The study by Finney et al.32 highlights that cattle and pigs contribute a notably higher proportion 
of blood meals compared to other livestock. Therefore, the heightened blood meal availability in cattle, pigs, and 
chickens, identified as having zooprophylactic potential, can reduce the risk of human exposure to malaria, as 
previously observed in larger livestock like  cattle33. The zooprophylactic role of livestock in malaria risk reduc-
tion has also been documented in Malawi and  Zambia11,34.

Advocacy for using livestock as bait to attract mosquitoes has emerged as a promising alternative to insecti-
cide adoption. However, integrating zooprophylaxis with insecticide-treated livestock becomes more pertinent 
in areas where zoophilic vectors transmit the malaria  parasite31. This approach aids in vector control without 
exacerbating the issue of mosquito resistance to  insecticides35.

In this study, we employed hierarchical beta regression to forecast the impact of livestock on malaria trans-
mission. This choice was driven by the necessity to incorporate the spatial aspect of the data and account for the 
response variable (malaria incidence), which is a proportion ranging between 0 and 1. Ordinary least squares 
regression, typically used for continuous responses, would be inappropriate in this context due to the nature of 
the response variable, resulting in inefficient parameter estimates.

Conclusion
This study examines the influence of vegetation and livestock on malaria transmission. The findings consist-
ently indicate that the vegetation index increases the risk of malaria transmission in Nigeria in the tested model. 
Certain livestock species, such as goats and sheep, are identified as positive predictors of malaria transmission, 
whereas livestock like cattle, pigs, and chicken are negative predictors, suggesting their potential for prophylactic 
use.

The study underscores the importance of considering local variations in transmission patterns when devising 
malaria early warning systems that integrate environmental and livestock factors. Such tailored approaches can 
lead to more accurate early warning systems, crucial for effective malaria control. For instance, one potential 
strategy that can be recommended is insecticide-treated livestock into zooprophylaxis in areas where mosquitoes 
can feed on both animal and human hosts, thereby enhancing malaria control efforts. One limitation of the study 
lies in the utilization of secondary data for the findings, which may not fully extrapolate to real-life scenarios due 

Figure 1.  Map of relative risk of Malaria incidence based on the hierarchical beta regression.
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to potential biases or constraints inherent in the dataset. Thus, it’s suggested that a randomized controlled trial be 
conducted to authenticate and substantiate the modeling outcomes of livestock and malaria transmission. This 
approach would offer a more robust and reliable validation of the study’s results, ensuring greater confidence in 
their applicability to practical settings.

Data availability
All data are included in the manuscript and further queries about sharing data can be directed to the corre-
sponding author.
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