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Design and optimization of haze 
prediction model based on particle 
swarm optimization algorithm 
and graphics processor
Zuhan Liu *, Kexin Zhao , Xuehu Liu  & Huan Xu 

With the rapid expansion of industrialization and urbanization, fine Particulate Matter  (PM2.5) 
pollution has escalated into a major global environmental crisis. This pollution severely affects human 
health and ecosystem stability. Accurately predicting  PM2.5 levels is essential. However, air quality 
forecasting currently faces challenges in processing vast data and enhancing model accuracy. Deep 
learning models are widely applied for their superior learning and fitting abilities in haze prediction. 
Yet, they are limited by optimization challenges, long training periods, high data quality needs, and 
a tendency towards overfitting. Furthermore, the complex internal structures and mechanisms of 
these models complicate the understanding of haze formation. In contrast, traditional Support Vector 
Regression (SVR) methods perform well with complex non-linear data but struggle with increased 
data volumes. To address this, we developed CUDA-based code to optimize SVR algorithm efficiency. 
We also combined SVR with Genetic Algorithms (GA), Sparrow Search Algorithm (SSA), and Particle 
Swarm Optimization (PSO) to identify the optimal haze prediction model. Our results demonstrate 
that the model combining intelligent algorithms with Central Processing Unit-raphics Processing 
Unit (CPU-GPU) heterogeneous parallel computing significantly outpaces the PSO-SVR model in 
training speed. It achieves a computation time that is 6.21–35.34 times faster. Compared to other 
models, the Particle Swarm Optimization-Central Processing Unit-Graphics Processing Unit-Support 
Vector Regression (PSO-CPU-GPU-SVR) model stands out in haze prediction, offering substantial 
speed improvements and enhanced stability and reliability while maintaining high accuracy. This 
breakthrough not only advances the efficiency and accuracy of haze prediction but also provides 
valuable insights for real-time air quality monitoring and decision-making.
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Air quality has always been a major issue for human survival and development. With the progress of society, 
heavy industry, automobile manufacturing and other industries are constantly developing. This has promoted the 
process of urbanization but also led to a sharp increase in the content of various suspended particulate matter in 
the atmosphere. The problem of smog pollution has become increasingly prominent. Pollutants that form haze 
include gaseous pollutants such as  SO2,  NO2, CO,  O3, and inhalable suspended particulate matter. According to 
the diameter of suspended particulate matter, it can be divided into  PM2.5

1,  PM10 and  PM100. Compared to other 
air pollutants,  PM2.5 and other respirable particles not only have a serious impact on the quality of the atmosphere 
but also pose a significant threat to human  health2–4. In Beijing, for example, there were 46 days of severe haze 
in 2015 alone. On average, severe polluted weather occurs every ten days. Therefore, in the case of frequent haze 
pollution events, scientific and effective  PM2.5 prediction and early warning are very necessary. It helps to adopt 
timely and effective response methods to reduce the impact of smog  pollution5–7.

In the field of haze pollution prediction, technologies like Recurrent Neural Networks (RNNs), Convolu-
tional Neural Networks (CNNs), and Deep Belief Networks (DBNs) demonstrate significant adaptability, learn-
ing capacity, and strong model fitting  ability8. However, the deployment of neural networks has its challenges. 
The intricacies of model tuning and optimization are non-trivial, often necessitating extensive computational 
resources and  time9,10. Furthermore, their propensity for overfitting and the critical dependence on high-quality 
data can compromise prediction accuracy. These models’ “black box” nature presents significant interpretative 
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challenges by obscuring the causal mechanisms behind haze formation. This opacity impedes scientific inquiry 
into atmospheric quality. Compared to other methods, machine learning excels at analyzing numerous envi-
ronmental factors and nonlinear relationships in haze prediction. The models are noted for their simplicity and 
the ease with which their results can be understood and explained. A recent study introduced a Support Vector 
Regression (SVR) model to estimate hourly atmospheric pollution concentrations. The findings indicate that 
SVR achieves high predictive  accuracy11. Balogun et al.12 reported that an array of SVR-based models has been 
crafted for landslide prediction in western Serbia. Furthermore, still some scholars employed a hybrid SVR 
model to estimate crop transpiration, achieving a root mean square error of 0.21687, underscoring the model’s 
high  precision13. Karimipour et al.14 applied SVR to forecast the thermal conductivity of nanofluids, taking into 
account the effects of temperature and nanoparticle volume fraction. Their findings demonstrated that SVR 
possesses a robust resistance to overfitting, ensuring reliable predictions even with complex datasets.

Larger datasets present new challenges for traditional SVR in estimation and prediction. To enhance haze 
forecasting capabilities, this study developed specialized Compute Unified Device Architecture (CUDA) code for 
efficient execution of the SVR algorithm. Utilizing the MATLAB Executable (MEX) interface, we seamlessly inte-
grated our custom CUDA implementation with the MATLAB environment. The paper employs a heterogeneous 
parallel computing architecture that leverages computational resources of both Central Processing Units (CPUs) 
and Graphics Processing Units (GPUs). This architecture offers efficient computation for large-scale datasets of 
environmental, meteorological, and pollutant emission data. Under this framework, SVR, with its lower complex-
ity, limited parameter count, and simplified tuning process, demonstrates a significant acceleration advantage 
when handling large datasets and remains effective on smaller ones. Compared to deep neural networks, SVR 
does not require extensive datasets to prevent overfitting nor excessive time and resources for training. It is bet-
ter suited for structured meteorological data, and the heterogeneous parallel architecture further enhances its 
computational efficiency and resource conservation in haze pollution prediction. However, the performance of 
SVR is heavily contingent upon parameter optimization. Population intelligence algorithms have emerged as a 
response to the computational demands and data quality requirements inherent in complex problem-solving. 
These algorithms offer a novel computational framework that is robust to hyperparameter selection, effectively 
navigating the challenges presented. Renowned instances encompass particle swarm optimization (PSO)15, ant 
colony optimization (ACO)16, immune algorithm (IA)17 and genetic algorithm (GA)18. The fusion of population 
intelligence and machine learning has been a focal point of recent research. For example, Feng et al.19 employed 
PSO to fine-tune support vector machines (SVM) for hydrological forecasting. Their approach demonstrated 
superior predictive accuracy when compared to conventional models such as artificial neural networks (ANN) 
and extreme learning machines (ELM). Bezdan et al.20 innovated a hybrid population intelligence approach by 
enhancing the fruit fly algorithm (FFA) with the search dynamics of the firefly algorithm (FA) and opposites-
based learning (OBL). This approach was applied to optimize the k-means algorithm for text clustering, yielding 
superior results. Mallick et al.21 explored various hybrid models, including PSO-ANN, PSO-Random Forest (RF), 
PSO-Radial Basis Function (RBF), PSO-REP Tree and PSO-M5P to project climate change impacts in Saudi 
Arabia’s Asir Basin. Their studies corroborated the PSO-RF model’s exceptional predictive strength among the 
proposed combinations. The adaptability and excellent scalability of the PSO algorithm have been demonstrated 
in the aforementioned studies.

The studies indirectly indicate that ensemble machine learning models exhibit greater interpretability and 
explainability, enhanced robustness, and superior capability to avoid overfitting compared to deep learning. 
Building upon this foundation, this research introduces the Particle Swarm Optimization and CPU-GPU het-
erogeneous parallel Support Vector Regression model (PSO-CPU-GPU-SVR). Furthermore, we have integrated 
SVR with Genetic Algorithm (GA) and Sparrow Search Algorithm (SSA). By comparing the PSO-SVR, GA-
CPU-GPU-SVR, and SSA-CPU-GPU-SVR haze prediction models on a haze dataset, we seek to identify the 
optimal model for haze forecasting. The experimental results suggest that the proposed PSO-CPU-GPU-SVR 
model performs well. It yields predictions with minimal error compared to actual values, meeting the precision 
requirements of the model and exhibiting impressive acceleration performance. To our knowledge, no prior 
work has applied a regression model that synergistically integrates particle swarm optimization with parallelized 
support vector mechanisms for air quality prediction. This indicates that the findings of this paper offer valuable 
insights for research in the field of haze forecasting.

Methods
In the field of haze prediction, selecting an appropriate model is crucial for enhancing forecast accuracy. To this 
end, we developed optimized code based on the CUDA and designed a CPU-GPU heterogeneous parallel pro-
cessing architecture for the SVR model, termed CPU-GPU-SVR. By distributing key computational steps of SVR 
across different processors for parallel execution, we significantly accelerated the model’s training and prediction 
processes. Moreover, to precisely select parameters within the SVR model, we employed and enhanced the PSO 
algorithm for more effective service in SVR parameter optimization. The integration of the improved PSO algo-
rithm with CPU-GPU-SVR not only substantially increased the model’s prediction accuracy but also ensured the 
efficiency of processing large-scale data. Further, to validate the effectiveness of our proposed model and explore 
the optimal solution for haze prediction, we combined PSO, GA, and SSA with the CPU-GPU-SVR model in a 
series of comparative experiments. We aim to introduce an efficient and accurate new tool to the field of haze 
prediction through this approach. Subsequent sections of this paper will detail the implementation mechanism 
of heterogeneous parallel SVR, the optimization process of the PSO algorithm, and their specific application 
in conjunction with SVR. This research holds significant importance for real-time haze monitoring and rapid 
response measures, contributing to the reduction of haze’s impact on the environment and public health.
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CPU-GPU heterogeneous parallelism approach
Compute Unified Device Architecture (CUDA) is a parallel computing architecture based on the graphics pro-
cessing unit (GPU) introduced by NVIDIA in 2006, whose internal architecture is shown in Fig. 1. Nevertheless, 
the number of computation units within the GPU is much higher than the number of logical control units. So, 
under the CUDA architecture, a simple data computation model is first constructed to avoid complex instruction 
flow control. Then create a large-scale threaded computing model, where the CPU is responsible for complex 
logic processing and system scheduling, and the GPU is responsible for massively parallel computing. CPUs and 
GPUs play their respective strengths in collaborative computing. As the CPU and GPU have different storage 
spaces, CUDA provides different levels of memory to enable threads to run independently on the GPU device 
(see Fig. 2). During parallel program execution, CUDA threads may access data from multiple memory spaces. 
Each thread has private local memory (Local Memory) that exists only for the lifetime of that thread. Each 
thread block has Shared Memory that is visible to all threads within the block and has the same lifecycle as the 
thread block. All threads have access to the same Global Memory. Global Memory is allocated and released by 
the host side to initialize the data that will be processed by the GPU. Two other types of memory are read-only 
and accessible by all threads, Constant and Texture Memory. Constant memory is generally used to cache values 

Figure 1.  GPU and CPU internal architecture.

Figure 2.  CUDA memory structure.
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that are shared by all functions, and texture memory is used for some of the texture operations provided by the 
hardware. The global, constant and texture memory spaces are optimized for different memory uses.

The CUDA programming model uses the CPU as the Host for logical tasks and data read-in and output opera-
tions, and the GPU as the Device for data-intensive and highly parallel tasks. In this case, the main program is 
controlled by the CPU. When a GPU kernel function is to be executed, the CPU first copies the required data 
from the system host memory to the GPU global memory. Then multiple GPU threads are stimulated to run the 
kernel function. When the GPU computation is complete, the resulting result is passed back to the system’s main 
memory via the global memory and handed over to the CPU for further processing (see Fig. 3).

Support vector regression models
The theory of Support Vector Machine (SVM) was proposed by Vapnik and Corina Cortes in the late twentieth 
century. Then Chang and Kyung proposed SVR models for regression problems, which have received increasing 
attention in regression estimation and non-linear problem-solving. SVR is the mapping of input quantities to a 
high-dimensional plane, which is transformed into a linear regression relationship. Assume a regression function 
ƒ(x) with a training sample set of (xi,yi) i = 1,2,…,m. SVR uses a linear equation to predict the target value, i.e.

where ƒ(x), w and b are the output, the weight vector and the threshold respectively. φ(x) is the high-dimensional 
actual input vector. The weight vectors w and b are calculated by minimizing the risk function. The inference 
process for minimizing risk is as in Eqs. (2)–(5).

In Eq. (2), the first term uses an insensitivity function ɛ to represent the deviation between the actual and 
regressed values. The second term is used to estimate the ambiguity of the function. C is the penalty parameter, 
making a compromise between the two. In the actual problem, it is difficult to determine ɛ exactly. To ensure 
that most of the data points are within ɛ, the slack variables ξi and ξi

* are introduced and Eq. (2) is transformed 
into the following form.

Considering the non-linear regression case, the mapping of the feature space and the introduction of the 
LaGrange function, Eq. (1) is transformed to (5)

(1)f (x) = wTϕ(x)+ b w ∈ Rn b ∈ R

(2)k(f ) = C

m
∑

i=1

Lε(yi,fi)+
1

2
||w||2

(3)Lε(yi,fi) =

{

0, if |yi − fi| ≤ ε

|yi − fi| − ε, otherwise

(4)

k(w) = min
1

2
||w||2 + C

m
∑

i=1

(ξi + ξ∗i )

s.t

{

f (xi)− yi ≤ ε + ξi
yi − f (xi) ≤ ε + ξ∗i
ξ > 0 ξ∗i > 0 i = 1 , ..., m

System main 

memory 

Central

Processing Unit

Global data extent of

device storage 
Shared 

storage 

GPU Solver 

Register 

Figure 3.  CPU-GPU heterogeneous parallel processing flow.
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Sequential minimal optimization
The indicator variable f associated with the training sample in the SMO algorithm is defined as follows.

where αi = (αi
*−αi), SMO algorithm solves the SVR in the following steps.

(1) Find two training samples xu and xl, which together form a working  set22–24. The indicator variables associ-
ated with them fu and fl, satisfy a maximum and minimum condition, respectively, where the subscripts u 
and l are updated with the formulas.

fu and fl are found using Eqs. (7) and (8). Iu and Il are defined as follows.

  Il contains all free support vectors, I2 and I5 contain all non-support vectors, and I3 and I4 contain all 
support vectors that are inside the boundary.

(2) (2) Update the weights αu and αl for xu and xl.

  The range of values for α′
u and α′

l is [0, C].
(3) Update the formula for the indicator variable for all training samples as follows.

  The SMO algorithm repeats these three steps until the termination condition is met.

Particle swarm optimization algorithms
In this study, we chose the PSO algorithm over other swarm intelligence algorithms to accelerate the parameter 
optimization of SVR. This decision was based on several considerations. Known for its simple structure and fewer 
parameters to adjust, the PSO algorithm is easy to understand and  implement25. Furthermore, the independent 
particle search mechanism of PSO naturally lends itself to parallel computing, which is particularly beneficial for 
exploiting the high parallel performance of GPUs. The update and evaluation of each particle can be executed in 
parallel, significantly enhancing computational efficiency. Additionally, PSO typically achieves faster convergence 
rates, crucial for time-constrained scenarios. Compared to GA and SSA, PSO requires less memory, offering a 
clear advantage in resource-limited GPU environments. Although PSO may risk getting trapped in local optima, 
it has proven its capability to find global optima across various test problems, making it an effective choice for 
accelerating SVR parameter optimization.

PSO are referred to as particles, and the population consists of N particles initialized in a D search space. 
During the search process, each particle i is represented by two vectors: a velocity vector Vi = [vi1,vi2,…,viD] and 
a position vector Xi = [Xi1,Xi2,…,XiD]. Each particle updates its velocity and position in space using its personal 

(5)f =

m
∑

i=1

(αi − α∗
i )k(xi,x)+ b

(6)f =

m
∑

i=1

αiyik(x, xi)− y

(7)u = argmin
i

{

fi|i ∈ Iu
}

(8)l = argmax
i

{

(fu − fi)
2

ηi
|fu < fi i ∈ Il

}

(9)

Iu = I1 ∪ I2 ∪ I3 Il = I1 ∪ I4 ∪ I5

I1 = {i|xi ∈ X 0 < αi < C}

I2 = i|xi ∈ X yi = ε + ξi αi = 0}

I3 = i|xi ∈ X yi = − ε + ξ∗i αi = C}

I4 = i|xi ∈ X yi = ε + ξi αi = C}

I5 = {i|xi ∈ X yi = − ε + ξ∗i αi = 0}

(10)α′
u = αu + ylyu(αl − α′

l)

(11)α′
l = αl +

yl(fu − fl)

η

(12)f ′i = fi +
(

a′u − au
)

yuk(xu, xi)+
(

a′l − al
)

ylk(xl , xi)

(13)fu = min{fi|i ∈ Iu} ≥ fmax

(14)fmax = max{fi|i ∈ Il}
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best position Pid,pbest = [Pi1,Pi2,…,PiD] and the global best position Pd,gbest = [P1,gbest,P2,gbest,…,PD,gbest]. For simplicity, 
Pbi denotes Pid,pbes, and Pg represents Pd,gbest. The update formulas for Xi and Vi are shown in Eqs. (15) and (16):

To accelerate the convergence speed and enhance the global search capability of the PSO algorithm, we 
introduced an inertia weight w. This modification transforms the particle velocity update equation as follows:

In PSO, the setting of the inertia weight is crucial for the search capability. A larger inertia weight promotes 
global exploration, while a smaller one favors local exploitation. However, a fixed inertia weight may constrain the 
algorithm’s local search efficiency in later stages, leading to slow convergence and an increased risk of becoming 
trapped in local optima. To address the nonlinearity and multimodality of inversion problems, we innovatively 
propose an adaptive inertia weight formula. This formula dynamically adjusts the inertia weight based on the 
difference between each particle’s fitness and the worst fitness in the initial swarm. This allows the PSO to more 
flexibly balance between global exploration and local exploitation, potentially improving convergence speed and 
reducing the risk of local optima entrapment. The updated formula is presented below.

In the formula, wmax and wmin represent the maximum and minimum inertia weights, respectively. In this 
study, they are set to 0.9 and 0.4. fworst and fbest denote the worst and best fitness of the initial swarm, respectively. 
The term fi

t indicates the fitness of the i-th particle at the t-th iteration. The randomness of initial particle posi-
tions in PSO leads to significant differences between the initial best and worst fitness values. Our research incor-
porates this difference into the calculation formula, effectively differentiating the inertia weights of particles with 
varying fitness levels. This enhances the global search capability in the early stages of the algorithm. As fitness 
improves, the inertia weight of particles decreases, slowing their velocity to facilitate meticulous local search and 
prevent overshooting the optimal solution.

Haze prediction method based on particle swarm algorithm and CPU-GPU heterogeneous 
parallel SVR.
For SVR training and prediction,  LIBSVM26 is a widely chosen package for SVR computing and is used by many 
AI and machine learning frameworks as the underlying SVR computing implementation. However, the com-
putational cost of basic SVR training and analysis is high for large and complex problems. LIBSVM is optimally 
accelerated for early single-core CPUs and provides limited parallelization support. However, with the dramatic 
increase in the amount of raw data and problem size, the training and prediction speed of LIBSVM is often 
insufficient to meet the actual algorithm debugging and application needs.

Therefore, how to improve the training and prediction speed of SVR is a problem that needs to be considered 
in this  algorithm27,28. To address the computational challenges of SVR when processing large-scale data, this study 
developed specialized CUDA code for efficient execution of the SVR algorithm. We seamlessly integrated our 
custom CUDA implementation with the MATLAB environment using MATLAB’s external interface capabilities. 
The paper employs a heterogeneous parallel computing architecture that combines the computational resources 
of CPUs and GPUs to optimize the computational workflow of the SVR algorithm. This approach significantly 
enhances the algorithm’s computational efficiency while maintaining the convenience of scientific computing 
and data analysis within MATLAB. The architecture leverages the CPU for high-level control of the algorithm 
and execution of complex operations. It utilizes the GPU’s parallel processing capabilities to accelerate kernel 
function computations and matrix operations within the algorithm. This parallel structure markedly improves 
computational efficiency, particularly in time series forecasting involving large datasets. The GPU can process 
thousands of computational threads in parallel, thus reducing the training and prediction time of the SVR model. 
Moreover, compared to traditional CPU architectures, the heterogeneous parallel structure demonstrates clear 
advantages in reducing energy consumption and hardware costs. With advancements in GPU technology, the 
architecture enables the SVR model to scale to larger datasets, thereby enhancing prediction accuracy and the 
model’s generalization capability. On the optimization front, the adaptability of the architecture ensures that 
CPU and GPU computational resources can be dynamically allocated according to the specific demands of 
the task. Therefore, adopting the CPU-GPU heterogeneous parallel computing architecture not only drives a 
computational efficiency revolution for SVR in time series prediction tasks but also paves the way for innova-
tive applications such as real-time or near-real-time forecasting. It exhibits significant practical value in critical 
application areas like meteorological forecasting.

(15)Pbt+1
id =

{

Xt+1
id , f (Xt+1

id ) ≤ f (Pbtid)

Pbtid , f (Xt+1
id ) > f (Pbtid)

(16)Pgt+1
d =







Pgtd , f (Pgtd) ≤ min
i
(f (Pbt+1

id ))

Pbt+1
id , f (Pgtd) > min

i
(f (Pbt+1

id ))

(17)V t+1
id = w ∗ Vt

id + c1 ∗ r1 ∗ [Pb
t
id − Xt

id] + c2 ∗ r2 ∗ [Pg
t
d − Xt

id]

(18)wi = wmax − (wmax − wmin)
f ti − fworst

fbest − fworst
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CPU‑GPU heterogeneous parallel SMO‑based model
Based on the CUDA programming platform, this paper implements the SVR algorithm by using the CPU-GPU 
heterogeneous parallel method and mainly uses two parallel strategies, vectorization, and parallel protocol. 
Vectorization is a fundamental tool for parallelizing algorithms. In numerical optimization problems, many 
operations can be represented as vectors. By implementing vectorization operations in the GPU, reading multiple 
operands at once and performing the same operation on all operands at the same time can greatly reduce the time 
to complete vector operations. The parallel statute algorithm is also a basic parallelization tool. When many oper-
ands in the GPU need to perform the same operation, the parallel regulation algorithm starts multiple threads 
at the same time. Each thread picks two operands to perform the corresponding operation. All threads execute 
multiple turns, halving the number of threads per execution, and finally completing all operands. Therefore, we 
find the vectorizable part of the optimization algorithm or convert scalar operations to vector operations and 
normalization operations to improve the calculation speed.

The SMO algorithm solves the SVR process as follows.

The main process for parallelizing the improved sequence minimization algorithm using vectorization and 
parallel statute strategies is as follows.

(1) Since the GPU side is unable to start itself and input and output data, it relies on the CPU to configure the 
environment, transfer data, and start kernel functions.

(2) Initialize α and matrix ƒ of steps 1–2 using vectorized assignment operations.
(3) Parallelize step 4 with vectorization and parallel protocol operations. Specifically, the selection of the work-

ing set is implemented on the GPU i.e., finding the desired samples in the data set satisfying Eqs. (7) and 
(8). The CUDA has strict restrictions on communication and synchronization between blocks of processing 
threads, which makes the implementation of reduction operations such as finding the maximum value 
of a vector or sums very important. After initialization is complete, each block uses the statute algorithm 
to compute the local optimum. Their output is a vector of 64 candidate values, accompanied by indexes 
copied into CPU memory. Since the CPU has a greater efficiency advantage over the GPU in performing 
very small reductions, the CPU comes to perform the final sequential reduction. The same method can 
also be used to find ƒl and l in step 6 and ƒmax in step 10.

(4) In step 8, the αu and αl matrices are updated using Eqs. (10) and (11). αu and αl are shared by each comput-
ing process. Combined with the shared memory in the CUDA programming architecture, all data is read 
at once. It is then shared by threads within the block, reducing data exchange between global memory and 
threads and improving computational efficiency.

(5) In step 9, there is no dependency between the dimensions of ƒ, and the GPU uses Eq. (12) to achieve a fully 
parallelized update of the ƒ matrix using a vectorization strategy to obtain a significant speed-up.

(6) A conditional judgement is made at the CPU side for step 10 to decide whether the loop ends or not. If 
the loop ends, the obtained LaGrange factor and the values of u and l are transferred back to memory, and 
then the CPU side gives the b value and outputs the end of the decision model training.

Parallel implementation of working set selection
The procedure for calculating l and ƒl using the parallel statute method is as follows.

(1) Before calculating l and ƒl, ƒ has been calculated, that is, each thread calculates the value of a ƒ array. Store 
the value of ƒ in a ƒ array in shared memory and store the value of the subscript corresponding to ƒ, i.e., l, 
in an l array located in shared memory.

(2) All threads in each block perform the statute operation on the maximum value and store the sub-result 
obtained from each block at the first address of the block.
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(3) Each block performs a data transfer operation, copying f[0] and l[0] from shared memory to the array 
GlocbalF[0] and the array GlobalI[0] arrays located in global memory.

(4) Perform a max-stat operation on the array GlocbalF[0] and the array GlobalI[0] to obtain the values of l 
and ƒl.

Parallel operations on kernel function matrices
Choosing the right kernel function and parameters can improve prediction accuracy and reduce the influence 
of noise. The radial basis (RBF) kernel function has the advantages of strong learning ability, strong adaptability 
in high and low dimensions, wide convergence range, good performance stability, and few adjustment param-
eters. Therefore, this paper discusses the parameter optimizations of the SVR kernel function based on the RBF 
kernel function.

The main parameters affecting SVR performance are penalty factor C and the radial basis radius of the RBF 
kernel function σ. The smaller the C and the smaller the error loss on the model, which result in a decrease in 
the accuracy of training the SVR model. The larger C and the greater the penalty for error and the likelihood 
of overfitting the model. σ has a direct impact on the formation of the regression hyperplane. When σ → 0, the 
decision function of the support vector machine will be close to a constant, which results in lower regression 
accuracy for both the training and prediction samples. When σ → ∞, although the regression accuracy of the 
training samples is high, the generalization ability is poor, i.e., the prediction accuracy of the test samples is low. 
The ||x − xi||2 terms expand as follows.

The kernel function operation is the most complex and time-consuming part of the SMO algorithm, and the 
kernel function values of the current two sample data need to be calculated in each iteration. Calculating each 
element in the kernel function matrix requires only two corresponding data corresponding to it x and xi and no 
additional sample data. Because there is no correlation between any two different elements in the matrix, this 
satisfies the conditions for parallelization.

The parallelization of the kernel function matrix is calculated in a similar way to the matrix–vector multiplica-
tion operation. The set of data samples is formed into a matrix of the form. Matrix A consists of m sample vectors 
of 1 × k dimensions, matrix B is a transpose of matrix A, and the kernel function matrix is matrix C of m × m 
dimensions. Each row of the matrix has m kernel functions to be computed, with a minimum time complexity 
of O(mk). The kernel function corresponding to the line u example is as follows.

Based on the above calculation method for the kernel function matrix, the parallel calculation of the kernel 
function is implemented using the GPU as follows.

(1) The initialization of the GPU is first implemented on the CPU side. The cudaMalloc function is used to 
allocate storage space on the video memory to hold the sample data and the kernel function matrix. And 
then the cudaMemcpy function is used to copy the training samples from memory to video memory.

(2) After the CPU starts the kernel function, each thread in the GPU reads the row of matrix A and the col-
umn of matrix B and then executes the corresponding instructions to calculate the value of the RBF kernel 
function, i.e. The value k(xi,yi) in matrix C. During this process, each row of matrix A is read repeatedly. 
To reduce the number of reads, each element of matrix A is placed in shared memory with faster access, 
which improves program performance.

(3) Use the _syncthreads function to perform thread synchronization operations.
(4) Finally, use the cudaMemcpy function again to copy the computed kernel function matrix from the video 

memory back to memory, freeing up GPU memory space.

PSO‑based optimization of CPU‑GPU heterogeneous parallel SVR
Hyper-parameters can largely affect the generalization ability of the CPU-GPU heterogeneous parallel SVR 
model. Namely, the penalty factor C and the kernel function σ. It is difficult to determine the appropriate values 
of the parameters through a priori knowledge and the process of manually tuning the parameters is very time-
consuming. To make the model evaluation more accurate and credible, the particle swarm optimization algorithm 
was used to find the optimal values for the C and σ parameters in Eqs. (2) and (15). The steps for parameter opti-
mization of the CPU-GPU heterogeneous parallel SVR model using the particle swarm algorithm are as follows.

(1) Initialize the population (C, σ), set the weight coefficients w and set the maximum number of iterations of 
the algorithm tmax.

(2) Input datasets, data normalization, selection of kernel functions, hyper-parameters, CPU-GPU heterogene-
ous parallel SVR model training.

(3) Using cross-validation to calculate the prediction accuracy as the fitness value for each particle, taking the 
single best position with the best fitness as the initial global best position.

(4) Update the single best position Pbest and the global best position Gbest of the particle.

(19)k(x · xi) = exp

(

−
||x − xi||

2

σ 2

)

(20)�x − xi�
2 =

(

x20 + x2i0 − 2x0xi0
)

+
(

x21 + x2i1 − 2x1xi1
)

+ · · · +
(

x2m + x2im − 2xmxim
)

(21)ku = k(xu, x1), k(xu, x2), ..., k(xu, xn)
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(5) Update the particle positions and velocities according to Eq. (14) and train the model of the SVR to calculate 
the adaptation value update Pbest and the global best position Gbest.

(6) Determine if the termination condition is satisfied and the loop step is not satisfied ④–⑤. otherwise, the 
algorithm terminates and the output optimal solution is the optimal combination of parameters (C, σ) The 
PSO-CPU-GPU-SVR flowchart is shown in Fig. 4.

Experiments
Experimental design
The primary objective of this study is to verify the efficacy of the proposed CPU-GPU-SVR model, integrated 
with the PSO algorithm, in predicting  PM2.5 concentrations. In addition, this research compares the performance 
differences between this model and the CPU-GPU-SVR model integrated with GA and SSA. We also evaluate its 
advantages in processing speed and accuracy relative to the traditional PSO-SVR model. To mitigate the influence 
of randomness inherent in heuristic algorithms and enhance the reliability of test results, we have standardized 
the population size and iteration number for all heuristic algorithms at 30 and 500, respectively. Consequently, all 
integrated models are run independently 30 times to ensure the attainment of the optimal values of the objective 
function across 30 independent runs. In terms of technical specifications, both the SVR model and the CPU-
GPU-SVR model utilize the RBF kernel function, with the value range for C set between 0.01 and 100, and for 
σ, between 0.001 and 100. All models employed fivefold cross-validation during the training process (V = 5). The 
detailed parameter settings for the experiment are meticulously outlined in Table 1.

To further explore the optimal model for haze prediction and better characterize the model’s fit, this study 
introduces the Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and Coefficient of 
Determination  (R2). Based on these metrics, we performed a statistical analysis of the discrepancies between the 
predicted results of several models and the ideal values. A smaller MAPE and RMSE indicate greater predictive 
accuracy of the model. The  R2 primarily measures the fit of the model in regression analysis. Ranging between 
0 and 1, it represents the percentage of the variance in the data that the model accounts for. An  R2 of 1 signifies 

Start

Initialize the population (C, σ), the weight coefficients, and 
set the maximum number of iterations of the algorithm. 

Input datasets, data normalization, selection of kernel functions, 
hyper-parameters, CPU-GPU heterogeneous parallel SVR 
model training. 

Using cross-validation to calculate the prediction accuracy as the 
fitness value for each particle, taking the single best position with 
the best fitness as the initial global best position. 

Updating the single best position Pbest and 
the global best position Gbest for particles. 

Updating particle positions and velocities according 
to equation (14) and training the model of SVR to 
calculate adaptation values to update Pbest and the 
global best position Gbest.
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combination of SVR parameters 
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Figure 4.  PSO-CPU-GPU-SVR flow chart.
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that the model perfectly fits the data. Conversely, an  R2 of 0 implies that the model explains virtually none of the 
data’s variance. The formula for calculating the  R2 is as follows.

In the formula, yi
* represents the predicted value of the objective function, obtained through regression 

modeling. The term yi denotes the actual value of the target variable for the sample. The experimental environ-
ment in this paper involves code written in a mixed software environment of MATLAB R2018b, Visual Studio 
2013 and CUDA8.0. Compiled and run on a PC with the following parameters: 64-bit Windows 10 operating 
system, 11th Gen Intel(R) Core(TM) i7-11800H@2.30GHZ, 64 GB of RAM on board and an NVIDIA GeForce 
RTX 3070 GPU. In addition, none of the solving times includes file I/O and the parallelized computation times 
include all data transfers between CPU and GPU memory.

Data sources and pre-processing
To evaluate the performance and generalization ability of our proposed model, we meticulously processed the 
experimental datasets. This ensures an increase in data scale for a thorough examination of the model’s potential 
advantages for handling datasets of varying sizes.

Data sources
The datasets involved in the experiments are hourly Air Quality UCI, Beijing  PM2.5 and Multi-Site Air-Quality 
data. Air pollution data is published on the regression database of the UCI machine learning database (https:// 
archi ve. ics. uci. edu/ ml/ index. php). This dataset provides information on air quality in an Italian city from March 
2004 to March 2005.  PM2.5 concentration and air quality information in various areas of Beijing are from January 
2010 to December 2014 and March 2013 to February 2017 respectively. The picture is the sampling distribution 
of haze data from March 2013 to February 2017 for several regions in Beijing of China.

The data set includes information on pollutants such as  PM2.5,  PM10,  SO2,  NO2, CO, and  O3 and environmental 
information such as temperature, humidity, pressure, rainfall and wind speed. The types and meanings of the 
data are shown in Table 2.

Data pre‑processing
For the Beijing  PM2.5 dataset, considering its data originates from a single monitoring site, we divided the data-
set into two subsets of different sizes based on the length of the time series. Regarding the Beijing Multi-Site 
Air-Quality Data, it encompasses air quality observations from 12 monitoring sites in Beijing from March 2013 

(22)R2 =

∑n
i=1 (y

∗
i − yi)

2

∑n
i=1 (yi − yi)

2

Table 1.  Parameter values for the competitor algorithms.

Algorithm name Parameter setting

 GA ggap = 0.9, px = 0.7, pm = 0.7, PRECI = 20

 PSO pop = 30, Maxiteration = 500, run = 30, wmax=0.9,wmin=0.4,c1 = c2 = 1.2, k = 0.6

 SSA pop = 30, Maxiteration = 500, run = 30, PD = 70%, ST = 60%, SD = 20%

Models Parameter setting

 PSO-SVR ɛ = 0.4, V = 5, Max_iteration = 100, run = 30

 PSO-CPU-GPU-SVR c1 = c2 = 1.2, wmax = 0.9, wmin = 0.4, k = 0.6, ɛ = 0.4, Max_iteration = 100, pop = 30, run = 30

 GA-CPU-GPU-SVR ggap = 0.9, px = 0.7, pm = 0.7, PRECI = 20, ɛ = 0.4, Max_iteration = 100, pop = 30, run = 30

 SSA-CPU-GPU-SVR PD = 70%, ST = 60%, SD = 20%, ɛ = 0.4, Max_iteration = 100, pop = 30, run = 30

Table 2.  Data’s types and meanings in the datasets.

Type Sense Type Sense

No Number ordinal CO CO concentration (ug/m3)

Year Year ordinal O3 O3 concentration (ug/m3)

Month Month ordinal TEMP Temperature (℃)

Day Day ordinal PRES Pressure (h/Pa)

Hour Hour ordinal DEWP Dew Point Temperature

PM2.5 PM2.5 concentration (ug/m3) RAIN Precipitation (mm)

PM10 PM10 concentration (ug/m3) WD Wind Direction

SO2 SO2 concentration (ug/m3) WSPM Wind Speed (m/s)

NO2 NO2 concentration (ug/m3) Station Record the site

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
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to February 2017. To orderly expand the data scale, we sliced the data in a 2:3:5 ratio based on the number of 
sites. In devising the dataset division strategy, this study first ensured an adequate scale of datasets to provide a 
solid testing ground for model evaluation. Given the voluminous nature of the datasets, we reserved 10% of the 
data as the test set, a proportion considered sufficient for an effective assessment of the model’s generalization 
ability. Furthermore, we referred to the findings of References 29, whose research demonstrated outstanding 
performance on test sets of similar proportions. Therefore, combining the data volume and insights from previ-
ous studies, this paper adopts a 90:10 dataset division ratio, reserving 90% of the data for training and 10% for 
testing. We aim to achieve maximum training dataset utilization while ensuring ample test coverage.

During the process of selecting representative monitoring stations, we employed a greedy algorithm to ensure 
comprehensive coverage of the study area by the chosen sites. Given the central location of the Olympic Center 
in Beijing, we designated it as the initial representative station. Subsequently, we iteratively selected stations that 
were geographically furthest from the existing set until we obtained the required number of representative sites. 
This method aims to maximize the spatial distribution distance between representative sites. It ensures a broad 
and balanced coverage of air quality conditions across different areas of Beijing. This approach provides a diverse 
data foundation for the model, enabling a comprehensive assessment of its performance and generalization 
capabilities. Moreover, the original data contained some missing values. For missing data sequences not exceed-
ing five hours in length, we employed linear interpolation for supplementation. Linear interpolation estimates 
missing data by inserting a new data point between two known values, assuming a linear change between data 
points. This method is particularly effective for time-series data. However, for longer periods of missing data, 
linear interpolation may introduce significant errors due to the extended duration of absence. Therefore, we opted 
to discard these portions of the data. After the aforementioned processing, the data used in this study is highly 
reliable. To enhance the efficiency of data processing and facilitate fair comparison across different datasets, all 
experimental data in this paper was normalized and mapped to the [0,1] interval. This normalization reduces 
scale differences between data points.

Analysis of experimental results
Comparative analysis of models
To confirm the feasibility of our proposed hybrid strategy and the effectiveness of our model, we designed a series 
of comparative experiments. We compared the performance of different models in practical applications. Spe-
cifically, on the selected dataset, each model was independently run 30 times to ensure robustness of the results. 
During these independent runs, intelligent algorithms performed 500 optimization iterations for the objective 
function. The experimental outcomes are presented in tabular form. They include the MAPE, RMSE, and  R2. 
These metrics represent the aggregate performance of each model across the 30 independent trials. Addition-
ally, we recorded the training and prediction times under the support of swarm intelligence algorithms. These 
temporal metrics reflect the average duration consumed by SVR and the combined CPU-GPU-SVR during each 
training and prediction process. Through these comprehensive assessments, our study thoroughly examines the 
performance and efficiency of the proposed model. The results are shown in Table 3.

Through comparative analysis, this study reveals significant differences in prediction accuracy among various 
models. Specifically, within datasets AQLU, BP10-13, and BP10-14, the SSA-CPU-GPU-SVR model outperforms 
four control models in terms of RMSE, MAPE, and  R2. Although the PSO-CPU-GPU-SVR model’s prediction 
accuracy is slightly inferior to that of the SSA-CPU-GPU-SVR model, the gap is narrowing over time. Notably, 
in terms of training time efficiency, the PSO-SVR model leads significantly in training time efficiency, being 
13.71, 13.92, and 14.77 times faster than the other three models, respectively. Further analysis reveals that mod-
els integrating intelligent algorithms with CPU-GPU heterogeneous parallel computing are 6.21 to 17.40 times 
faster than the PSO-SVR model in training time on datasets BP10-13 and BP10-14. Among these models, the 
PSO-CPU-GPU-SVR model exhibits the shortest training time. Additionally, on datasets BMTWO, BMTHREE, 
and BMFIVE, the PSO-CPU-GPU-SVR model surpasses both the PSO-SVR and GA-CPU-GPU-SVR models in 
terms of RMSE, MAPE, and  R2. While its accuracy is slightly lower than that of the SSA-CPU-GPU-SVR model, 
the difference is not significant. Remarkably, the PSO-CPU-GPU-SVR model has a substantial advantage in 
training time, being 14.03 to 35.34 times faster than the PSO-SVR model.

Based on the analysis provided, the PSO-CPU-GPU-SVR model exhibits exceptional prediction accuracy. 
Although it shows no significant difference in accuracy compared to the PSO-SVR model, it outperforms the 
GA-SVR model. Despite being slightly less accurate than the SSA-CPU-GPU-SVR model, it still meets the 
requirements for haze prediction in terms of overall performance. Hence, the PSO-CPU-GPU-SVR model 
offers a balance between prediction accuracy and computational efficiency, demonstrating its practicality and 
effectiveness in the field of haze prediction. To further illustrate the performance of the PSO-CPU-GPU-SVR 
model in practical applications, we selected meteorological data from the Beijing Olympic Sports Center area 
from November to December 2016. Further, the experiment juxtaposed the predicted values of each model with 
the actual values of the raw data to generate the fitted curves, as shown in Fig. 5.

As seen in Fig. 5, the predicted  PM2.5 concentration values are consistent with the overall trend of the meas-
ured values. The prediction exhibits a minimal absolute error, which falls within the acceptable tolerance range. 
The model reflects the overall trend of  PM2.5 concentration more sensitively. It also confirms the capability of 
the model to capture temporal changes effectively. Among all the compared models, the standardized value of 
PSO-CPU-GPU-SVR exhibited the highest error stability. The absolute deviation of the predicted value from the 
actual value is small, meaning that PSO-CPU-GPU-SVR can effectively cope with mutation data.
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Table 3.  Model comparison results. Significant values are in bold.

NAME Type PSO-SVR PSO-CPU-GPU-SVR GA-GPU-CPU-SVR SSA-CPU-GPU-SVR

Air Quality UCI (AQLU)
RMSE 117.1172554 119.5051371 121.3709651 107.2987567

MAPE 0.727211661 0.77590601 0.838535283 0.53512185

Number of samples: 9358 R2 0.811587484 0.803614543 0.784017429 0.965734659

Features:15
Training time(S) 59.7126379 819.21436 830.92572 882.23621

Prediction time(S) 0.0040145 51.74979 55.67677 55.33871

Beijing PM2.5 (2010.1–
2013.12)
(BP10-13)

RMSE 99.94405737 99.77823658 101.711558 90.93115912

MAPE 0.768740951 0.745833944 0.84145769 0.495533196

Number of samples: 33,097 R2 0.845127642 0.858989267 0.874936126 0.881604629

Features: 4
Training time(S) 699.9019165 40.22424807 48.15695 112.6958

Prediction time(S) 31.45462 0.69412 0.43196 1.33513

Beijing PM2.5 (2010.1–
2014.12)
(BP10-14)

RMSE 85.01805747 81.06272915 94.15656338 79.34496198

MAPE 0.815126936 0.724034151 0.967073541 0.670985693

Number of samples: 43,824 R2 0.841019119 0.891019119 0.632759029 0.848273628

Features: 4
Training time(S) 3143.083628 221.98376 360.05402 332.94141

Prediction time(S) 59.6414 5.18547 9.48605 12.68896

Beijing Multi-Site Air-
Quality Data (Two station) 
(BMTWO)

RMSE 124.3656027 119.144273 142.8779934 126.6027772

MAPE 0.498755091 0.492129602 0.995516258 0.480304394

Number of samples: 70,128 R2 0.789373541 0.798955096 0.627841067 0.835322851

Features:12
Training time(S) 18,975.909 552.45801 584.11469 756.53461

Prediction time(S) 753.26308 8.935505101 15.20976 13.8271

Beijing multi-site air-
quality data (Three station) 
(BMTHREE)

RMSE 129.9497606 126.549063 139.95041 126.4900048

MAPE 0.756056129 0.765945502 0.922870102 0.744272799

Number of samples: 92,866 R2 0.621026602 0.646910913 0.379344487 0.588808941

Features: 12
Training time(S) 21,669.9554 1544.21289 1654.083379 1965.743976

Prediction time(S) 817.43277 16.10387 18.20595 24.54617

Beijing multi-site air-
quality data (Five station) 
(BMFIVE)

RMSE 126.7694186 123.2080758 138.9794616 125.1581696

MAPE 0.749653128 0.689342146 0.812384937 0.62626942

Number of samples: 
162,904 R2 0.651504317 0.710804574 0.483811524 0.679421323

Features: 12
Training time(S) 94,830.56335 3363.582 3573.61249 3817.20215

Prediction time(S) 1048.87949 26.82419 48.16409 60.506881

Figure 5.  A comparison of the daily  PM2.5 concentration predictions.
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PSO‑CPU‑GPU asynchronous parallel SVR model performance analysis
The comparative analysis of models indicates that, on the AQLU dataset, the PSO-SVR model requires less time 
for both training and prediction than models combining CPU-GPU-SVR. Further investigation is conducted 
to determine the underlying reasons for this outcome.

In CUDA, the data transfer bandwidth between the computer’s main memory and GPU memory is much 
smaller than that of GPU memory. When processing small-scale data, the kernel program runs in a shorter time, 
while the inter-memory data transfer can take up a lot of time. As shown in Fig. 6, PSO-CPU-GPU asynchronous 
parallel SVR model has improved prediction accuracy for test samples as the scale of data increases. The former 
is a longer runtime than the latter. At large data sets, the PSO-CPU-GPU asynchronous parallel SVR model’s 
computing time is significantly better than the PSO-SVR model’s running time (see Fig. 7). This is because when 
the data size is relatively small. The data transfer time between the computer’s main memory and GPU memory 
takes up a large portion of the time. This results in the PSO-CPU-GPU asynchronous parallel SVR model tak-
ing longer to operate at small data volumes than the PSO-SVR model. The proportion of data transfer time 
between the computer’s main memory and GPU memory decreases gradually. As a result, the PSO-CPU-GPU 
asynchronous parallel SVR model is significantly more efficient. The operation efficiency of the PSO-CPU-GPU 
asynchronous parallel SVR algorithm increases significantly as the data scale increases. And the execution time 
of this algorithm increases less as shown in Fig. 8.

Figure 6.  Comparison of PSO-CPU-GPU asynchronous parallel SVR model and PSO-SVR model runtime for 
small data sizes.

Figure 7.  Comparison of PSO-CPU-GPU asynchronous parallel SVR model and PSO-SVR model runtime at 
large data sizes.
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To demonstrate more clearly the effectiveness of the PSO-CPU-GPU asynchronous parallel SVR model and 
show its potential for improvement, this work measures the time taken by the key parts of the PSO-CPU-GPU 
asynchronous parallel SVR model to solve during training Percentage of the total time taken by each part of 
training as shown in Fig. 9. The main parts covered are the kernel function computation, solving the sub-problem 
(How to solve the sub-problem consisting of the working set.) and other parts that include operations such as 
selecting the working set and updating the parameters of the indicator function. The kernel function operations 
in the kernel call API take up most of the time in the specific process of intensive training.

Figure 8.  Data size and run time.

Figure 9.  Time share of each component during training of PSO-CPU-GPU asynchronous parallel SVR 
models.
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Conclusions
Accurate and timely  PM2.5 concentration prediction is crucial for air quality management and public health. 
High-quality forecasts provide a scientific basis for air quality alerts and guide healthy public travel. Address-
ing this critical issue, our study introduces an efficient  PM2.5 prediction model. The model is based on a high-
efficiency code that we developed specifically for the SVR algorithm using the CUDA, which has significantly 
improved the execution efficiency of the algorithm. Building on this, we combine the PSO algorithm with 
SVR, capitalizing on the simplicity of the PSO structure, the convenience of parameter tuning, and its rapid 
convergence. This innovative integration optimizes computational efficiency and processing capacity of SVR in 
environmental data analysis. It also improves model performance by reducing data processing time, making it 
more suitable for large-scale datasets. Moreover, to validate the effectiveness of selecting PSO as our optimiza-
tion algorithm, we performed separate assessments. We evaluated the PSO-CPU-GPU-SVR model against the 
GA-CPU-GPU-SVR and SSA-CPU-GPU-SVR models, respectively. Experimental results show that our het-
erogeneous parallel PSO-CPU-GPU-SVR model significantly outperforms in predicting  PM2.5 concentrations. 
Compared to models integrating GA and SSA, PSO-CPU-GPU-SVR not only accelerates prediction speed but 
also exhibits better stability and reliability while maintaining high accuracy. These findings provide new insights 
into enhancing the efficiency and accuracy of air quality forecasting. They offer valuable data support for real-
time air quality monitoring and decision-making. With reduced data processing time, our model is particularly 
suitable for large-scale environmental datasets, potentially advancing air quality prediction technology and 
informing other complex data analysis tasks.

Future research will focus on exploring more efficient algorithmic fusion strategies and parallel computing 
architectures, considering the growing scale and complexity of data. Additionally, addressing challenges encoun-
tered by PSO when handling large-scale data, such as optimization strategies and parameter tuning, warrants 
further investigation and improvement. Through continuous exploration and innovation, we aim to contribute 
more knowledge and technical solutions to the field of data-driven environmental monitoring and analysis.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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