
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10348  | https://doi.org/10.1038/s41598-024-61175-3

www.nature.com/scientificreports

Gefitinib metabolism‑related 
lncRNAs for the prediction 
of prognosis, tumor 
microenvironment and drug 
sensitivity in lung adenocarcinoma
Zishun Guo 1, Xin Zhang 1, Dingtao Yang 1, Zhuozheng Hu 1, Jiajun Wu 1, Weijun Zhou 1, 
Shuoming Wu 2* & Wenxiong Zhang 1*

The complete compound of gefitinib is effective in the treatment of lung adenocarcinoma. However, 
the effect on lung adenocarcinoma (LUAD) during its catabolism has not yet been elucidated. We 
carried out this study to examine the predictive value of gefitinib metabolism‑related long noncoding 
RNAs (GMLncs) in LUAD patients. To filter GMLncs and create a prognostic model, we employed 
Pearson correlation, Lasso, univariate Cox, and multivariate Cox analysis. We combined risk scores 
and clinical features to create nomograms for better application in clinical settings. According to 
the constructed prognostic model, we performed GO/KEGG and GSEA enrichment analysis, tumor 
immune microenvironment analysis, immune evasion and immunotherapy analysis, somatic cell 
mutation analysis, drug sensitivity analysis, IMvigor210 immunotherapy validation, stem cell index 
analysis and real‑time quantitative PCR (RT‑qPCR) analysis. We built a predictive model with 9 
GMLncs, which showed good predictive performance in validation and training sets. The calibration 
curve demonstrated excellent agreement between the expected and observed survival rates, for 
which the predictive performance was better than that of the nomogram without a risk score. The 
metabolism of gefitinib is related to the cytochrome P450 pathway and lipid metabolism pathway, 
and may be one of the causes of gefitinib resistance, according to analyses from the Gene Set 
Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG). Immunological evasion and immunotherapy analysis revealed that the likelihood of immune 
evasion increased with risk score. Tumor microenvironment analysis found most immune cells at 
higher concentrations in the low‑risk group. Drug sensitivity analysis found 23 sensitive drugs. 
Twenty‑one of these drugs exhibited heightened sensitivity in the high‑risk group. RT‑qPCR analysis 
validated the characteristics of 9 GMlncs. The predictive model and nomogram that we constructed 
have good application value in evaluating the prognosis of patients and guiding clinical treatment.
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KM survival analysis  Kaplan–Meier survival analysis
KEGG  Kyoto Encyclopedia of Genes and Genomes
lncRNA  Long non-coding RNA
LUAD  Lung adenocarcinoma
OS  Overall survival
PCA  Principal component analysis
RT-qPCR  Real-time quantitative polymerase chain reaction
ROC Analysis  Time receiver operating characteristic analysis
ssGSEA  Single-sample gene set enrichment analysis
TCGA   The Cancer Genome Atlas
TIDE  Tumor immune dysfunction and exclusion
mRNAsi  Stem cell index
TMB  Tumor mutational burden

A malignant tumor that develops in the bronchi and alveoli is called lung cancer and is one of the most preva-
lent malignancies worldwide. Approximately 1.77 million people die of lung cancer every year. Approximately 
50% of all lung tumors are LUADs, a highly heterogeneous subtype of lung cancer. LUAD often presents early 
in nonsmoking East Asian women, and EGFR mutations in LUAD are generally higher in Asian  women1. As an 
inhibitor of EGFR-TK (epidermal growth factor receptor tyrosine kinase), patients with advanced LUAD and 
an EGFR mutation can benefit from  gefitinib2. It has demonstrated therapeutic activity against lung cancer as a 
complete compound and has been shown to be metabolized by cytochrome P450 in the liver, including CYP3A5, 
CYP3A4 and  CYP2D63. However, the impact of gefitinib metabolism on lung cancer is unclear.

Currently, lung cancer patients mainly rely on imaging studies and tissue biopsies to evaluate lesions during 
treatment. However, imaging cannot evaluate the long-term prognosis of patients, and biopsy will bring pain to 
patients and even cause distant metastasis of  tumors4. Therefore, researchers have investigated and discovered 
that molecular biomarkers are essential for predicting the prognosis of cancer. Related studies have proven that 
lncRNAs play a significant role in predicting cancer prognosis and guiding cancer  treatment5. As found in the 
study of Taoli Wang et al., related lncRNAs may have an impact on gefitinib  resistance6. Therefore, it is necessary 
to incorporate lncRNAs into clinical models to explore new prognosis-related biomarkers. In contrast, gefitinib 
metabolism-related lncRNAs have not been described.

Using gefitinib metabolism-related lncRNAs, we constructed a prognostic model and explored its predictive 
value for LUAD patient prognosis.

Materials and methods
Related genes and patient data downloads
We obtained 96 genes connected to gefitinib metabolism for this research by using the GeneCards website 
(https:// www. genec ards. org/)7. Subsequently, we obtained gene expression data and clinicopathological as well as 
prognostic information of 585 patients diagnosed with lung adenocarcinoma (LUAD) from The Cancer Genome 
Atlas (TCGA) database, which is publicly accessible at https:// portal. gdc. cancer. gov/. Following the exclusion 
of 72 patients with incomplete data on survival, the analysis comprised a total of 513 patients. Data from the 
IMVigor210 clinical trial were obtained through the European Genome-Phenome Archive (https:// ega- archi ve. 
org/) (Table 1). Figure 1 shows our research workflow.

Defining gefitinib metabolism‑related lncRNAs
Based on previous studies, 96 gefitinib metabolism-related genes were obtained. The metabolic mechanism of 
gefitinib is shown in Fig. 2. We examined the Pearson association between gefitinib metabolism-related genes 
and lung adenocarcinoma lncRNAs, and GMLncs were determined with |R| > 0.3 and P < 0.001 as the standard.

Build a predictive model
We randomly divided 513 LUAD patients into a validation group (n = 256) and a training group (n = 257) in a 
1:1 ratio. The training group was utilized to create the model, and univariate Cox analysis was applied to identify 
lncRNAs that exhibited a significant association with prognosis for patients (P < 0.05). Considering the influ-
ence of multicollinearity among variables, multivariate Cox regression and LASSO were employed to reduce 
dimensionality. Finally, 9 GMLncs (GMLncs) (WWC2-AS2, CTD-2066L21.3, LINC00355, RP11-246K15.1, 
CTD-2555C10.3, OGFRP1, RP11-879F14, LINC00862, RP11.345M22.2) were screened out. The formula for 
constructing the prediction model is “Riskscore = ∑exp(lncRNAs) p * β”, and “β” is the coefficient of multivari-
ate Cox analysis for each lncRNA. We divided the cohort of samples into low-risk or high-risk subgroups by 
median risk score.

Validation model and nomogram
The correctness of the model was assessed by both the verification group and the entire group. OS in the low- and 
high-risk subgroups was examined by survival curves based on Kaplan‒Meier analysis. The connection of other 
pathological variables with prognosis was assessed using Cox analysis, both multivariate and univariate. (e.g., age, 
sex, race, AJCC stage). We employed concordance index curves (C-index) and receiver operating characteristic 
curves (ROC) to measure the risk score’s ability to predict the eventual  results8. The model was then visualized 
using a nomogram. To compare the differences in linked genes between subgroups at low and high risk, principal 
component analysis (PCA) was utilized.

https://www.genecards.org/
https://portal.gdc.cancer.gov/
https://ega-archive.org/
https://ega-archive.org/
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Analysis of GO/KEGG pathways
To investigate further potential distinctions in biology among the subgroups, we compared the expression levels 
of all lncRNAs in the patient subgroups of low risk and high risk and identified retrieved lncRNAs with significant 
differences (P < 0.05). Then, a study of all the various lncRNAs was performed using GO and KEGG  analysis9. 
The “Limma” and “ClusterProfiler” R packages were used for pathway analysis (P < 0.05 and FDR < 0.05).

GSEA enrichment analysis
Using P < 0.05 as the standard, we conducted GSEA on 6  databases10, including GO, KEGG, REACTOME, 
BIOCRATA, PID and WIKIPATHWAYS. The GSEA algorithm is an efficient tool for genomic research and can 
evaluate microarray data at the gene set level. The analysis was completed with GSEA4.3.2.

Table 1.  Clinical information of 513 LUAD samples in the TCGA database. LUAD lung adenocarcinoma, 
TCGA  The Cancer Genome Atlas, T tumor, N node, M metastasis.

Features

Train 
cohort Test cohort

Entire 
cohort

(n = 257) (n = 256) (n = 513)

n % n % n %

Status

 Alive 166 64.6 162 63.3 328 63.9

 Dead 91 35.4 94 36.7 185 36.1

Age

 < 50 18 7.0 17 6.6 35 6.80

 50–59 51 19.8 54 21.1 105 20.5

 60–69 93 36.2 82 32.0 175 34.1

 70–79 73 28.4 84 32.8 157 30.6

 ≥ 80 16 6.2 15 5.9 31 6

 Unknown 6 2.3 4 1.6 10 1.9

Gender

 Female 136 52.9 140 54.7 276 53.8

 Male 121 47.1 116 45.3 237 46.2

Race

 White 196 76.3 201 78.5 397 77.4

 Asian 2 0.8 6 2.3 8 1.6

 Black 33 12.8 21 8.2 54 10.5

 Unknown 26 10.1 28 10.9 54 10.5

Stage

 Stage I 136 52.9 144 56.3 280 54.6

 Stage II 60 23.3 60 23.4 120 23.4

 Stage III 45 17.5 35 13.7 80 15.6

 Stage IV 9 3.5 16 6.3 25 4.9

 Unknown 7 2.7 1 0.4 8 1.6

T stage

 T1 89 34.6 82 32.0 171 33.3

 T2 134 52.1 141 55.1 275 53.6

 T3 23 8.9 23 9.0 46 9

 T4 10 3.9 8 3.1 18 3.5

 Unknown 1 0.4 2 0.8 3 0.6

M stage

 M0 172 66.9 172 67.2 344 67.1

 M1 10 3.9 15 5.9 25 4.9

 Unknown 76 29.6 68 26.6 144 28.1

N stage

 N0 160 62.3 175 68.4 335 65.3

 N1 52 20.2 42 16.4 94 18.3

 N2 40 15.6 30 11.7 70 13.6

 N3 1 0.4 1 0.4 2 0.4

 Unknown 6 2.3 6 2.3 12 2.3



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10348  | https://doi.org/10.1038/s41598-024-61175-3

www.nature.com/scientificreports/

Figure 1.  Flowchart.

Figure 2.  Metabolism of gefitinib.
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Tumor microenvironment analysis
A vital factor influencing the development of cancer is the tumor microenvironment (TME). Based on single-
sample enrichment analysis (ssGSEA)11, we used seven different algorithms to analyze immunological cells 
associated with the low- and high-risk subgroups. Next, according to the CIBERSORT  method12, we identified 
22 types of immunological cells, which varied among both groups. Finally, we analyzed 13 functional pathways 
involved in immunity in the test, training and entire groups.

Immune evasion analysis and immunotherapy
A study of related lncRNAs and tumor immune evasion was conducted. A computational method called tumor 
immune dysfunction and exclusion (TIDE) imitates two key aspects of tumor immunity. Inhibiting T-cell infil-
tration in cancers which are heavily infiltrated with cytotoxic T lymphocytes (CTLs) and preventing T-cell 
infiltration in cancers with low levels of CTLs. TIDE provides the  data13. Additionally, we evaluated CD8, cluster 
of differentiation 274 (CD274), Merck18, cancer-associated fibroblasts (CAFs), tumor-associated macrophage 
M2 (TAMM2), myeloid-derived suppressor cells (MDSCs), IFGN and microsatellite instability (MSI) score as 
additional immunological  biomarkers14–16.

Tumor mutational burden analysis
The frequency of gene insertion or deletion errors per million bases identified in a cancer, the number of base 
substitutions and somatic gene coding errors is known as the tumor mutational burden (TMB). A higher TMB 
value predicted better immunotherapy  outcomes17. The “limma” package was utilized to conduct a comparative 
analysis of TMB between subgroups categorized as low-risk and high-risk, followed by visualization of the results. 
Mutation data were acquired from TCGA.

Chemotherapy drug discovery and screening
We used the “OncoPredict” software package and applied The Genomics of Drug Sensitivity in Cancer (GDSC) 
database for medicine susceptibility analysis to identify potential medicines for LUAD patient  treatment18.

Correlation with response to immunotherapy in IMvigor210
IMvigor210 was used to validate the lncRNA’s prognostic  value19. Regarding the efficacy and safety of atezoli-
zumab, the IMvigor210 study evaluated the efficacy of an antibody that targets programmed cell death of ligand 
1 (PD-L1) in patients with advanced local or metastasized urothelial disease who had previously undergone 
platinum therapy. Data were downloaded by using the IMvigor210CoreBiologies package. After performing 
LASSO regression analysis, we matched the obtained genes with those present in the above model. Using the 
identical formula, the risk score was computed for patients belonging to the IMvigor210 cohort. Patients were 
then separated into low- and high-risk groups.

Stem cell index clinical correlation (mRNAsi)
The stem cell index is an evaluative metric that delineates the extent of similarity between neoplastic cells and 
stem cells. The stem cell index can be used as a prognostic tool to evaluate the probability of tumor  repetition20. 
mRNAsi is an indicator calculated from the expression data of a gene. We studied the correlation between the 
stemness index and LUAD patient survival rate. The Wilcoxon test was employed to examine the potential 
association between the stemness index and the sex, T stage, M stage, and AJCC stage of patients diagnosed 
with LUAD.

Biological verification
Human LUAD cell lines (A549, H1650, H1299, H1975, and PC9) and normal lung cells (BEAS-2B) were pur-
chased from Fuheng Biotechnology (Shanghai, China) and underwent authentication via short tandem repeat 
analysis. Cells were cultured in 1% penicillin/streptomycin (HyClone) and 10% fetal bovine serum (FBS; Sage 
Creation Science Co. Ltd., Beijing, China) Dulbecco’s Modified Eagle Medium (DMEM; HyClone, Logan, UT, 
USA) for monolayer.

The TRIzol™Plus RNA Purification Kit (Invitrogen, Thermo Fisher Scientific, Inc.) was utilized to extract 
total RNA from cells according to the manufacturer’s instructions. The RNA was then reverse transcribed into 
cDNA according to PrimeScript RT Master Mix’s guidelines (Takala, Japan). The cDNA concentration and 
purity were assessed. Next, the SYBR Premix Ex Taq II kit (Takala, Japan) was utilized to perform qRT-PCR. 
The polymerase chain reaction (PCR) was executed using a procedure that involved an initial denaturation step 
of 30 s at 95 °C, followed by 40 cycles of decomposition at 95 °C for 5 s, annealing for 30 s at 60 °C, extension 
for 45 s at 72 °C, and a final extension step for 10 min at 72 °C. The study employed the internal reference gene 
β-actin and the resulting data were analyzed using the prescribed methodology as outlined in Ref.21. Table S1 
displays the primer sequences.

We analyzed the protein expression changes of the 10 highest gefitinib metabolism-related genes in LUAD 
and normal cells by employing the Human Protein Atlas (HPA) website.

Analytical statistics
R program version 4.2.1 was applied to carry out the statistical evaluation. P values are two-way, and “< 0.05” is 
considered statistically significant.
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Ethics approval and consent to participate
This article does not contain any studies with human participants or animals performed by any of the authors. 
The data of this paper is extracted from TCGA database, where it is publicly available and unrestricted re-use is 
permitted via an open license. This study is exempt from ethics committee approval by default.

Result
Gefitinib metabolism‑related lncRNA identification
First, the R package “limma” was used. Using P < 0.001 and |R| > 0.3 as criteria, 9396 GMLncs were identified. 
We illustrate this step in a Sankey diagram in Figure S1A. Next, univariate Cox analysis was performed, and 128 
lncRNAs were determined to be strongly correlated with the survival of patients in relation to gefitinib metabo-
lism (Table S2). Based on the abovementioned lncRNAs related to prognosis, LASSO regression was employed to 
decrease the dimension in the training group. After selecting a suitable λ value, 39 lncRNAs were involved (Fig. 
S1B,C). Multivariate COX analysis results were further studied, and 9 lncRNAs were determined to be signifi-
cantly related to gefitinib metabolism (including WWC2-AS2, CTD-2066L21.3, LINC00355, RP11-246K15.1, 
CTD-2555C10.3, OGFRP1, RP11-879F14.2, LINC00862, and RP11-345M22.2) (Table S3). We visualized these 
lncRNAs using forest plots and heatmaps (Fig. 3A,B). We summarize the phenotypes and potential target proteins 
related to 9 GMlncs in Table S4 for subsequent research.

Prognostic model construction and validation
The training group was segregated into two subgroups, namely, the low-risk subgroup (n = 129) and the high-
risk subgroup (n = 128), based on the median risk score. Figure S2 illustrates the risk score grouping effect in 
the training group, validation group and entire group. Figure 4A displays the Kaplan‒Meier survival curves for 
the training group, showing that patients classified in the high-risk subgroup exhibited a comparatively inferior 
prognosis in contrast to those in the low-risk subgroup. The curves of the ROC indicated that the model exhibited 
considerable prediction effectiveness over the course of 1-year, 3-year, and 5-year periods (0.81, 0.76, and 0.76), as 
illustrated in Fig. 4D. We also observed the same trend in the validation group and entire group (Fig. 4B,C, E,F).

Figure 3.  9 GMLncs for building models. (A) Forest plot of 9 lncRNAs related to gefitinib metabolism obtained 
by multivariate COX; (B) Heatmap of 9 lncRNAs related to gefitinib metabolism obtained by multivariate COX.
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Nomograms and clinical relevance
Subsequently, the nomogram was developed by integrating the risk score with relevant clinical features (Fig. 5A). 
The C-index curve indicated that the risk score has a greater capacity for prediction than other clinical parameters 
(Fig. 5B). The calibration curves exhibited satisfactory alignment among the anticipated outcomes of survival 
from the nomogram and the actual observed survival at 1 year, 3 years, and 5 years (Fig. 5C–E). The predictive 
power of the predictive model including the risk score was also higher than that of the predictive model with 
only clinical parameters (Fig. S3). Clinical correlation analysis showed that risk scores were not correlated with 
age and sex, but high-risk scores corresponded to poorer clinical features, including AJCC stage, T stage, and 
N stage (Fig. S4A–E).

Clinical independent prognostic model analysis
Univariate and multivariate Cox analyses were utilized to evaluate the relationship between clinical and patho-
logical features (gender, age, race, AJCC stage, T stage, N stage, and M stage), risk score, and samples’ survival 
condition. The outcomes of the univariate Cox analysis revealed significant statistical associations between overall 
survival (OS) and various factors, such as risk score, sex, T stage, N stage and AJCC stage (Table S5). The diagram 
is depicted in Fig. 6A. Multivariate Cox analysis demonstrated significant associations between OS and risk score, 
sex and AJCC stage (Fig. 6B). Risk score is an independent prognostic factor for patient outcome. The quality 
of the prognostic model that is independent of patient characteristics was evaluated through the utilization of 
ROC curves. The results demonstrated that AJCC stage (0.77, 0.72, 0.68), T stage (0.71, 0.64, 0.61), N stage (0.70, 
0.67, 0.65) and risk score (0.81, 0.76, 0.76) had substantial value in determining the 1-, 3-, and 5-year survival 
rates of LUAD patients (Fig. 6C–E). Overall, the risk score demonstrated a higher predictive value than other 
factors, indicating its stronger association with patient outcomes. Other factors, such as AJCC, T, and N stage, 
can still serve as useful reference indicators in assessing prognosis. Using the KM curve, the prognostic predic-
tion ability of some clinical subgroups has been verified, but the prediction effect of some clinical subgroups is 
unsatisfactory (Fig. S5). PCA analysis showed that the modeled lncRNAs were able to effectively divide patients 
into two subgroups (Fig. S6).

Figure 4.  The prediction effect and verification of the model. (A) KM curve of training group; (B) KM curve of 
validation group; (C) KM curve of entire group; (D) 1, 3 and 5-year ROC curves of training group; (E) 1, 3 and 
5-year ROC curves of validation group; (F) 1, 3 and 5-year ROC curves of entire group.
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GO/KEGG pathway enrichment analysis
We conducted a differential analysis of lncRNA expression levels among the patient subgroups at low and high 
risk and extracted lncRNAs with significant differences (FDR < 0.05) for pathway analysis. We visualized the top 
10 significantly correlated pathways from the GO enrichment analysis and the top 30 significantly correlated 
pathways from the KEGG enrichment analysis (Fig. 7A–D). We found that in the GO enrichment analysis, there 
were many pathways closely related to lung cancer, such as GO:0044782: cilium organization and GO:0060271: 
cilium assembly. At the same time, there were also differences in pathways related to lipid metabolism, such 
as GO:0046486: Glycerolipid metabolic process, GO:0006650: Glycerophospholipid metabolic process, and 
GO:0,009,062: fatty acid catalytic process. It should be noted that GO:0044282: small molecule catalytic process 
and GO:0004712: protein serine/threonine/tyrosine kinase activity may be closely connected to the cancer sup-
pressor mechanism and metabolic process of gefitinib. We also noticed variations in lipid metabolism-related 
pathways in the KEGG enrichment study, including hsa00071: Fatty acid degradation and hsa00564: Glycer-
ophospholipid metabolism. In addition, pathways related to drug resistance were observed in both GO and 
KEGG enriched pathways, such as GO:0051092: positive regulation of NF-kappaB transcription factor activity 
and hsa01524: Platinum drug resistance, etc. In addition, the differential expression of hsa05171: Coronavirus 
disease-COVID-19 may suggest that COVID-19 is a new risk factor for LUAD. The results of the enrichment 
analysis revealed the potential mechanism of gefitinib’s impact on cancer during metabolism. The pathways 
obtained by GO and KEGG enrichment analysis are listed in Tables S6 and S7.

GSEA enrichment analysis
We present some of the characteristic pathways in Fig. S7. In GO and WP, gefitinib metabolism-related path-
ways (GOBP Epoxygenase P450 Pathway and Oxidation by Cytochrome P450) were strongly elevated in the 
high-risk subgroup. These pathways verified the role of cytochrome P450 in the process of gefitinib metabolism. 
This suggests that patients with high-risk lung cancer may have enhanced metabolism of gefitinib. Multiple 
pathways related to NF-κB activity were also found in the high-risk group, which is considered to be one of the 
mechanisms leading to cancer development and EGFR inhibitor resistance. The relationship between gefitinib 
metabolism and lipid metabolism was also confirmed in GO (GOBP Lipid Phosphorylation). In the GSEA of 6 
databases, a variety of pathways that promote the progression of LUAD were strongly expressed in the high-risk 

Figure 5.  Prognostic Model Construction and Validation. (A) A nomogram constructed based on nine 
gefitinib metabolism-related lncRNAs and clinically relevant features; (B) C-index curve of risk model; (C) 
1-year Calibration curve of the nomogram; (D) 3-year Calibration curves of the nomogram; (E) 5-year 
Calibration curve of the nomogram.
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subgroup, including GOBP: ERBB Signaling Pathway, Biocarta TGFβ Pathway, Biocarta P38MAPK Pathway, and 
WP Neovascularization Processes. These pathways are suggested to be related to the high risk of LUAD, which 
offers a direction for additional investigation. Regrettably, we did not obtain significantly enriched pathways 
among the KEGG pathways. The pathways obtained by GSEA enrichment analysis are listed in Tables S8 and S9.

Tumor immune microenvironment analysis
Many immune cells were found in larger densities in the low-risk group, as shown by 7 immunological algorithms 
(Fig. S8A). Next, the CIBERSOFT algorithm was employed to research the immune microenvironment in the 
low- and high-risk groups, and the outcomes indicated that monocytes, quiescent dendritic cells, and neutrophils 
were abundant in the low-risk subgroup. M0 macrophages were abundant in the high-risk subgroup (Fig. S8B). 
The heatmap displays 13 immune function pathways, showing the differential expression between the two sub-
groups. The outcomes showed that in the training group, there were no differentially expressed immune function 
pathways (Fig. S8C). The low-risk subgroup in the verification group exhibited high expression levels of HLA, 
T-cell costimulation, T-cell coinhibition, and the Checkpoint Marker, while the high-risk subgroup displayed 
low expression levels of these markers (Fig. S8D) In the entire group, MHC class I was poorly expressed in the 
low-risk subgroup and strongly expressed in the high-risk subgroup across the board, demonstrating that it is 
a high-risk route (Fig. S8E).

Immune evasion analysis and immunotherapy
The present study investigated the impact of immunotherapy and cancer immune evasion on related lncRNAs in 
both low-risk and high-risk subgroups. However, our findings indicate that the TIDE score did not demonstrate 
statistical significance in the training, test, or entire groups. The MDSC, CAF, and Exclusion variables exhibited 
significant differences between the low-risk and high-risk subgroups, with higher scores observed in the latter 
(Fig. S9). The risk score and IFNG expression were inversely correlated. Other immunological markers, including 
TAMM2, MSI, Merck18, Dysfunction, CD8, and CD274, are shown in Fig. S10.

Tumor mutational burden difference analysis
A comparison was made among the TMB of subgroups categorized as low-risk and high-risk. In the training 
group (P = 0.92), test group (P = 0.61), and entire group (P = 0.94), the results demonstrated that no differences 
were found in the TMB of the low- and high-risk subgroups (Fig. S11A–C). The training group’s and the test 
group’s TMB survival curve results (P = 0.054, P = 0.061) are meaningless. However, the overall group’s result 
(P = 0.017) demonstrates that there is an obvious distinction between the survival curves of the H-TMB subgroup 
and the L-TMB subgroup, and the OS of the H-TMB subgroup is higher than that of the L-TMB subgroup (Fig. 

Figure 6.  Independent prognostic analysis of risk score. (A) Univariate COX analysis of clinicopathological 
features; (B) Multivariate COX analysis of clinicopathological features; (C) ROC curve for risk score and 
clinicopathological factors at 1-year; (D) ROC curve for risk score and clinicopathological factors at 3-year; (E) 
ROC curve for risk score and clinicopathological factor at 5-year.
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S11D–F). The relationship between TMB, low-risk group, high-risk group, and survival was then examined 
using a survival curve. The results indicate that the “L-TMB + high-risk” cohort exhibits the most abbreviated 
survival interval among the entire cohort, while the “H-TMB + low-risk” cohort displays the most prolonged 
survival duration. The test and training group results were consistent with those of the entire group (Fig. S11G–I).

Forecast of chemotherapy drugs
The samples’ response to therapy was estimated using the “OncoPredict” algorithm, thereby identifying possible 
chemotherapy medications for our model. The semi-maximum inhibitory concentration (IC50) from the GDSC 
database was used by that algorithm. A total of 23 chemical drugs underwent screening, and a significant vari-
ation in the estimated semi-inhibitory concentration deposits was observed between the low-risk and high-risk 
subgroups. Twenty-one drugs had high sensitivity in the high-risk subgroup. The boxplots and their correlation 
plots for the top 4 sensitive drugs (Fig. S12). Further details are shown in Table 2.

Imvigor210 model verification
We screened the same genes between the Lasso analysis and the IMVIGOR210 model, namely, LINC00862, 
WWC2-AS2 and OGFRP1. To verify the predictive value of linked lncRNAs and separate patients into low-risk 
or high-risk subgroups, the relevant risk score of patients in the Imvigor210 queue was generated. The KM sur-
vival curve demonstrates that Imvigor210 bladder cancer target gene expression is not statistically significant 
in the survival probability of the two subgroups. The ROC curve also indicates that this model’s prediction 
performance is low. The risk scores of the target genes of different drug reactions of Imvigor210 bladder cancer 
were not statistically significant (P = 0.9) (Fig. S13).

Figure 7.  Pathway enrichment analysis. (A) Bar plot of top ten pathways in GO pathway enrichment analysis; 
(B) Pie chart of the top ten pathways in GO pathway enrichment analysis; (C) Bar plot of top thirty pathways 
in KEGG pathway enrichment analysis; (D) Pie chart of top thirty pathways in KEGG pathway enrichment 
analysis.
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LUAD patient stem cell index analysis
Stem cell index analysis revealed significant differences in the mRNAsi of non-cancerous and cancerous samples 
(P < 0.05). Survival analysis, however, revealed that mRNAsi and OS were not significantly associated with low or 
high expression (Fig. S14A,B). Then, we examined the correlation among the mRNAsi scores and clinical char-
acteristics, including sex, AJCC staging, and T and M stages, and found that there were significant differences in 
their existence, indicating that the mRNAsi of LUAD patients was highly related to clinical features (Fig. S14C–F).

Biological validation
The HPA database was utilized to compare the levels of protein expression of gefitinib metabolism-related genes 
in LUAD and normal cells. Figure 8A depicts the protein expression of 9 of the genes. MIR122 was excluded 
because there were no relevant data. We found that the modeled lncRNAs were significantly different between 
normal and tumor cells (P < 0.05). CTD-2066L21.3, LINC00355, CTD-2555C10.3, OGFRP1, and LINC00862 
were found to be substantially expressed in tumor cells but expressed at low levels in normal cells. Other lncRNAs 
were found to be highly expressed in normal cells but expressed at low levels in tumor cells. This demonstrates 
the expression signature of the lncRNAs in our model (Fig. 8B).

Discussion
Gefitinib is effective in the treatment of EGFR-mutant lung adenocarcinoma, but its metabolic effects on lung 
cancer remain unclear. As a biomarker, numerous studies have demonstrated a causal connection among lncR-
NAs and the beginning and progression of many forms of cancer. Meanwhile, many studies have proven that 
lncRNAs have a certain influence on the treatment of  gefitinib22,23. However, no lncRNAs related to gefitinib 
metabolism have been identified in LUAD. In our research, the significance of lncRNA prognostic models 
concerning gefitinib metabolism in LUAD patients was demonstrated. We constructed a risk assessment model 
containing 9 gefitinib metabolism-related lncRNAs and constructed a nomogram that can strongly predict an 
accurate prognosis. GO analysis, KEGG analysis, and GSEA confirmed that the metabolism of gefitinib was 
related to cytochrome P450 and lipid metabolism and also affects the development of drug resistance. Evasion 
of Immunity and Immunotherapy analysis demonstrated that immune evasion is more likely with an increased 
risk score. Cancer microenvironment analysis found that most immune cells were present in higher concentra-
tions in the low-risk subgroup. Drug susceptibility research found 23 sensitive drugs, 21 of which were more 
sensitive in high-risk groups.

In this study, a gefitinib metabolism-related prediction model and nomogram were constructed, demonstrat-
ing high predictive ability, as evidenced by various evaluation metrics, such as the ROC curve, C-index curve, and 
calibration curve. Comparisons with other studies and models revealed its superior performance. For instance, 

Table 2.  The 23 chemotherapeutic drugs obtained from drug sensitivity analysis. P-value probability, H high, 
L low.

Drug P-value H.median (25%, 75%) L.median (25%, 75%)

AZD7762_1022 0.00 0.66 (0.38–1.46) 0.96 (0.50–2.29)

Pevonedistat_1529 0.00 1.36 (0.67–3.16) 2.03 (0.98–4.61)

BMS-754807_2171 0.00 2.18 (0.83–3.93) 1.47 (0.40–2.94)

Luminespib_1559 0.00 0.07 (0.04–0.16) 0.1 (0.05–0.25)

Staurosporine_1034 0.00 0.03 (0.02–0.07) 0.05 (0.02–0.10)

Camptothecin_1003 0.00 0.07 (0.04–0.14) 0.12 (0.05–0.23)

AZD6738_1917 0.00 5.26 (2.75–10.24) 7.62 (3.88–20.31)

Sapitinib_1549 0.00 34.65 (21.69–66.58) 50.78 (28.47–88.84)

Gemcitabine_1190 0.00 0.36 (0.13–0.97) 0.62 (0.23–1.16)

5-Fluorouracil_1073 0.00 72.31 (30.73–186.18) 110.95 (48.31–350.57)

Cytarabine_1006 0.00 4.23 (2.00–8.34) 6.70 (3.18–12.72)

Foretinib_2040 0.00 1.76 (1.03–2.94) 2.43 (1.37–4.70)

Entospletinib_1630 0.00 34.87 (25.40–52.00) 44.21 (30.72–64.04)

VX-11e_2096 0.00 13.56 (7.49–22.56) 17.38 (11.17–32.34)

Trametinib_1372 0.00 1.18 (0.47–3.36) 2.21 (0.99–5.34)

Dasatinib_1079 0.00 3.07 (0.65–10.11) 5.84 (1.91–21.79)

Doramapimod_1042 0.00 101.72 (79.06–124.58) 86.28 (69.21–106.11)

PD0325901_1060 0.00 1.25 (0.68–2.25) 1.78 (1.14–3.24)

ERK_2440_1713 0.00 10.30 (5.82–19.15) 15.14 (8.99–32.21)

Ulixertinib_1908 0.00 13.34 (8.14–19.01) 18.03 (11.91–28.02)

Selumetinib_1736 0.00 44.34 (26.53–88.61) 71.91 (42.00–141.25)

ERK_6604_1714 0.00 25.25 (13.87–44.16) 37.22 (23.14–63.31)

SCH772984_1564 0.00 10.05 (3.40–22.54) 19.86 (10.32–39.52)
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the developed model achieved a higher C-index (0.780) than the model in the study by Lin et al. (0.711)24. Fur-
thermore, the gefitinib metabolism-related prediction model outperformed the lung adenocarcinoma risk model 
studied by Ma C et al. and exhibited superior predictive ability compared to the model investigated by Ren et al. In 
these studies, the risk model demonstrated higher AUC values (training group > 0.7, verification group > 0.6)25,26. 
Although the accuracy for the 5-year period was slightly lower than that of the model by Li et al., it showed higher 
accuracy for the 1- and 3-year  periods27. Meanwhile, two genes associated with lung cancer, namely, LINC00355 
and OGFRP1, were identified by the developed model. LINC00355 was previously reported by Yuan et al. to 
promote the proliferation of LUAD cells, while OGFRP1 was found by Xiaojing Liu et al. acting as a carcinogen 
in  NSCLC28,29. Moreover, the model incorporated a larger number of genes with a significant influence on the 
prognosis of lung adenocarcinoma, encompassing both risk factors (e.g., RP11.345M22.2) and protective factors 
(e.g., LINC00355). The model’s efficacy was further validated by PCA, which effectively distinguished patients 
into two subgroups due to the selected lncRNA. In summary, the gefitinib metabolism-related prediction model 
and nomogram developed in this study exhibited exceptional predictive accuracy, surpassing existing models in 
certain scenarios and identifying novel potential targets for further investigation.

Early tumors and advanced tumors were shown to be strongly related to low- and high-risk ratings, respec-
tively. Gefitinib metabolism is related to lipid metabolism, according to GO and KEGG pathway enrichment 
studies. (GO:0006650, GO:0046486, GO:0009062, hsa00071, hsa00564). Liao T et al. found that in NSCLC, 
fasudil can increase gefitinib sensitivity by reducing intracellular lipid  accumulation30, while a diet rich in lipids 
can promote tumor  development31. Moreover, abnormal accumulation of intracellular lipids is one of the reasons 
for gefitinib  resistance32. In the future, drugs that affect lipid metabolism may be used to enhance the efficacy of 
gefitinib. In addition, the enrichment results found a variety of pathways that may affect drug resistance, such as 
NF-kappaB pathway and JNK  cascade33,34. And GSEA proved that these pathways were enriched in the high-risk 
group. At the same time, GSEA revealed that cytochrome P450 is involved in the metabolism of gefitinib in lung 
 cancer35. In particular, the metabolic ability of cytochrome P450 1A1 (CYP1A1) in lung cancer tumor cells affects 
the efficacy of  gefitinib36. Moreover, cytochrome P450-related pathways were also enriched in the high-risk group. 
Therefore, we believe that the metabolic process of gefitinib may contribute to gefitinib resistance to a certain 
extent through certain mechanisms. And the high-risk group with stronger metabolic capacity are more likely 
to develop drug resistance. The connection between the metabolism of lipids and gefitinib metabolism was also 
further validated. Additionally, multiple tumor-promoting pathways were identified in the high-risk subgroup, 
providing more directions for further study in LUAD. Multiple tumor immune microenvironment variables were 
shown to be strongly associated with the risk model. T-cell costimulation and HLA were identified as low-risk 
pathways, as found in the study of cuproptosis and hepatocellular carcinoma by Shu Jia Chen et al., which was 
consistent with our  findings37. The risk score was determined to have a substantial positive relationship with 
the MDSC, CAF, and exclusion variables. Conversely, there was an unfavorable connection observed between 
IFNG and the risk score. Relevant studies have proven that MDSC and CAF are involved in the progression 
and immune suppression of lung cancer. This confirms that the high risk score of our model is associated with 
worse  prognosis38,39. Although there was no significant difference in TMB between the low-risk and high-risk 
subgroups, a higher TMB value indicated a better prognosis. The expression properties of the modeled lncRNAs 
in tumor and normal cells were validated by RT-qPCR tests.

Next, we predicted potential chemotherapeutic agents that could be used to treat LUAD patients, 21 of 
which had higher sensitivity levels for patients in the high-risk subgroup. The 5 most relevant drugs caught our 

Figure 8.  Experimental validation of gene expression. (A) Expression of genes related to gefitinib metabolism; 
(B) Differences in the expression of lncRNAs related to gefitinib metabolism in high and low risk groups.
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attention. Among them, AZD7762, in combination with checkpoint kinase 1 (CHK1) inhibitors, has shown 
potential for treating triple-negative breast  cancer40; BMS-754807 can be combined with dasatinib to suppress 
the growth of lung cancer cells and produce synergistic  cytotoxicity41; luminespib may be a potential drug for 
EGFR in 20 advanced NSCLC patients’  treatment42; staurosporine was found that its drug sensitivity is nega-
tively correlated with the expression of  EGFR43; camptothecin is a promising anti-obesity agent by activating 
the GDF15-GFRAL  pathway44. Our study found that among the low expression and high expression groupings, 
there was no discernible link in the OS of the stem cell index, while the clinical features of LUAD were highly 
connected with mRNAsi, which indicated that mRNAsi was linked to patients’ prognoses.

There are several merits in our study. The gefitinib metabolism-related prediction model and nomogram 
developed in this study demonstrated superior performance compared to lung adenocarcinoma risk models, 
achieving higher AUC values and C-index. The model’s consistent results across different studies indicate its 
robustness and reliability. By identifying two lung cancer-associated genes and incorporating influential genes, 
the model offers valuable insights for further research and potential therapeutic targets. Overall, this study pro-
vides a highly accurate and comprehensive predictive tool that surpasses existing models, opening new avenues 
for studying lung adenocarcinoma. Nevertheless, it is crucial to note the limitations of our research, including 
the reliance on public data and the need for verification through experimental and clinical studies. Addition-
ally, specific signaling pathways related to LUAD growth were not identified within the scope of our research.

Conclusion
The prediction model and nomogram we developed based on nine gefitinib metabolism-related lncRNAs 
showed superior prediction accuracy and potential for further research. Furthermore, it highlights the asso-
ciation between gefitinib and lipid metabolism and identifies pathways associated with tumor development in 
high-risk populations, providing valuable direction for further research on LUAD. We also identified potential 
chemotherapeutic agents for LUAD treatment, such as BMS-754807, Luminespi, and staurosporine, which have 
shown potential in lung cancer in multiple studies. Due to the limitations of this study, we need to conduct basic 
experiments to verify the relevant mechanism, and the choice of chemotherapy drugs needs to be confirmed 
by clinical practice.

Data availability
The data sets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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