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Soft ground micro TBM jack 
speed and torque prediction 
using machine learning models 
through operator data and micro 
TBM‑log data synchronization
Kursat Kilic 1*, Owada Narihiro 1, Hajime Ikeda 2, Tsuyoshi Adachi 1 & Youhei Kawamura 3

Tunnel Boring Machines (TBMs) are pivotal in underground projects like subways, highways, and 
water supply tunnels. Predicting and monitoring jack speed and torque is crucial for optimizing 
TBM excavation efficiency. Conventionally, skilled operators manually adjust numerous tunnelling 
parameters to regulate the machine’s progress. In contrast, machine learning (ML) algorithms offer a 
promising avenue where computers learn from operator actions to establish parameter relationships 
autonomously. This study introduces an innovative approach to enhancing operator monitoring and 
TBM data comprehension. A robust correlation between TBM operator behaviour and TBM logged 
data is established by leveraging an Optuna‑assisted ML methodology—the research light on the 
intricate dynamics influencing TBM advance rate parameters. Operational data is collected from 
micro slurry tunnel boring machine (MSTBM) umbrella support excavations. The proposed framework 
harnesses Optuna, an advanced hyperparameter optimization platform, to dynamically refine jack 
speed and torque settings. Through meticulous analysis of the interplay between TBM operator 
decisions and real‑time logged data, the AI model discerns patterns, empowering informed decision‑
making. Using Optuna, a range of models, including random forest (RF), K‑nearest neighbours (kNN), 
decision tree (DT), XGBoost, Support Vector Machine (SVM), and Artificial Neural Network (ANN) 
were automatically compared and tuned. The best model’s (RF) performance is evaluated through a 
correlation coefficient  (R2) of 96%, mean squared error (MSE) of 119.7, and mean absolute error (MAE) 
of 4.42 for jack speed decision making while 83% of  R2, MSE of 0.62, and MAE of 0.42 for the torque 
decision making. This intelligent model can assist the TBM operator in making decisions about TBM 
control.

Keywords Optuna, Machine learning, Micro slurry TBM, Soft ground tunnelling, TBM jack speed control, 
TBM torque control, Operational parameters

A tunnel boring machine (TBM) is an advanced engineering machine designed for automated tunnel excava-
tion. Featuring a rotating cutter head and efficient cutting tools, it can effectively penetrate diverse geological 
formations, from soft soil and clay to resilient rock and abrasive materials. Employing cutting-edge technol-
ogy and engineering principles enables TBMs to navigate even the most formidable terrains with precision 
and heightened efficiency. In contrast to traditional tunnelling methods, which often rely on extensive manual 
labour and heavy excavation machinery, mechanized tunnelling utilizing TBMs diminishes the necessity for 
human intervention at the tunnel face. This manual labour reduction significantly mitigates potential risks and 
enhances worker  safety1–3.

Nevertheless, these benefits are relatively based on the experience of the TBM operator who monitors the 
TBM, as numerous operational parameters should be set for perfect control of the tunnelling operations. The 
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mismatch between the TBM operator and TBM operational parameters results in low penetration efficiency, cut-
ter tools wearing, and main bearings problems with machine  jamming4. In this regard, the TBM cutter torque and 
jack speeds are essential to monitor the TBM advancement. They presented that the cutter-head torque lies in sup-
plying the necessary cutting force for rock fragmentation during tunnelling. The cutter-head torque significantly 
impacts rock fragmentation efficiency and the interaction between the rock and the machine. The optimization 
of cutter-head torque, aimed at ensuring torque stability, has demonstrated favourable outcomes in terms of 
cutter-head load management and motor function. The optimization, in turn, facilitates enhanced construction 
speed, reduced mechanical losses, and lowered construction expenses. Accurately predicting cutter-head torque 
prevents entrapment and guides timely adjustments to TBM advancing parameters. In addition to the torque 
monitoring, controlling the jack speed is a significant operational parameter due to avoiding potential ground 
disturbance and maintaining the face stability of the tunnel during  excavation5. Under these circumstances, the 
TBM torque and jack speed prediction have been researched into three main groups: empirical, probabilistic, 
and artificial intelligence models. The empirical models are based on laboratory scale tests such as the Colorado 
School of Mines (CSM)  model6,7, the Norwegian University of Science and Technology (NTNU)  model8, the 
rock mass rating (RMR)  system9, and the QTBM  models10. Nevertheless, these models do not account for vari-
ations in tunnelling conditions or do not consider operator decisions on TBM monitoring and focus only on 
a limited set of  parameters11–13. The traditional probabilistic models have been  proposed14–18 to overcome the 
gap between the empirical models. The probabilistic models considered penetration rate prediction and rock 
mass relationship between the TBM. However, it is important to note that these statistical models frequently rest 
upon presuppositions or approximations concerning the interplay between two variables, leveraging distinct 
mathematical functions to delineate their relational dynamics. Their capacity to comprehensively encapsulate 
intricate and non-linear circumstances might sometimes be insufficiently robust, particularly when confronted 
with outliers or instances of extraordinary data. On the other hand, numerous  researchers4,19–27 have used arti-
ficial intelligence models to predict TBM performance, penetration rate, torque and thrust, cutter wearing, and 
lithology identification using geological information and TBM operational parameters. Despite integrating TBM 
parameters and lithology data into prior intelligent models, most research has focused on traditional methods for 
predicting how the conditions of the ground affect the operation of TBMs. These studies also look at how different 
operating factors of TBMs are related to each other. Apart from TBM performance prediction approaches, there 
are a few TBM-logged data-based studies: rock mass  characterization28 and machine–soil  interaction29. Although 
there is limited research exploring the direct relationship between TBM-logged data and operator decisions 
during excavation to mitigate human error in TBM monitoring, our investigation highlights a noteworthy gap 
in practical applications that our study seeks to address. Furthermore, a significant challenge in many of these 
efforts is the requirement for manually adjusting hyperparameters or using basic tuning methods like random 
search, grid search, and genetic algorithms. However, the widely used hyperparameter tuning algorithms hinder 
their integration to the industrial scale. Additionally, they are model-based approaches unsuitable for evaluating 
different models and providing optimum hyperparameters  simultaneously30. Nevertheless, the Optuna approach 
is based on Bayesian optimization and can provide runtime issues and a robust production environment and 
 performance31.

Concerning the previous comprehensive literature review, this study proposes the following novel 
contributions:

• The primary contribution of this research is the achievement of synergy between operator decisions, rep-
resenting TBM parameters observed through the operator’s experience, and TBM logs generated during 
machine-ground interactions without human intervention and recorded by the TBM monitoring system. 
This TBM-logged data is directly influenced by the actions of the TBM operator, and human error constitutes 
a significant factor in the reduction of excavation efficiency. The proposed intelligent system is designed to 
establish a robust correlation between human decisions and machine responses, enabling the monitoring of 
TBM jack speed and torque under optimal conditions. This system effectively prevents excessive and reduced 
tunnelling speeds, thus enhancing the overall performance of the TBM while mitigating human-related 
errors.

• Data synchronization between a large TBM logged data (torque and jack speed) and a small TBM operator 
dataset (which are manually set by the TBM operators). It combines data-driven machine-learning tech-
niques with real-time operator input to optimize TBM performance. This approach can potentially enhance 
efficiency, reduce downtime, and improve the quality of tunnel excavation.

• Supervised regression models have been integrated with the Optuna; automatic hyperparameter tuning. By 
automating the fine-tuning of hyperparameters, these models enhance the adaptability and efficacy of intel-
ligent systems, propelling them toward unprecedented levels of performance and responsiveness.

This research conducts a thorough study of how operators and machines work together in tunnelling. It 
works on improving prediction methods, making the fine-tuning of settings automatic, and getting the best 
performance out of the machines. The goal is to make tunnelling more accurate and efficient and to create new 
ways to combine human skills and artificial intelligence in tunnelling projects.

Data
Project description
The ongoing tunnelling project involves the construction of a highway bypass tunnel within Japan. The primary 
tunnel is being excavated through conventional drilling and blasting techniques. Given the soft ground condi-
tions at the entrance of the tunnel project, a method involving umbrella pipe support excavation is implemented 
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to enhance tunnel roof stability. Figure 1 illustrates the execution of the excavation procedure for umbrella pipe 
support by utilizing the micro pipe jacking slurry tunnel boring machine (MSTBM).

The geological composition of the pipes includes sandy clay, sand, brown clay, blue clay, and sandy clay, 
arranged in sequential order. Due to the resemblances observed in the soil samples, they are categorized as 
TUC, TUS, and TC, following the details provided in the site investigation report. A summary of the mechanical 
characteristics of the soft ground is presented in Table 1.

Micro slurry TBM machine specifications
An umbrella pipe support excavation was carried out utilizing the micro tunnelling technique for a Japanese 
highway bypass tunnel project. Figure 2 demonstrates a concise overview of the operational concept of the 
MSTBM, while Table 2 outlines the detailed specifications of the MSTBM.

Figure 1.  Illustration showcasing the umbrella support design and excavation process. Circular shapes indicate 
pipe holes (from number 1 to 5), and the cross-sectional view of pipes highlights excavated holes created by the 
MSTBM.

Table 1.  Mechanical properties of pipe geology.

Soil labels and 
properties Elastic module (kN/m2) Cohesion (kN/m2) Friction angle (angle) Unit weight volume (kN/m3)

TUC Sandy/clay 23,800 110 20 18

TUS Clay zone 14,500 38 37 17

TS Sandy/clay 30,800 120 12 19

Figure 2.  The fundamental idea behind the MSTBM’s operation centres on tunnel excavation and transporting 
excavated material via pipelines. The excavated material undergoes soil treatment and pressure control at the 
cutter face to improve stability.

Table 2.  MSTBM specifications.

Machine specifications

Shield outer diameter (cm) 83

Shield length (m) 5.2

Thrust force (kN/m2) 245

Torque (kN·m) 15.2
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Data preprocessing and synchronization
The established procedure of regulating the driving parameters of the MSTBM is commonly applied for construc-
tion objectives, frequently involving the utilization of temporal averaging on the collected data. This research 
investigates a connection between the MSTBM operator’s decision-making data (input), and MSTBM logged data 
(output). The tunnel roof is equipped with 24 pipe holes, each containing 18 pipes. The dataset was collected from 
the MSTBM using TBM-logged data acquisition at 1-s intervals and the TBM operator’s monitoring decisions 
for each 250 mm digging stroke. The TBM-logged data contained 678,325 data points, while the operator data 
contained 386. The dataset was synchronized into a single data frame due to discrepancies between the opera-
tor and TBM-logged data. After synchronizing the data (309 data points; the number of synchronized data) for 
the AI model, the dataset was divided into 80% training data (247 data points) and 20% testing data (62 data 
points) for model validation. In our focused approach to understanding TBM propulsion parameters, the model 
initially employed the operator’s jack speed input to predict the TBM-logged jack speed, establishing a direct 
correlation between operator decisions and the machine’s performance. Subsequently, leveraging insights from 
the first prediction, the model aims to predict the TBM-logged torque, using operator inputs related to torque 
settings. This sequential predictive modelling emphasizes the pivotal role of operator decisions in influencing 
the main propulsion parameters of the TBM, namely jack speed and torque. Table 3 shows a descriptive analysis 
of operator torque/jack speed and TBM-log torque/jack speed values. Table 4 illustrates the input and output 
parameters of the model. The operator’s jack speed and torque were input, and TBM-log’s torque and jack speed 
were output of the model separately.

The data acquisition process is detailed in sections “TBM logged data (target)” and “TBM operator data 
(input)”, respectively. Each section also includes a description of the data preprocessing steps.

TBM logged data (target)
The TBM-logged records comprehensive details about the TBM’s operational condition and the progression of 
construction  activities29. This dataset is categorized into several groups, encompassing aspects like positioning, 
hydraulic pressures, management of fluids, status indicators, electrical currents, voltages, thrust force, passive 
lateral earth pressure, sludge flow, jack stroke, jack speed, and excavation speed. This paper will focus on MSTBM 
torque and jack speed due to the main machine’s advancement to the tunnel face. This selection aims to elucidate 
how intricate torque and jack speed control influence MSTBM operations. The MSTBM-logged data acquisition 
is continuous for each 1 s for one pipe in the excavation stroke. Therefore, certain pipes in the MSTBM-logged 
data exhibit numerous data points.

Given the unique characteristics of the dataset, the TBM-logged data was extracted with the following steps: 
extracting TBM data for a specific ring number and its corresponding operator stroke, filtering the TBM data only 
to include strokes for which there are corresponding operator data, calculating the mean values of the TBM data 
for each unique combination of ring number and operator stroke. This statistical analysis provides insights into 
the average TBM performance for different conditions. Equation (1) presents extraction of the each unique value.

where so represents the operator’s excavation stroke, po represents the corresponding pipe number in a pipe hole. 
For MSTBM logged data, st represents the excavation stroke and pt refers to the pipe number in the pipe hole. 
Equation (2) indicates stroke-based data aggregation, briefly.

(1)
(
st , pt

)
= f1

(
so, po

)

(2)Dagg = f2(Dt , so)

Table 3.  Descriptive analysis of the operator-set torque/jack speed and TBM-log torque/jack speed.

Descriptive analysis of operator-set values and TBM-log data

Operator-set torque TBM-log torque Operator-set jack speed TBM-log jack speed

Mean 3.22 3.11 86.62 85.25

Median 2.97 2.85 87 81.25

Std 1.88 1.85 58 58.08

Min 0 0 0 0.47

Max 10.58 7.87 278 180

Table 4.  Predictive model’s input and output.

Input parameters—operator-set Output parameters—TBM log

Jack speed Jack speed

Input Output

Torque Torque
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where Dt represents the MSTBM-logged data, and Dagg denote the aggregated data for each operator’s stroke, f2 
involves calculating the mean values of Dt with the excavation stroke so.

Additionally, it’s worth noting that plotting data based on either time or distance frequently yields distinct per-
spectives on the dominant mechanisms at play. As such, distance-based filtering has been extensively employed in 
analytical procedures. The logged torque and jack speed were extracted from the time domain to distance-based 
with plotting versus excavation distance to observe logged behaviour. Figure 3a illustrates the logged jack speed, 
Fig. 3b shows logged torque distribution based on time interval, Fig. 3c presents the extracted logged jack speed 
over distance, and Fig. 3d expresses the extracted logged torque over distance.

TBM operator data (input)
The operator-set torque and jack speed data acquisition differ from the MSTBM-logged data, which is not a 
time-domain dataset. Operator data, specifically referring to the parameters of torque and jack speed set by the 
TBM operators, was recorded systematically, though the method of recording may differ slightly from that of 
automatically logged TBM data. Operator data, specifically parameters such as torque and jack speed set by the 
TBM operators, is recorded manually through the control system interface in the TBM’s main control room. 
Operators input these values based on their assessments and the excavation requirements at any given time. This 
manual input process results in a dataset that reflects the operators’ decisions and intended machine settings. 
The dataset recorded operational parameters corresponding to each 250 mm stroke of the machine. The opera-
tor dataset was 386 data points and synchronized, extracting the operator’s torque and jack speed to include 
the strokes for which there is associated TBM data. This step ensures that operator data is consistent with the 
available TBM data.

Figure 4 demonstrates a representation of jack stroke-based data acquisition.
Figure 5 depicts the frequency distribution of the data for operator-monitored torque and jack speed. Owing 

to the discernible distribution pattern observed in the frequency plot, the normalization and feature conversion 
technique is utilized to adapt the data into the range of [0–1]. This approach aims to reduce the influence of 
data magnitude on variability, as discussed  by4. The process of min–max normalization is defined by Eq. (3), as 
introduced  by32.

where xscaled is the normalized data, x is the raw data, and xmax and xmin are the maximum and minimum values 
of the dataset, respectively.

(3)xscaled =
x − xmin

xmax − xmin
,

Figure 3.  (a) Raw TBM-log jack speed in the time domain, (b) raw TBM-log torque in the time domain, (c) 
extracted jack speed over distance, and (d) extracted torque over distance.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9728  | https://doi.org/10.1038/s41598-024-60681-8

www.nature.com/scientificreports/

Methodology
Following data preprocessing, the dataset is primed for utilization with the Optuna-assisted AI  models31. Optuna 
applied a 1000-times tuning trial with several hyperparameters to increase  R2. The RF model was selected as 
the best regressor among DT, kNN, XGBoost, SVM, and ANN regressors. The 1000-time trials allowed Optuna 
to provide the selected model with its hyperparameters,  R2, MSE, and MAE. The XGBoost and the ANN were 
trained out of DT, kNN, and RF objective function due to XGBoost and the ANN hyperparameters and archi-
tecture were different from traditional machine learning models. Table 5 illustrates the model comparison after 
the Optuna integration for the prediction of jack speed and torque.

As a result, section “Optuna-assisted AI model” delineates the machine learning model’s elucidated through 
employing Optuna. section “Selected model structure and hyperparameters” depicts Optuna-decided hyper-
parameters and features the importance of hyperparameters and the relationship between hyperparameters for 
deciding the best model. Furthermore, section “Evaluation metrics” clarifies the evaluation metrics used, which 
encompass the correlation coefficient  (R2), mean squared error (MSE), and mean absolute error (MAE). Figure 6 
indicates the Optuna-assisted prediction model briefly.

Optuna‑assisted AI model
Akiba et al.31 expressed that Optuna is defined as a define-by-run API. Optuna provides a dynamic space for the 
user to build the parameters, and efficiently incorporating both search and pruning methods and a straightfor-
ward setup process results in a versatile architecture suitable for various applications. These purposes encom-
pass scalable distributed computing and lightweight experiments conducted through interactive interfaces. The 
concept of the “define-by-run” API becomes more explicit when examining actual code. Optuna approaches 
hyperparameter optimization as a procedure that minimizes or maximizes an objective function. The objective 
of using Optuna for regression tasks is to maximize this  R2 score. This function takes a set of hyperparameters 
as input and yields a validation score as its output. In our research, the objective function is to increase  R2. Equa-
tion (4) explains the Optuna  R2 score maximization function.

(4)θ∗ = argmaxR2(θ)

θ ∈ D

Figure 4.  TBM operator data acquisition is based on each 250 mm digging stroke. Each operational data point 
corresponds to each 250 mm digging stroke.

Figure 5.  The micro slurry pipe jacking TBM’s jack speed and torque frequency distribution histogram. The 
y-axis refers to the frequency, and the x-axis corresponds to the values of the parameters.
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where R2(θ) denoted the R2 score of the model trained with the hyperparameters vector θ , D is the domain for 
each hyperparameter.

On the other hand, Liashchynskyi and  Liashchynskyi33 compared three widely used hyperparameter tuning 
methods—random search, grid search, and the genetic algorithm—highlighting their limitations in the context 
of industrial-scale applications. The drawbacks include the inefficiency of grid search in high-dimensional spaces, 
the lack of systematic exploration in random search, and the genetic algorithm’s dependency on parameter 
fine-tuning. In contrast, Optuna offers a more efficient and scalable solution, leveraging a Bayesian optimiza-
tion strategy with a pruning mechanism, a user-friendly interface, and the capability for both single and multi-
objective optimization. These advantages make Optuna a superior choice for hyperparameter tuning in complex 
and large-scale machine-learning tasks. Figure 7 demonstrates how to work the objective function of the Optuna 
for the RF regression model representatively.

Selected model structure and hyperparameters
Following the application of Optuna, the best model was decided as a random forest regressor to predict the 
jack speed and torque. Optuna compared kNN, DT, RF, and SVM models while optimizing hyperparameters for 
the best model. Owing to the different requirements for the XGBoost and ANN, the XGBoost and ANN were 
trained separately from the kNN, DT, RF, and SVM. Figure 8 illustrates the parallel coordinate plot that shows 

Table 5.  Comparison of the regression models and computation time.

Model name R2 (%) MSE MAE Computation time (s)

Jack speed prediction

 Random forest 96 119.7 4.42 0.35

 Decision Tree 96 124.5 4.67 0.56

 k-NN 95 130.62 5.07 0.36

 XGBoost 95 137.4 5.67 0.42

 ANN 92 118 4.43 3.43

 SVM 71.25 118.25 4.43 23.19

Torque prediction

 Random forest 83 0.62 0.42 0.35

 Decision Tree 82 0.60 0.40 0.58

 k-NN 81 0.63 0.43 0.39

 XGBoost 80 0.69 0.48 0.41

 ANN 92 0.81 0.75 3.57

 SVM 61.25 0.85 0.73 25.26

Figure 6.  The Optuna-assisted AI model structure. It can be seen how to synchronize TBM-logged and 
operator data as a single data frame for the best regressor model with Optuna.
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the relationship between high-dimensional parameters. It provides parallel processing and optimization during 
multiple trials among numerous ranges of parameters with several models simultaneously.

It’s important to note that the trials for kNN and DT regressors were included in the optimization process; 
however, due to the scale and density of the trials for the RF regressor, they might not be readily discernible 
in the plot. The kNN and DT regressors had a different set of hyperparameters compared to the RF regressor, 
and the visualization adapts to illustrate these when relevant trials are selected or highlighted. In cases where 
the RF regressor dominated the plot due to a larger number of trials or wider hyperparameter ranges, the trials 
for kNN and DT might be overshadowed or less represented in the visualization. This exploration is crucial for 
understanding the dynamic interplay between various hyperparameters and the model’s performance. When 
focusing on Fig. 8, a pivotal observation comes to light. Specific hyperparameters are keystones in the model’s 

Figure 7.  Optuna was employed to optimize hyperparameters for Random Forest (RF), Decision Tree (DT), 
k-Nearest Neighbors (kNN), SVM, XGBoost, and ANN regression models collectively. By conducting 1000 
trials, the best model was selected based on the  R2 score, facilitating comprehensive model comparisons and 
the identification of optimal machine learning models with precise hyperparameter combinations for optimal 
dataset performance.

Figure 8.  The Optuna parallel coordinates plot reveals the interplay between high-dimensional 
hyperparameters and machine-learning models following 1000 trials. It visualizes the optimal hyperparameter 
configurations for regression models, enhancing the  R2 score thereby aiding model selection.
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architecture, significantly shaping its predictive prowess. In particular, it becomes apparent that one hyperpa-
rameter, denoted as max depth, emerges as indispensable, exhibiting an intrinsic influence surpassing the model. 
This comparative analysis underscores the nuanced hierarchy of hyperparameters. Table 6 identifies the selected 
hyperparameters for the RF model.

Evaluation metrics
The performance of the explainable neural networks model was assessed using three evaluation metrics:  R2, MSE, 
and MAE. Equation (5) presents the formulation for  R2, which quantifies the extent to which the model’s inputs 
explain the variability in the dependent  variable34.

where ŷi represents the estimated value of the data, yi is the actual value, yi is the mean of the predicted value, 
and n is the total dataset number.

The Mean Squared Error (MSE) proves effective when identifying outliers is important. The L2 norm is 
utilized, assigning greater significance to outliers. Specifically, when the model generates an inferior prediction, 
the error amplification occurs due to the squaring mechanism within the equation. Equation (6) defines the 
MSE  equation34.

where Xi is the predicted and Yi is the actual value.
The Mean Absolute Error (MAE) is more suitable when outliers indicate anomalies within the dataset. Unlike 

MSE, MAE doesn’t heavily penalize outliers during training, resulting in a comprehensive and balanced perfor-
mance evaluation for the model. Conversely, if the test set contains numerous outliers, the model’s performance 
will be moderately affected. Equation (7) outlines the formulation of MAE.

where Xi is the predicted and Yi is the actual value.
In summary, these evaluation metrics—R2, MSE, and MAE—provide a comprehensive understanding of the 

Optuna-assisted AI model’s performance, catering to various scenarios involving data variability and outlier 
presence within the dataset.

Results
The random forest regressor’s performance was assessed through  R2, MSE, and MAE metrics. The RF model 
demonstrated an  R2 value of 96%, with MSE and MAE scores of 119.7 and 4.47 for the prediction of the jack 
speed, respectively. The model provided  R2 values of 83%, MSE 0.62, and MAE 0.42 for predicting the torque, 
respectively. The model’s predictions were visually represented using graphs depicting predicted outcomes along-
side actual results. Figure 9a compares the RF model’s predictive performance of jack speed, and the actual data 
points, and Fig. 9b shows the RF model’s predicted and actual torque. Most data points cluster around the line 
of best fit, underscoring the model’s proficiency in accurately forecasting jack speed values and torque. However, 
it can be seen that there were instances where the actual torque recorded was zero or close to zero. Such occur-
rences might arise during periods when the TBM was operational but not actively excavating, such as during 
setup, maintenance, or other non-cutting stages of the tunnelling process. The presence of these data points was 

(5)R2 = 1−

∑n
i=1(ŷi − yi)

2

∑n
i=1

(
yi − yi

)2

(6)MSE =
1

m

m∑

i=1

(Xi − Yi)
2

(7)MAE =
1

m

m∑

i=1

|Xi − Yi|

Table 6.  Random forest model hyperparameters and values.

Hyperparameters Values

Criterion Absolute error

Max depth 953

Max feature Log2

Max leaf nodes 249

Number of estimators 4

Min samples split 3

Min samples leaf 6

MSE 119.7

MAE 4.47

R2 score 96%
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expected and reflects the operational reality of TBM usage, where torque requirements can vary widely based 
on the stage of operation and the geological conditions encountered.

Nevertheless, scattered data points indicate instances where the model deviates from precise predictions, 
indicating potential areas for refinement and enhancement. Figure 10a shows an analysis of the RF model’s 
performance through the learning curve for jack speed, and Fig. 10b indicates the model’s learning curve of 
torque. The model’s learning curve encompasses training and validation errors evaluated using the MSE metric 
across varying training iterations.

As depicted in Fig. 10a,b, the model showcased a gradual reduction in training and validation errors, eventu-
ally reaching a point of stabilization. This pattern signifies the model’s effective learning process and capability 
to generalize effectively. Notably, the absence of a discernible gap between the training and validation curves 
indicates that the model was provided with sufficient training data, thereby mitigating concerns about overfitting. 
Furthermore, the divergence in MSE values—180 for training and cross-validation versus 120 for testing—may 
initially appear counterintuitive as models typically perform better on training data due to their familiarity with 
it. The model may generalize better than it memorizes the training data. During the training phase, a robust 
model learns the underlying patterns without overfitting the noise within the training dataset.

Additionally, Fig. 11a,b demonstrate that model prediction errors were evaluated using a prediction error 
histogram for jack speed and torque, respectively. Figure 11a,b depict the distribution of error ranges, with the 
x-axis denoting the magnitude of errors and the y-axis representing the frequency and density of occurrences. 
An adeptly performing model would showcase a symmetrical distribution tightly clustered around zero error, 
signifying minimal prediction disparities. Figure 11a,b reveal a prominent central peak around zero error, under-
scoring the model’s propensity to make accurate predictions.

Discussion
This research has yielded valuable insights by exploring the connection between an MSTBM operator’s deci-
sions and the data collected from the MSTBM during MSTBM operations within umbrella support excavations. 
Among a range of operational parameters governing MSTBM advancement, the study specifically focused on jack 
speed and torque. The obtained results highlight the robust predictive capabilities of the RF model in monitoring 

Figure 9.  (a) Predicted and actual data distribution of the jack speed. (b) Predicted and actual data distribution 
of the torque. The red circles refer to the data points, and the blue corresponds to the best-fit line.

Figure 10.  (a) Learning curve of the jack speed. (b) Learning curve of the torque. The red line refers to the 
training curve with an MSE of 119.7, and the green line corresponds to the validation curve with an MSE of 
0.62.
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construction torque and jack speed. This model exhibits a superior ability to anticipate these vital parameters 
accurately. Consequently, there exists a compelling opportunity to employ this well-trained RF model to optimize 
MSTBM parameters, effectively managing the advancement of the machine towards the tunnelling face. In light 
of these findings, it can be contended that the Optuna-assisted AI model is characterized by a high degree of 
generalizability. This transition from human-based monitoring to an AI-driven approach holds promise for more 
efficient and precise MSTBM operations. The study’s outcomes thus pave the way for potential advancements 
in autonomous tunnel boring. It can be noted that the model was going to be evaluated using one different pipe 
hole dataset using a pre-trained model; however, owing to the redundant failure of the MSTBM-control panel, 
the MSTBM-logged data from the other pipe hole was not recorded. Therefore, the Optuna-assisted RF model 
could be examined with a different dataset to see its performance for real-life applications in further research.

Practical applications
The practical implementation of our AI model in the tunnelling sector is an advancement born from the exten-
sive knowledge gained during this research. The model, enhanced by Optuna for industrial-scale deployment, 
embarks on a predictive and adaptive phase post rigorous training. As the operator maneuvers the TBM through 
the excavation process, the model diligently processes real-time operational data and MSTBM-logged informa-
tion, alongside the operator’s manual adjustments to jack speed and torque. It employs this data to prognosticate 
the optimal parameters that suit the immediate tunnelling environment.

The utility of the model shines when actual conditions deviate from the anticipated course. It triggers a feed-
back loop to the operator, presenting a detailed analysis of why certain adjustments may prove beneficial. This 
level of interactivity fosters a seamless marriage of human judgment and AI-generated foresight, thus streamlin-
ing the fine-tuning of operational parameters to boost efficiency and precision.

Moving beyond collaboration, the model is designed to autonomously recalibrate parameters, drawing on 
real-time data feeds. In this autonomous mode, while the AI assumes direct control over adjustments, it simulta-
neously equips the operator with a transparent understanding of its decision-making process. This dual approach 
not only empowers the operator with a robust decision-support tool but also ensures that the AI remains focused 
on enhancing the TBM’s operational performance. The AI’s dual capacity for both suggestion and autonomous 
adaptation is encapsulated in Fig. 12, which outlines the AI-assisted TBM monitoring’s practical application. 
The model stands as a beacon of innovation, guiding parameter decisions with precision, backed by predictive 
analytics and operator expertise.

The current research signifies a pivotal step towards a new era in MSTBM operations. This study paves the 
way for enhanced efficiency, optimized excavation, and sustainable tunnelling practices. The potential synergy 
between AI’s computational prowess and human expertise holds the promise of reshaping the tunnelling land-
scape for the better. As AI advances, realizing AI-assisted MSTBM control seems attainable and transformative.

Notwithstanding its advantages, the Optuna-assisted AI model does have certain limitations. These constraints 
can be outlined as follows:

(1) The model performance might vary when dealing with geological conditions not well-represented in the 
training data. The model’s predictive accuracy might be compromised in scenarios with significant geologi-
cal variations. This constraint is the black box of the model.

(2) Optuna’s objective function shows different computation times for machine learning models and number 
trials.

(3) The AI model’s complex algorithms can pose challenges in terms of interpretability. Understanding the 
rationale behind its decisions might prove difficult for operators and engineers, potentially impacting their 
trust in the model’s recommendations.

(4) Environmental conditions, such as ground stability changes or unexpected geological features, can signifi-
cantly affect TBM operations. The AI model might struggle to adapt to abrupt changes not encountered 
during training.

Figure 11.  The RF model’s results with (a) prediction error histogram distribution of the jack speed and (b) 
torque prediction error histogram.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9728  | https://doi.org/10.1038/s41598-024-60681-8

www.nature.com/scientificreports/

(5) The AI model learns from historical operator decisions, which might not always represent a single best 
approach. Operator preferences can vary, and the model might not capture every nuanced decision-making 
pattern. The model was constructed using operational parameters from micro-tunnelling TBMs, implying 
that utilizing operational parameters from larger TBMs or those designed for hard rock conditions would 
yield divergent outcomes.

(6) Due to the data synchronization between extensive and small datasets, complex preprocessing can be 
figured out in future studies.

(7) Automating certain aspects of TBM control raises ethical questions regarding the balance between human 
expertise and machine decision-making. Ensuring responsible and transparent use of AI in critical infra-
structure projects is essential.

Conclusions
In conclusion, this research presents a significant advancement in tunnel boring operations by leveraging the 
power of artificial intelligence. Through the development and exploration of an Optuna-assisted AI model, the 
study has shed light on the intricate dynamics between MSTBM operators’ decisions, MSTBM-logged data, and 
the control of crucial parameters like jack speed and torque. The findings underscore the transformative poten-
tial of AI in optimizing MSTBM operations and enhancing efficiency across diverse geological and operational 
contexts. The insights gained from this study hold practical implications for the tunnelling industry, paving the 
way for a future where AI-driven systems collaborate seamlessly with human expertise. In particular, the suc-
cessful performance of the RF model in monitoring construction torque and jack speed signals the feasibility of 
implementing AI models to fine-tune MSTBM parameters using Optuna.

The main conclusions of this research are:

(1) Unlike typical prior investigations focusing on mechanized tunnelling in hard rock conditions, this study 
specifically dealt with parameters of a micro-slurry MSTBM machine operating in soft ground environ-
ments.

(2) The research highlights the predictive capabilities of the RF model. Its evaluation metrics are  R2 of 96%, 
MSE of 119.7, and MAE of 4.47 for jack speed, and  R2 of 83%, MSE of 0.62, and MAE of 0.42 for torque 
prediction. While reasonable results were obtained for predicting jack speed, the model’s performance was 
comparatively weaker in predicting torque. However, torque’s prediction error and learning curve scores 
were lower than the predicted jack speed.

(3) The research provides a new insight into the relationship between the MSTBM operator and MSTBM logged 
data to control the machine advancement.

(4) Compared to the previous applications, the study showed Optuna integration to the machine learning 
model for automatic hyperparameters tuning. This study introduces a pioneering approach by integrat-
ing Optuna into the machine learning model for automated hyperparameter tuning. This advancement 
underscores the potential for optimizing the model’s performance through efficient parameter calibration.

(5) The research indicated human expertise AI models can handle control MSTBM parameters. Human-
expertise models could be used instead of sensor-based control systems in the future. This offers an alterna-
tive to sensor-based control systems, with potential benefits including cost-effective data acquisition and 
streamlined preprocessing.

Figure 12.  A TBM monitoring system that combines AI with TBM-logged data and operator decisions for 
enhanced monitoring. The AI-assisted model predicts TBM-logged data based on the operator input. The 
operator can see predicted jack speed and torque with a feedback loop to optimize TBM monitoring while 
avoiding human error.



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9728  | https://doi.org/10.1038/s41598-024-60681-8

www.nature.com/scientificreports/

These main conclusions collectively underline the contributions of this research, offering insights into the 
dynamics of TBM operations, the potential of AI-assisted control, and the efficacy of innovative model integra-
tion. The implications of these findings extend to optimizing MSTBM performance, enhancing operational 
efficiency, and charting a course toward intelligent and adaptive tunnel boring operations.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the confidential 
dataset from the TBM company, and required permission from the company for sharing publicly but are available 
from the corresponding author upon reasonable request.

Software support
Python libraries have been used to implement the methodology.
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