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Efficient diagnosis of psoriasis 
and lichen planus cutaneous 
diseases using deep learning 
approach
Arshia Eskandari  & Mahkame Sharbatdar *

The tendency of skin diseases to manifest in a unique and yet similar appearance, absence of enough 
competent dermatologists, and urgency of diagnosis and classification on time and accurately, makes 
the need of machine aided diagnosis blatant. This study is conducted with the purpose of broadening 
the research in skin disease diagnosis with computer by traversing the capabilities of deep Learning 
algorithms to classify two skin diseases noticeably close in appearance, Psoriasis and Lichen Planus. 
The resemblance between these two skin diseases is striking, often resulting in their classification 
within the same category. Despite this, there is a dearth of research focusing specifically on these 
diseases. A customized 50 layers ResNet-50 architecture of convolutional neural network is used and 
the results are validated through fivefold cross-validation, threefold cross-validation, and random 
split. By utilizing advanced data augmentation and class balancing techniques, the diversity of the 
dataset has increased, and the dataset imbalance has been minimized. ResNet-50 has achieved an 
accuracy of 89.07%, sensitivity of 86.46%, and specificity of 86.02%. With their promising results, 
these algorithms make the potential of machine aided diagnosis clear. Deep Learning algorithms could 
provide assistance to physicians and dermatologists by classification of skin diseases, with similar 
appearance, in real-time.
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The accurate diagnosis and effective treatment of a dermatological ailment within the domain of dermatology are 
notably contingent upon the morphological attributes and visual presentation of diverse cutaneous lesions. The 
diagnostic procedure encompassing dermatoses and skin disorders necessitates the assimilation of multifarious 
data points, including the patient’s medical background, clinical manifestations, dermatological imagery, and 
periodic histopathological assessments conducted by a seasoned dermatologist. Nonetheless, given the profu-
sion of skin maladies and their perceptible similarities, relying solely on human observation oftentimes proves 
insufficient for achieving precise diagnostic outcomes. Consequently, this predicament engenders perplexity in 
attaining an unequivocal diagnosis1–4. Misdiagnosis has been documented in approximately 32% of instances 
involving such maladies5.

An exemplification of diseases possessing a remarkable resemblance to one another, engendering frequent 
confusion, can be discerned in psoriasis and lichen planus skin ailments. Psoriasis, an endemic and persistent 
cutaneous ailment, manifests as erythematous patches and desquamating skin across diverse bodily regions, 
such as the elbows and knees. Despite its prevalence, a comprehensive understanding of its therapeutic modali-
ties remains elusive. Notably, psoriasis exhibits a cyclic proclivity, featuring episodic occurrences on a weekly 
or monthly basis6,7.

Being a chronic inflammatory dermal disorder influenced by genetic factors, immune dysregulation, and 
periods of exacerbation, psoriasis afflicts approximately 1–3% of the global populace. While clinical assessment 
forms the basis for its diagnosis, histopathological examination of a cutaneous biopsy specimen bestows more 
comprehensive findings. Although psoriasis seldom directly threatens the patient’s life, it imparts consider-
able incapacitation and is accompanied by underappreciated societal and economic ramifications8. Conversely, 
lichen planus, another prevalent skin pathology, engenders inflammatory reactions, irritation, and edematous 
manifestations, presenting lesions that closely resemble psoriasis. Both conditions bear an association with the 
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intricate workings of the immune system. It is pertinent to note that lichen planus eludes a definitive remedy, 
though pharmacological interventions and therapeutic measures hold promise in expediting convalescence 
and assuaging discomfort9,10. Psoriasis, an ailment with multifactorial origins, exhibits a plethora of manifesta-
tions, extending beyond the confines of the skin. As of present, no precise diagnostic criteria exist to discern 
psoriasis. Instead, the diagnosis and classification of this malady rely upon diverse clinical phenotypes, age of 
onset, severity of symptoms, and morphological attributes of the disease. Despite the expansive clinical spectrum 
accompanying this condition, only a well-trained and experienced physician possesses the proficiency to accu-
rately diagnose psoriasis and its distinct phenotypes11. Seasoned physicians can often make a clinical diagnosis 
of lichen planus based on its characteristic presentation. Nevertheless, for atypical cases, a 4-mm punch biopsy 
becomes imperative12. As per Van Der Meij et al., certain phenotypes of this disorder may even render biopsies 
unhelpful, providing incomplete information to the attending physician13.

As previously noted, distinguishing between psoriasis and lichen planus poses a significant challenge due to 
their similar presentations compared to any other skin lesion. Consequently, numerous studies spanning from 
2000 to recent years14–17 have explored various lesion characteristics and diagnostic methods to enhance accuracy 
in detection of these diseases. Despite advancements highlighted in these investigations, accurately identifying 
these conditions still necessitates dermoscopic imaging, a process requiring a clinic visit and considerable time. 
Furthermore, even with such imaging, disease classification remains somewhat unreliable.

Artificial Intelligence (AI) is an expansive concept that denotes the utilization of computational systems to 
emulate intelligent conduct while minimizing reliance on human intervention. The utilization of artificial intel-
ligence in the realm of detection and categorization holds paramount significance. Consequently, psoriasis and 
lichen planus, two dermatological afflictions, present noteworthy prospects for applying artificial intelligence 
techniques.

An expanding body of scholarly literature revolves around the realm of skin disease detection. Countless 
researchers have diligently delved into the realm of machine learning and deep learning techniques, striving to 
unravel novel and enhanced avenues for identifying such ailments through the analysis of images.

A scientific inquiry conducted by Yang et al. pursued the training of an adept deep-learning network to dis-
cern dermoscopic images of psoriasis and other papulosquamous diseases. The ultimate aim was to enhance the 
precision of psoriasis diagnosis. The study entailed harnessing the prowess of the EfficientNet-B4 architecture, 
which underwent training on a corpus of 7033 dermoscopic images derived from 1166 patients, gathered from 
the esteemed Department of Dermatology at the Peking Union Medical College Hospital in China. A five-fold 
cross-validation was executed on the training set to evaluate the efficacy of EfficientNet-B4 against other prevalent 
networks utilized in prior investigations. Subsequently, a test set of 90 images was employed to draw a com-
parison between our four-class model and the diagnostic acumen of board-certified dermatologists. Pertinent 
information, encompassing the age and professional titles of dermatologists, was gleaned through an online 
questionnaire. Notably, the psoriasis-specific two-classification and four-classification models established in the 
study demonstrated remarkable precision in discriminating among various papulosquamous skin diseases. Their 
performances displayed striking parity with the average expertise of experienced dermatologists. Consequently, 
these models present formidable support for augmenting the diagnostic process of psoriasis18.

In a similar research, Zhao et al. endeavored to devise a psoriasis identification system grounded in clinical 
images, void of reliance on a dermatoscopy, while mirroring the effectiveness of a dermatologist. Their approach 
entailed the exploration and comparison of an assemblage of deep learning models, employing convolutional 
neural networks (CNNs), to achieve automatic psoriasis identification. The researchers conducted their investi-
gation on an extensively curated dermatological dataset comprising 8021 clinical images capturing 9 prevalent 
disorders, including psoriasis, alongside comprehensive electronic medical records spanning a prodigious 9-year 
period in China. A two-stage deep neural network was generated for the purpose of psoriasis detection. In the 
initial stage, a multilabel classifier underwent rigorous training to discern the distinctive visual patterns exhibited 
by each distinct skin ailment. Subsequently, in the second stage, the outcomes of the first stage were effectively 
harnessed to discriminate psoriasis from other skin diseases19.

In a study by Zhu et al., a novel deep-learning framework was constructed and trained on a dataset represent-
ing the real clinical environment of a tertiary hospital in China. The dataset consisted of 13,603 dermatologist-
labeled dermoscopic images, encompassing 14 disease categories. The authors concluded that their retrained 
framework accurately classified common dermatoses encountered in outpatient practice, including infectious 
and inflammatory dermatoses, as well as benign and malignant cutaneous tumors1.

Another investigation conducted by Bajwa et al. sought to expand upon prior research in Computer-Aided 
Diagnosis within the field of dermatology by delving into the prospective applications of Deep Learning in the 
classification of numerous skin diseases. The objective was to enhance the performance of classification and 
exploit disease taxonomy. In order to achieve this, cutting-edge Deep Neural Networks were trained using two of 
the most extensive publicly accessible skin image datasets, specifically DermNet and ISIC Archive. Additionally, 
disease taxonomy was utilized whenever available to augment the classification performance of these models. 
This study exemplifies the tremendous potential of Deep Learning in accurately categorizing a wide spectrum 
of skin diseases, achieving levels of accuracy comparable to human performance while also surpassing it in 
terms of reproducibility. Consequently, Deep Learning holds considerable promise in the realm of practical 
real-time skin disease diagnosis, as it can assist physicians in conducting large-scale screenings using clinical 
or dermoscopic images20.

In a parallel study conducted by Gunwant et al. in 2022, an advanced expert system was developed utilizing 
the EfficientNet B-0 and ResNet-50 models. The primary objective of this system was to support clinicians in 
accurately identifying various cutaneous diseases, including Eczema, Psoriasis, Lichen Planus, Benign Tumours, 
Fungal Infections, and Viral Infections. Similar to prior research endeavors, the study leveraged the DermNet 
dataset for comprehensive analysis. Moreover, in line with conventional methodologies, the study grouped 
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Psoriasis and Lichen together for identification purposes. The results yielded an impressive average accuracy 
rate of 91.36%, highlighting the effectiveness and reliability of the proposed approach21.

In 2023, Mohamed Hammad et al. introduced "Derma Care," a deep learning approach aimed at detecting 
eczema and psoriasis skin conditions. Leveraging a publicly available image dataset from Kaggle22, comprising 
27,153 images categorized into ten classes of skin diseases, the study concentrated on two specific classes: 1677 
images for eczema and 2055 images for psoriasis. The researchers evaluated three prominent deep learning 
algorithms—AlexNet, ResNet, and VGG-16—and achieved impressive results, boasting an accuracy of 96.20%, 
precision of 96%, recall of 95.70%, and F1-score of 95.80%. Similar to related scholarly investigations, this study 
also has only focused on Psoriasis condition23.

Nieniewski et al. in 2023 conducted a study focusing on differentiating Psoriasis from other dermatoses 
using a small dataset and transfer learning. The VGG16 deep convolutional neural network is used as a feature 
extractor, and the Support Vector Machine classifier is used for classification. The study uses a small number 
of 75 Psoriasis patients and 75 non-Psoriasis patients, with a variable number of clinical images taken for each 
patient. The input images are obtained with smartphone cameras without any special arrangements or equipment, 
leading to variability in working conditions. Their method achieved the sensitivity of 85.33% and a precision of 
82.58%. Similar to many other investigations the paper only has focused on Psoriasis24.

In the aforementioned investigations, the primary emphasis of the authors predominantly revolved around 
Psoriasis dermatoses, whereas the latter examination did not make any distinction whatsoever between Psoriasis 
and Lichen planus. In the inquiry conducted by Zhu et al., it was articulated that the primary objective of the 
study entailed the establishment of an innovative framework, one that authentically replicated the clinical milieu 
prevailing in China. This endeavor aimed to enhance the applicability of artificial intelligence (AI) within clinical 
practice for the benefit of Asian patients. Consequently, the outcomes of this study possess an excessive degree 
of specificity, thereby rendering them unsuitable for extrapolation to alternative clinical settings. Moreover, 
none of the investigations have undertaken a direct comparative analysis between these two skin disorders in 
the absence of concurrent ailments. The resemblance between Lichen Planus and Psoriasis skin diseases is con-
siderable, often leading to their classification within the same category. While expanding the number of classes 
may enhance overall classification accuracy, this could potentially diminish the model’s validity for detecting 
these specific lesions. Given the study’s focus on these two skin conditions, prioritizing their accurate identifi-
cation outweighs the pursuit of inflated overall accuracy, hence only these two lesions were considered for this 
investigation. Given the conspicuously high level of resemblance between these two dermatoses, it is imperative 
to explore these lesions independently from other skin conditions in order to produce reliable findings that can 
be effectively implemented in an authentic clinical environment.

Materials and methods
This segment elucidates the methodologies and constituents employed in this study. The initial division pre-
sents a comprehensive exposition of the dataset and its corresponding classes, whereas "Class Balancing and 
Data Augmentation" section concentrates on the harmonization of classes and the amplification of data. Subse-
quently, "Data Pre-Processing" section offers a succinct account of the preprocessing procedure. Ultimately, the 
expounded ResNet-50 model is explicated in "ResNet-50" section.

Dataset
From the expansive DermNet dataset25, a publicly accessible repository of substantial proportions, encom-
passing over 23,000 images spanning in excess of 20 distinctive skin conditions, a subset comprising precisely 
1,528 images was acquired. Despite the dissimilarity in their physical dimensions, the images demonstrated 
harmonization in terms of resolution, exhibiting a consistent horizontal and vertical resolution of 96 dots per 
inch (dpi). Furthermore, all images adhered to a standardized bit depth of 24, signifying the uniformity of color 
information within the pictorial representations. It is imperative to note that the aforementioned dataset was 
meticulously compiled by DermNet, with the consent of patients specifically diagnosed with either Psoriasis or 
Lichen planus skin conditions. Additionally, the dataset exhibited a conspicuous disparity in the distribution of 
its constituent categories, wherein Psoriasis instances predominated significantly, while Lichen planus repre-
sentations accounted for less than one-third of the total data. This evident class imbalance is visually depicted in 
Fig. 1. Specifically, the Psoriasis category consisted of 1,100 available pictures, whereas the Lichen planus class 
comprised a smaller subset of 428 images. For the purpose of the current study, these respective categories were 
systematically labeled as 0 and 1, correspondingly.

Figure 2 showcases representative samples from the Psoriasis (2.a) and Lichen planus (2.b) categories, pro-
viding visual illustrations of the skin conditions under investigation. Notably, the afflicted regions on the skin 
are distinctly highlighted and delineated by means of a red rectangle, effectively demarcating the problematic 
areas of interest.

Class balancing and data augmentation
As elucidated in "Experimental Setup" section, the severity of class imbalance necessitated the adoption of class 
balancing techniques, considering its substantial impact on the false negative rates inherent in the eventual 
outcomes. However, an equally pertinent concern revolved around the usability of the collected data, whereby 
numerous images had to be excluded from the dataset due to issues pertaining to clarity, quality, and overall suit-
ability for the present study. Consequently, the total number of images within the dataset witnessed a reduction. 
Nevertheless, this curation process led to a noteworthy narrowing of the gap between the classes, as the Lichen 
planus category contained a considerably higher proportion of usable data. Thereby, without resorting to any 
augmentation or balancing procedures, the dataset consisted of 641 images representing the psoriasis class and 
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378 images representing the lichen planus class. The crucial step of class balancing was ultimately implemented 
using a standard technique involving both oversampling and undersampling. This entailed duplicating certain 
images within the dataset, with a deliberate focus on undersampling the Psoriasis class while oversampling the 
Lichen planus class, effectively mitigating the disparity between the two categories. To ensure a reduction in 
potential information loss and biased sampling, the selection of images was conducted randomly. The resulting 
dataset, depicted in Fig. 3, showcases a visual representation of the dataset both before and after the application 
of class balancing techniques.

Considering the reduced size of the new dataset, it was determined that data augmentation would be advan-
tageous for the study. Accordingly, the dataset was augmented by approximately 15 percent. The augmentation 
process involved the random selection of data and subsequent manipulation utilizing various techniques. These 
techniques included rotation and distortion of the images, with rotations performed at random degrees ranging 
from 0 to 40 degrees, and distortions applied along an axis within the range of 0–0.2 degrees. Additionally, image 
flipping along different axes and adjustments to brightness were implemented. The brightness adjustments were 
randomly selected within a range of 50–150% of the original brightness level. Moreover, zooming techniques 
were employed, allowing for magnification of the images up to 20% of their original size. For reference, Table 1 
presents a comprehensive list of the selected augmentations employed in this process, accompanied by brief 
descriptions for each augmentation technique.

The previous dataset, characterized by class imbalance, was also subjected to augmentation to facilitate its 
utilization. Figure 4 serves as a visual representation, illustrating the augmentation process applied to the first 
two datasets.

Figure 1.   Class Imbalance in the raw dataset.

Figure 2.   Samples of two skin disease class: (a) sample of Psoriasis disease from the dataset, (b) sample of 
Lichen planus disease from clinical research and development center, Semnan University of Medical Sciences.
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Figure 3.   (a) Dataset without class balancing, (b) dataset with class balancing.

Table 1.   List of selected augmentation with arguments and their description.

S. no. Augmentation arguments Description

1 rotation_range = 40 Rotates the images with a random angle between 0 and 40 degrees

2 shear_range = 0.2 Image will be distorted along an axis between 0 and 0.2 degrees

3 zoom_range = 0.2 Magnifies the image randomly between 0 and 20% of the image

4 horizontal_flip = True Randomly flip images horizontally

5 vertical_flip = True Randomly flip images vertically

6 brightness_range = (0.5, 1.5) Shifting the brightness randomly between 50 and 150% of brightness

Figure 4.   (a) Dataset without class balancing but with data augmentation, (b) dataset with class balancing and 
data augmentation.
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Data pre‑processing
To ensure the integrity of the input data and optimize the final results, pre-processing steps were employed. 
Firstly, a significant concern was the presence of images in the dataset that contained additional objects alongside 
the skin region of interest. To address this, a meticulous manual cropping process was undertaken for each file 
individually, aligning them at the appropriate angles to isolate the desired skin area accurately. Secondly, numer-
ous files in the dataset were marred by watermarks, which needed to be faded out while maintaining data integ-
rity, as the original unlabeled data was no longer available. This watermark removal process was conducted with 
utmost precision to avoid any damage to the underlying information. Lastly, a notable disparity was observed 
in the width and height of the files, rendering them incompatible with the ResNet-50 model. Consequently, 
resizing of the files became necessary to achieve a consistent size. The final size of the pre-processed data was 
established as 224 pixels × 224 pixels, ensuring compatibility with the ResNet-50 model. It is important to note 
that the resizing was performed conservatively, with due care taken to preserve the original proportions and 
shapes of the images. Figure 5 provides an exemplar of an image from the dataset after undergoing the afore-
mentioned transformations.

ResNet‑50
This section provides a detailed description of the proposed ResNet-50 architecture, which was achieved by 
considering the original ResNet-50 model available in the Keras library. The selection of ResNet-50 for our 
study was based on several factors that contribute to its suitability for the problem at hand. Firstly, ResNet-50 is 
a well-established convolutional neural network architecture known for its depth and performance in image clas-
sification tasks. Its deeper architecture allows for more complex feature extraction, which is crucial for accurately 
distinguishing between subtle differences in skin diseases, such as Psoriasis and Lichen Planus. Additionally, 
ResNet-50 has been widely adopted and extensively studied in the field of medical image analysis, including 
dermatology, demonstrating strong performance in various disease classification tasks21,26. The architecture of 
the proposed ResNet-50 model is depicted in Fig. 6. The input to the first layer of the model consists of images 
with dimensions of 224 × 224 × 3, representing height, width, and RGB color channels, respectively. Before the 

Figure 5.   Before and after of an image through data pre-processing transformation.

Figure 6.   ResNet-50 architecture.
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activation, a global max pooling layer and a dense layer were added to the model. The purpose of the max pooling 
layer is to reduce the dimensionality of the input, thereby decreasing the number of parameters, reducing training 
time, and mitigating the risk of overfitting. The dense layer performs the classification task based on the output 
of the preceding convolutional layers. It is worth mentioning that the original ResNet-50 model architecture, 
which forms the foundation of the proposed model, is readily available in the Keras library. The inclusion of 
the global max pooling and dense layers constitutes the modifications introduced in the proposed ResNet-50 
architecture26–29. The performance of the model was notably influenced by manual fine-tuning of parameters 
and meticulous control over the learning process. In the compile stage of the model, the Adam optimizer30 
was selected. This optimizer effectively manages the exponential decay average during the training process. To 
optimize the learning process, the learning rate parameter was dynamically configured based on the number of 
epochs. Fine-tuning the learning rate is crucial for achieving optimal performance. Through multiple trial and 
error experiments, it was determined that setting the number of epochs to 20 and the batch size to 32 yielded the 
best results. A comprehensive summary of the trial and error experiments is presented in Table 2. The parameters 
used for the ResNet-50 model are summarized within Table 3. The ResNet-50 model, as implemented, consists 
of a total of 25,636,712 parameters31. These parameters contribute to the overall complexity and capacity of the 
model, enabling it to capture intricate patterns and representations within the data.

Figure 7 showcases the comprehensive block diagram of the proposed work, delineated into five distinct 
sections. The first section involves the initial step of inserting images into the process and combining them 
with accompanying metadata. This integration of visual and non-visual data enables a holistic approach to data 
analysis. The second section encompasses augmentation and balancing techniques, wherein the gathered data 
is both balanced by class and augmented, resulting in the generation of multiple datasets. This process enhances 
the diversity and representation of the data, improving the model’s robustness and performance. In the third 

Table 2.   Results from class balancing and data augmentation (random splitting) with different epochs and 
batch sizes. *denotes the best accuracy.

Epochs Accuracy Batch size Accuracy

10 0.8670 10 0.8553

20* 0.8907* 20 0.8437

50 0.8786 32* 0.8907*

100 0.8670 60 0.8670

150 0.8437 100 0.8786

Table 3.   Parameters used for the ResNet-50 model.

Optimizer Epochs Batch size

“Adam” 20 32

Figure 7.   The proposed methodology in a block diagram.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9715  | https://doi.org/10.1038/s41598-024-60526-4

www.nature.com/scientificreports/

section, the images undergo resizing and the selection of the region of interest. This step ensures consistency in 
the dimensions of the images and focuses on the specific areas relevant to the skin diseases under examination. 
The fourth section involves the insertion of the pre-processed data into the proposed ResNet-50 model. This step 
utilizes the modified architecture to extract meaningful features and classify the skin diseases effectively. Finally, 
in the fifth section, the performance of the model is evaluated through two approaches: K-fold cross-validation 
and random train-test splitting. These techniques assess the model’s ability to accurately classify Psoriasis and 
Lichen planus skin diseases, providing insights into its overall performance and efficacy.

Experimental results
This section introduces the experimental setup employed for the analysis and evaluation of the proposed model.

Experimental setup
The trials were conducted using Jupyter Notebook32 with Python 3.8 as the interpreter. The experimental setup 
utilized a computing device with the following specifications: an Intel Core i7-7700HQ processor, an NVIDIA 
GeForce GTX 1060 Mobile GPU, 16GB RAM, and 1280 CUDA cores. The proposed ResNet model was imple-
mented using Keras 2.8.0, built on the TensorFlow framework. Cross-validation methods and test/train splits 
were employed for the validation process of the model, ensuring robust evaluation and reliable performance 
assessment.

Train/test split
In the two approaches, considering both with and without data augmentation, the ResNet model was validated 
using a train and test split technique. Approximately one-fifth of each dataset was allocated for testing, while 
the remaining 80% was utilized for training the model. The precise breakdown of the train/test split is presented 
in Fig. 8, providing a comprehensive view of the distribution of data between the training and testing phases.

K‑fold cross‑validation
The ResNet model was also validated using K-fold cross-validation techniques. In this process, the dataset is 
randomly divided into K different folds or groups. The model is then validated K times, with each iteration 
using one fold for validation while the remaining folds are used for training the model. To address potential 
bias introduced by multiple images from the same patient, cross-validation was conducted by stratifying the 
folds based on augmented patient data. This ensured that each fold contained images from different patients, 
thereby enhancing the robustness of the evaluation process. The final accuracy is calculated as the mean of all 
the accuracies achieved during this process. Similarly, the final results are calculated as the mean of all the vali-
dation results. In this experiment, the value of K was configured differently for each dataset variation. For the 
class balancing with data augmentation dataset, K was set to 3 and k was set to 5. This means that the model was 
validated 5 times, with each validation using 3 randomly selected folds for training and onefold for validation. 
For the dataset without class balancing, K was set to 5, and for the dataset without class balancing with data 
augmentation, K was also set to 5. By utilizing K-fold cross-validation, a more robust evaluation of the model’s 
performance is achieved, as it takes into account variations in the dataset and provides a more accurate estimate 
of the model’s generalization capabilities.

Figure 8.   The train/test split division: (a) 1277 samples in train set and 319 in test set for the dataset without 
data augmentation, (b) 1469 samples in train set and 367 in test set for the dataset with data augmentation.
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Performance metrics
For the evaluation of the model’s performance, several metrics were measured including accuracy, sensitivity, 
precision, F1-score, specificity, area under the curve (AUC), receiver operating characteristic (ROC) curve. The 
results for these metrics are presented in Table 4. Accuracy is a metric that measures the proportion of correctly 
predicted data points out of all the data points. It is calculated by dividing the number of correctly predicted data 
points by the total number of data points. Accuracy is described in Eq. (1).

where TP (True Positive) signifies the count of accurately predicted positive instances, while TN (True Nega-
tive) denotes the count of precisely predicted negative instances. In contrast, FP (False Positive) symbolizes the 
count of erroneously predicted positive instances, and FN (False Negative) embodies the count of inaccurately 
predicted negative instances. These metrics stand as valuable indicators, imparting insights into the operational 
proficiency of such models.

Sensitivity, also known as true positive rate or recall, measures the proportion of actual positive cases that 
are correctly identified by the model. Sensitivity is described in Eq. (2).

(1)Accuracy =
TP + TN

TP + TN + FP + FN

Table 4.   Performance Metrics of model ResNet-50 convolutional neural network (CNN).

Evaluation metrics of ResNet-50 CNN

Multi classes

Approaches Evaluation Psoriasis Lichen planus Average

Without class balancing and data augmentation (fivefold cross-validation)

Precision 0.7735 0.6570 0.7152

Sensitivity 0.5922 0.8667 0.7048

F1-Score 0.6693 0.7287 0.7048

Specificity 0.7342 0.7342 0.7342

Accuracy 0.7767

AUC​ 0.7590 0.7590 0.7590

Without class balancing but data augmentation (fivefold cross-validation)

Precision 0.7869 0.7108 0.7488

Sensitivity 0.6000 0.8587 0.7293

F1-Score 0.6796 0.7773 0.7284

Specificity 0.7632 0.7632 0.7632

Accuracy 0.7632

AUC​ 0.8807 0.8807 0.8807

Class balancing and without data augmentation (random splitting)

Precision 0.8483 0.7640 0.8061

Sensitivity 0.8483 0.7640 0.8061

F1-Score 0.8482 0.7639 0.8061

Specificity 0.8039 0.8039 0.8039

Accuracy 0.8039

AUC​ 0.9071 0.9071 0.9071

Class balancing and data augmentation (random splitting)

Precision 0.9222 0.8602 0.8912

Sensitivity 0.9195 0.8646 0.8920

F1-Score 0.9208 0.8623 0.8916

Specificity 0.8907 0.8907 0.8907

Accuracy 0.8907

AUC​ 0.9678 0.9678 0.9678

Class balancing and data augmentation (threefold cross-validation)

Precision 0.8868 0.8173 0.8778

Sensitivity 0.8851 0.8178 0.8514

F1-Score 0.8859 0.8175 0.8517

Specificity 0.8496 0.8496 0.8496

Accuracy 0.8496

AUC​ 0.9163 0.9163 0.9163

Class balancing and data augmentation (fivefold cross-validation)

Precision 0.9099 0.8207 0.8653

Sensitivity 0.9103 0.8190 0.8646

F1-Score 0.9101 0.8198 0.8649

Specificity 0.8626 0.8626 0.8626

Accuracy 0.8635

AUC​ 0.9298 0.9298 0.9298
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Precision represents the proportion of correctly predicted positive cases out of all the predicted positive cases. It 
provides insight into the model’s ability to minimize false positive predictions. This metric is described in Eq. (3).

The F1-score is the harmonic mean of precision and sensitivity. It provides a balanced measure of the model’s 
performance by taking into account both precision and sensitivity, and is, described in Eq. (4).

Specificity measures the proportion of actual negative cases that are correctly identified by the model. Equa-
tion (5) describes this metric.

The ROC (Receiver Operating Characteristic) curve is a metric used to evaluate binary classification problems. 
It plots the true positive rate (TPR) against the false positive rate (FPR) at various classification thresholds on a 
probability curve. The AUC (Area Under the Curve) is a summary measure of the ROC curve. It quantifies the 
classifier’s ability to distinguish between different classes. The AUC is calculated by integrating the area under 
the ROC curve. The formulation for AUC is elucidated in Eq. (6).

Prediction performance of proposed ResNet‑50
The proposed ResNet-50 model was compiled using categorical cross-entropy as the loss function parameter and 
Adam optimizer30 as the optimizer parameter. The batch size for training the model was set to 32, and the model 
was trained for a total of 20 epochs. The performance of the model was evaluated using various approaches, which 
are detailed in the study. The results of these evaluations, including the test loss and test accuracy, are presented 
in Table 5. These metrics provide insights into the performance of the model on the test dataset, indicating the 
effectiveness of the proposed ResNet-50 model in classifying the Psoriasis and Lichen planus skin diseases.

Among the different approaches evaluated, the class balancing and data augmentation with random splitting 
technique achieved the best results in terms of loss, with a value of 0.3716. This approach also demonstrated the 
highest accuracy of 89.07%. However, it is worth noting that the class balancing and data augmentation with 
fivefold cross-validation approach achieved a slightly lower accuracy of 86.35%, but it may provide a more robust 
evaluation due to the use of cross-validation. The performance of each approach is thoroughly documented in 
Table 5, providing a comprehensive overview of the metrics for each technique. It is evident that class balancing 
has had a substantial impact on the performance of the model. The approaches without class balancing showed 
the lowest performance, regardless of the augmentation technique used. Even with minimal augmentation, a 
modest increase in accuracy was observed when the datasets were balanced.

Table 5 provides a more detailed description of the performance metrics for the proposed model. In general, 
the metrics, except for AUC, averaged out close to the accuracy metric with minimal discrepancies across the 
different approaches. AUC, on the other hand, tended to be relatively higher in each scenario. This consistent 
pattern can be observed throughout all of the evaluated approaches. These findings highlight the significance 
of class balancing and data augmentation techniques in improving the performance of the proposed ResNet-50 
model for the classification of Psoriasis and Lichen planus skin diseases.

(2)Sensitivity =
TP

TP + FN

(3)Precision =
TP

TP + FP

(4)F1score = 2×
Precision× Recall

Precision+ Recall

(5)Specificity =
TN

TN + FP

(6)AUC =

∫
True Positive Rated(False Positive Rate)

Table 5.   The ResNet-50 CNN test loss and test accuracy.

ResNet-50 CNN model tested approaches Test loss Test accuracy

Without class balancing and data augmentation (fivefold cross-validation) 1.0784 0.7767

Without class balancing but data augmentation (fivefold cross-validation) 0.7262 0.7632

Class balancing and without data augmentation (random splitting) 0.8078 0.8039

Class balancing and data augmentation (random splitting) 0.3716 0.8907

Class balancing and data augmentation (threefold cross-validation) 0.6489 0.8496

Class balancing and data augmentation (fivefold cross-validation) 0.5928 0.8635
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Discussion
This study presents a comprehensive investigation into the automated classification and identification of Psoria-
sis and Lichen planus skin diseases using a Residual Network with 50 layers (ResNet-50) convolutional neural 
network (CNN) based on deep learning techniques. The study also provides an overview of relevant research 
in this field. The performance of the ResNet-50 CNN model was thoroughly evaluated and compared under 
various conditions, including the implementation of data augmentation and class balancing techniques. The 
results demonstrated that without class balancing, the overall accuracy for identifying the cutaneous diseases 
fell short of the 80% threshold. However, with the application of data augmentation and class balancing, the 
accuracy significantly improved. In terms of data augmentation, the difference in accuracies between the cases 
with and without implementation was not substantial, ranging from 86.35 to 89.07%. Nevertheless, the approach 
that combined class balancing and data augmentation yielded the highest accuracy among all the evaluated 
approaches. This study highlights the potential and effectiveness of the ResNet-50 CNN model in accurately 
detecting and classifying Psoriasis and Lichen planus skin diseases. The findings emphasize the importance of 
considering data augmentation and class balancing techniques to enhance the accuracy and efficiency of such 
automated systems for dermatological diagnoses.

Figure 9 showcases examples of correctly diagnosed and misdiagnosed images, providing visual illustrations of 
the performance of the proposed ResNet-50 model. These images serve as representative samples to demonstrate 
the accuracy of the model in correctly identifying Psoriasis and Lichen planus skin diseases.

In Fig. 10, the loss values for the three different K-fold cross-validation approaches are compared. The 
approaches include: without class balancing and without data augmentation, without class balancing and with 
data augmentation, and class balancing with data augmentation. The chart visualizes the loss values obtained for 
each fold or split in the cross-validation process. The orange line represents the recommended approach, which 
involves class balancing and data augmentation. This approach consistently demonstrates the lowest loss values 
and thus provides the best results across the different folds or splits. This comparison reinforces the effectiveness 
of utilizing class balancing and data augmentation techniques to improve the performance of the ResNet-50 
model in accurately diagnosing Psoriasis and Lichen planus skin diseases.

Figure 11 presents the confusion matrix for all of the approaches, which shows the distribution of false posi-
tive, false negative, true positive, and true negative classifications for Psoriasis and Lichen planus classes. The 
matrix provides a visual representation of the model’s performance in correctly classifying the skin diseases.

Figure 12 displays the receiver operating characteristic (ROC) curves for the six approaches. These curves 
illustrate the true positive ratio and false positive ratio at various classification thresholds. The area under the 
curve (AUC) is calculated to quantify the performance of each approach. The class balancing with data augmen-
tation approach achieves an impressive AUC of 96%, indicating its high discriminatory ability in distinguishing 
between Psoriasis and Lichen planus skin diseases.

Table 6 provides a comparison between the current study and four other research papers that have focused 
on using deep learning and convolutional neural networks for the classification and detection of Psoriasis and/
or Lichen planus skin diseases. In the study by Yang, Wang et al. in 2021, the performance of their approach was 
measured, but they did not report the class-based accuracy or the total accuracy for their method. While they 
achieved favorable sensitivity and specificity results, the overall accuracy of their approach remains unknown. 
Although the study covers multiple skin conditions, the authors have stated that the primary focus of their 
investigation is on Psoriasis. Furthermore, the dataset utilized consist of imaging data collected from China. 
These factors limit the applicability of their approach in recognition of Psoriasis vs. Lichen Planus. Zhao, Xie 
et al. in 2019 explored deep learning models for the design of a smart identification system based on clinical 
images, but their study was limited to Psoriasis disease only. Zhu, Wang et al. in 2021 constructed a framework 
based on deep learning and trained it on a dataset of 13,603 images, which represented the clinical environment 
in China. However, the accuracy reported in their study may be inflated due to the specificity of their dataset, 
which may not be applicable to different environments. Bajwa, Muta et al. in 2020 used the DermNet and ISIC 
Archive to train Deep Neural Networks for the classification of 23 skin lesions, including Psoriasis, Lichen planus, 
and related diseases. However, their approach did not provide conclusive differentiation between Psoriasis and 
Lichen planus. Gunwant et al. (2022) developed an advanced expert system utilizing the EfficientNet B-0 model 
to aid clinicians in identifying various cutaneous diseases. The study utilized the DermNet dataset and achieved 

Figure 9.   Examples of correctly diagnosed and misdiagnosed images. (a) Misdiagnosed Lichen planus, (b) 
correctly diagnosed Lichen planus, (c) Misdiagnosed Psoriasis, (d) Correctly diagnosed Psoriasis.
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an impressive average accuracy rate of 91.36%. However, similar to conventional methodologies, Psoriasis and 
Lichen were grouped together, representing a limitation in disease differentiation. Similarly, the deep learning 
approach proposed by Mohamed Hammad et al. (2023) focused on detecting eczema and psoriasis. Despite 
achieving remarkable results with an accuracy of 96.20%, precision of 96%, recall of 95.70%, and F1-score 
of 95.80%, the study solely concentrated on psoriasis, limiting its scope. Nieniewski et al. (2023) investigated 
differentiating psoriasis from other dermatoses using a small dataset and transfer learning techniques. While 
achieving a sensitivity of 85.33% and a precision of 82.58%, the study’s exclusive focus on psoriasis represents a 
notable limitation, restricting its applicability to broader dermatological conditions. Additionally, variability in 
working conditions due to smartphone image capture adds another layer of constraint to the study’s findings. It 
is important to recognize that the focus of our research on a unique subject makes it impractical to replicate the 
exact experimental conditions used in other studies. The data we employed has not been previously examined for 
this specific purpose, further contributing to the distinctive nature of our investigation. Additionally, it’s crucial 
to emphasize that the purpose of comparing models is not to assert the superiority of one over another; rather, 
it serves to underscore the strengths inherent in each approach; These comparisons highlight the strengths and 
limitations of each approach and emphasize the importance of considering dataset diversity and environmental 
factors when evaluating the performance of deep learning models for skin disease classification.

Limitations
The study acknowledges several limitations that should be taken into consideration. Firstly, the validation process 
using K-fold cross-validation could be further optimized by evaluating all folds together rather than individu-
ally. This would reduce the training burden and provide a more uniform evaluation process. Another limitation 
is the relatively small size of the dataset used in this study compared to other similar researches. Increasing the 
dataset size would enhance the robustness and generalizability of the model. Collecting a larger dataset should 
be considered in future studies to improve the accuracy and reliability of the results. Furthermore, during the 
data collection process, it was observed that there was a significant difference in the availability of Psoriasis and 
Lichen planus images. This imbalance between the classes may have introduced biases in the model towards the 
class with more data, which in this case is Psoriasis. Although class balancing techniques were applied, there 
was still a noticeable disparity between the two classes. To mitigate this issue, alternative solutions such as class 
weighting or other sampling techniques could be explored. Additionally, the authors recommend collecting more 
data specifically for the minority class (Lichen planus) to address this imbalance. These limitations highlight 
areas for improvement in future studies, including optimizing the validation process, increasing the dataset size, 
and addressing class imbalance to ensure more accurate and unbiased results.

Figure 10.   Loss comparison of class balancing and augmentation through fivefold cross validation.
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Figure 11.   The Confusion Matrix of the ResNet-50 CNN Model. (a) The Confusion Matrix of fivefold cross-
validation of without class balancing and augmentation. (b) The Confusion Matrix of fivefold cross-validation 
of without class balancing and with augmentation. (c) The Confusion Matrix of random splitting of class 
balancing and without augmentation. (d) The Confusion Matrix of random splitting of class balancing and with 
augmentation. (e) The Confusion Matrix of threefold cross-validation of class balancing and augmentation. (f) 
The Confusion Matrix of fivefold cross-validation of class balancing and augmentation.
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Figure 12.   The ROC curves of the ResNet-50 CNN Model. (a) The ROC curves of each class for fivefold 
cross-validation of without class balancing and augmentation. (b) The ROC curves of each class for fivefold 
cross-validation of without class balancing and with augmentation. (c) The ROC curves of each class for random 
splitting of class balancing and without augmentation. (d) The ROC curves of each class for random splitting of 
class balancing and with augmentation. (e) The ROC curves of each class for threefold cross-validation of class 
balancing and augmentation. (f) The ROC curves of each class for fivefold cross-validation of class balancing 
and augmentation.
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Conclusions
This study presents an efficient and automated computer-based system for the identification and classification 
of Psoriasis and Lichen planus cutaneous diseases. The proposed approach utilizes a Residual Network with 
50 layers Convolutional Neural Network (CNN) architecture. By employing advanced techniques such as data 
augmentation and class balancing, the dataset’s diversity is increased and the class imbalance is mitigated. The 
validation of the model is performed using various techniques including fivefold cross-validation, threefold 
cross-validation, and random splitting. These methods ensure the reliability and generalizability of the results. 
The ResNet-50 CNN model demonstrates high accuracy, sensitivity, precision, specificity, and area under the 
curve (AUC) values. The achieved accuracy of 89.07% is remarkable considering the relatively small dataset used 
in this study. The sensitivity and precision values further validate the effectiveness of the proposed approach in 
correctly identifying and classifying the skin diseases. Furthermore, the performance metrics such as specificity 
and AUC indicate the model’s ability to differentiate between the classes with high accuracy. Moreover, due to its 
exceptional accuracy, the recommendation of the proposed ResNet-50 model for the classification of these two 
diseases is warranted. It is noteworthy that despite the smaller dataset size compared to other studies, the results 
obtained in this research are comparable and even surpass those achieved with much larger datasets. While this 
study employs a classic approach to address the classification problem, the novelty arises from the scarcity of 
research specifically focusing on these two lesions without the presence of other classes. Moreover, the model 
demonstrated exceptional performance criteria, further underscoring the significance of the findings. To the 
authors’ knowledge, this study presents a unique and effective automated deep learning computer-based system 
specifically designed for the classification and identification of Psoriasis and Lichen planus skin diseases. The 
proposed approach demonstrates promising results and highlights the potential of deep learning techniques in 
the field of dermatology.

Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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Table 6.   Comparison state of the art works with our proposed model.

Author, year Model Dataset Target output

Evaluation

Accuracy Sensitivity Precision Specificity AUC​

Yang et al., 202118 EfficientNet-B4
(two-class CNN) Dermoscopic images (7,033)

Mean – 0.927 – 0.827 –

Psoriasis – 0.688 – 0.903 –

Lichen Planus – 0.669 – 0.953 –

Yang et al., 202118 EfficientNet-B4
(four-class CNN) Dermoscopic images (7,033)

Mean – 0.889 – 0.968 –

Psoriasis – 0.929 – 0.952 –

Lichen Planus – 0.933 – 0.960 –

Zhao et al., 201919

InceptionV3 (One-stage)

XiangyaDer-Pso9
(8,021) Psoriasis

– 0.91 – 0.96 0.966

DenseNet121
(Two-stage) – 0.83 – 0.97 0.954

InceptionResNetV2
(Two-stage) – 0.95 – 0.97 0.975

Xception (Two-stage) – 0.93 – 0.98 0.976

InceptionV3 (Two-stage) – 0.92 – 0.98 0.981

Zhu et al., 20211 EfficientNet-B4
(modified)

Imaging database of the 
Department of Dermatology
(13,603)

Mean 0.948 0.934 – 0.950 –

Psoriasis 0.886 0.920 – 0.882 –

Lichen Planus 0.969 0.873 – 0.975 –

Bajwa et al., 202020 ResNet-152, DenseNet-161, 
SE-ResNeXt-10, NASNet

DermNet
(2,112)

Psoriasis, Lichen Planus and 
related diseases – 0.8191 0.7961 0.9726 –

Gunwant et al.21 Efficinetnet-B0, ResNet-50 DermNet
(≈2,400) Psoriasis and Lichen Planus 0.9136

(Ave)
0.9268
(Ave) – – –

Hammad et al.23 AlexNet, ResNet, and 
VGG-16 Dermoscopic images (2055) Psoriasis 0.9570 0.96 – –

Nieniewski et al.24 Support Vector Machine Smartphone cameras pic-
tures (150 patients) Psoriasis – 0.8533 0.8258 – –

Proposed ResNet-50 DermNet (856)

Mean

0.8907

0.8920 0.8912 0.8907 0.9678

Psoriasis 0.9195 0.9222 0.8907 0.9678

Lichen Planus 0.8646 0.8602 0.8907 0.9678
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