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Recent frontiers of climate changes in East Asia at global
warming of 1.5°C and 2°C
Qinglong You1✉, Zhihong Jiang2✉, Xu Yue3, Weidong Guo 4, Yonggang Liu5, Jian Cao2, Wei Li2, Fangying Wu1, Ziyi Cai1,
Huanhuan Zhu2, Tim Li1,6, Zhengyu Liu7, Jinhai He2, Deliang Chen 8, Nick Pepin9 and Panmao Zhai10

East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize
both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 °C
above pre-industrial levels (GW1.5 and GW2 hereafter). This study reviews recent studies on East Asian climate change at GW1.5
and GW2. The intensity and variability of the East Asian summer monsoon are expected to increase modestly, accompanied by an
enhancement of water vapor transport. Other expected changes include the intensification of the Western Pacific Subtropical High
and an intensified and southward shift of the East Asian jet, while the intensity of the East Asian winter monsoon is projected to
reduce with high uncertainty. Meanwhile, the frequency of ENSO may increase in a warming world with great uncertainty.
Significant warming and wetting occur in East Asia, with more pronounced intensity, frequency, and duration of climate extremes
at GW2 than that at GW1.5. The fine structure of regional climate changes and the presence and location of various warming
hotspots, however, show substantial divergence among different model simulations. Furthermore, the Asian climate responses can
differ substantially between the transient and stabilized GW1.5 and GW2, which has important implications for emission policies.
Thus, to better plan effective mitigation and adaptation activities, further research including an in-depth exploration of the
divergent responses in transient versus stabilized scenarios, the quantification of future projection uncertainties, and improvements
of the methods to reduce model uncertainties are required.
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INTRODUCTION
According to the Sixth Assessment Report of the Intergovern-
mental Panel on Climate Change (IPCC AR6), the mean global
temperature during the first two decades of the 21st century
(2001–2020) has reached about 0.99 °C (0.84–1.10 °C) above pre-
industrial levels (1850–1900)1. Along with this background
warming, climate extremes have also changed dramatically across
the planet, including decreases in cold days and nights, increases
in heatwaves and compound temperature and precipitation
extreme events with changing frequency, severity and duration2–7.
The 2015 United Nations Climate Change Conference in Paris
(COP21) set the goal of “holding the increase in the global average
temperature to well below 2 °C above pre-industrial levels and
pursuing efforts to limit the temperature increase to 1.5 °C above
pre-industrial levels”8. The ambitious target of limiting global
warming to 1.5 °C above pre-industrial levels (GW1.5 hereafter)
can significantly enhance capacity for climate change adaptation,
strengthen resilience, and reduce vulnerability to climate change.
Otherwise, every fraction of a degree of additional warming will
result in the loss of many more lives8–10. Thus, the international
community has adopted the Paris Agreement to avoid or reduce
severe risks caused by climate change. In November 2021, the
2021 United Nations Climate Change Conference (COP26) in

Glasgow, UK ended with a global agreement to accelerate action
on climate this decade and finalize the outstanding elements of
the Paris Agreement.
The IPCC points out that the global temperature increase since

pre-industrial is mainly attributable to human activities, and it will
very likely reach 1.5 °C in the near term (2021–2040) under the
very high greenhouse gas emission scenario11. Achieving the goal
of <GW1.5 will require carbon emissions to decline much faster
than has been achieved in the recent past12. Moreover, there are
several studies that have examined the impacts of GW1.5 and
GW2 on natural and human systems at both global and regional
scales. They have demonstrated discernible differences between
GW1.5 and GW2 in extreme climate indices and vulnerable
systems/regions9,13–18. For example, it is recorded that GW1.5
rather than GW2 would perceptibly reduce the frequency of hot
events in Australia, which would prevent much loss of life and
economic and environmental damage9. Global drylands will
experience greater impacts from GW2 compared to GW1.5,
such as decreased maize yields and runoff, increased frequency
of long-lasting droughts and more favorable conditions for
malaria transmission14.
East Asia is strongly affected by climate change and climate

extremes, and the projected warming is clearly dependent on
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emission scenarios (Fig. 1a). China is located in the East Asian
monsoon region and it is facing great pressure to reduce carbon
emissions while the same time seeing rapid economic and social
development. Accelerated warming can cause huge losses to
society, the economy and natural ecosystems, which has led to
rising public awareness of extreme events in recent years19–23. For
example, meteorological disasters are estimated to have caused a
loss of 2.37% of the Chinese gross domestic product (GDP) each
year since 199024. More extreme climate events such as heatwaves
have resulted in serious damage in China22,25, and the severe
heatwave in the summer of 2013 in eastern China has had notable
effects on China’s economic sector, causing direct economic losses
of about 59 billion RMB26. Moreover, a warmer climate is likely to
lead to an expansion of the area affected by severe floods, and
future flood losses in China have been estimated to be reduced by
tens of billions of US dollars (on average, US$67 billion and up to
0.04% of GDP) for a 0.5° reduction in mean warming from GW2 to
GW1.527. It is believed that the benefits of moving from GW2 to
GW1.5 in China deserve to be quantitatively assessed, which
would provide a better insight into the benefits of a GW0.5
reduction to regional stakeholders (e.g., hydrologists, ecologists,
resource planners)22,28.
Under the background of global warming (Fig. 1b), there is an

urgent to accurately characterize the response of the East Asian
climate system at GW1.5 and GW2 at both large and fine scales in
space and time. It is also necessary to improve the projection of
climate extremes and to understand future perspectives on
broader climate change over the East Asia region as a whole.
Here, we summarize the recent progress in the study of the
characteristics of projected climate change in East Asia at GW1.5
and GW2 to provide a regional perspective. Fundamentally, the
organization of this study is as follows. In the section “Recent

frontiers of climate changes in East Asia”, East Asian monsoon
circulations, key climate factors influencing the East Asia climate
changes as well as the physical mechanisms are summarized.
Climate changes and climate extremes in East Asia at GW1.5 and
GW2 are reviewed. Section “Recent frontiers of climate changes in
East Asia” also summarizes the finer spatial pattern and the
identification of hotspot regions to climate change. Section
“Outlook and summary” presents further discussions and high-
lights issues that require significant future research, and concisely
summarizes the results.

RECENT FRONTIERS OF CLIMATE CHANGES IN EAST ASIA
East Asian monsoon circulations
The East Asian monsoon consists of the East Asian summer
monsoon (EASM) and East Asian winter monsoon (EAWM) (Fig. 2
and Table 1). It is widely accepted that changes in both EASM and
EAWM circulations can be quantified using monsoon indices29.
However, there are still many controversies about future changes
due to different choices of monsoon indices and uncertainties
among the models. Here, we focus on summarizing the changes in
the East Asian monsoon and its components at GW1.5 and GW2,
including related uncertainties. In addition, the long-term changes
of the East Asian monsoon under global warming are also included,
which is useful to explain the changes at GW1.5 and GW2.

East Asian summer monsoon (EASM). The EASM contributes
nearly half of the annual precipitation in East Asia, and any
changes will affect the intensity and position of the main
monsoon rain belts, making prediction difficult30–32. There are
many types of EASM indices, including land–sea thermal
difference indices defined by sea-level pressure, circulation indices

Fig. 1 Projections of temperature change (°C) relative to the reference period 1995–2014 for observations (ERA5 reanalysis) (purple),
historical (black), SSP1–2.6 (green), SSP2–4.5 (blue) and SSP5–8.5 (red) scenarios. a For the East Asia and b for the global. For each scenario,
the median (solid lines) and the 17–83% likely range (shading) are shown. The bar plots on the right side of each panel represent the median
(solid lines) and 17–83% likely range of the projections averaged over 2081–2100. Vertical lines at GW1.5/2 represent the time when mean
global-scale warming reaches 1.5 °C/2 °C relative to pre-industrial levels (1850–1900).
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defined by geopotential height, and indices of water vapor
transport flux33–35. The intensity of EASM increases (medium
confidence) in a warmer future in Coupled Modeling Intercompar-
ison Project phase 5/6 (CMIP5/6) models36,37 (Fig. 2a and Table 1),
with dry-get-wetter climate38, especially in the long-term future
under the higher emission scenarios, the enhancement of EASM
also reflects in increased EASM precipitation (high confidence) and
increased monsoon duration (medium confidence)1. Recent
studies using CMIP6 models found that the changing rate of
precipitation is distinct under the high emission scenarios in the
long-term future39. It is reported that the summer monsoon
precipitation increased by 2.1%/°C in CMIP6 multi-model ensem-
ble mean under the shared socioeconomic pathway (SSP)
2–4.5 scenario37. Meanwhile, the duration of the summer
monsoon precipitation over East Asian might increase by more
than 1.6 pentads under the SSP5–8.5 scenario, which is related to
the earlier onset and later retreat of the EASM39,40.

Although the projected strength of the EASM will intensify
(medium confidence) at GW1.5 and GW241, results obtained using
different EASM indices and datasets are varied. Ensemble
projections using CMIP5 models show future EASM intensity
increasing at GW1.5, and the interannual variabilities of the EASM
and its associated precipitation are also expected to be enhanced,
with large inter-model spreads remained28. Similar conclusions are
obtained from the CESM-low warming experiment, that all
ensemble means to show an increase in EASM intensity and
associated precipitation over most parts of the East Asian region in
1.5 °C “never exceed”, 1.5 °C “overshoot” and 2.0 °C “never exceed”
experiments and any significant difference in the future changes
in EASM intensity and precipitation among the three scenarios42.
Another study using large-ensemble simulations also showed the
enhanced EASM circulation and precipitation with global warm-
ing, however, the increase was not significant at GW1.5. Further
study indicates that the positive contribution of the dynamic
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Fig. 2 Schematic diagram of the future changes of the East Asian monsoon circulations at GW1.5 and GW2. a For the East Asian summer
monsoon (EASM) and b for the East Asian winter monsoon system (EAWM). The contour lines on each figure represent the present and future
positions of climate systems (westerly jet, subtropical high, and East Asian trough) in the upper (top), middle (mid-row), and low-level
(bottom) atmosphere.

Table 1. Future changes of the East Asian summer monsoon system (EASM) and East Asian winter monsoon system (EAWM) at GW1.5 and GW2.

EASM EAWM

GW1.5 GW2 GW1.5 GW2

EASM indices Increase
(medium
confidence)

Increase
(medium confidence)

EAWM indices Decrease
(medium confidence)

Decrease
(medium confidence)

Water vapor transport Increase
(medium
confidence)

Increase
(high confidence)

Siberian high/
Aleutian low

Strengthen/weaken (medium
confidence)

Strengthen/weaken
(medium confidence)

Western North Pacific
Subtropical High

Strengthen
(low confidence)

Strengthen
(low confidence)

East
Asian trough

Eastward shift and weaken
(medium confidence)

Eastward shift and weaken
(medium confidence)

Summer East Asian
subtropical westerly jet

Southward shift
and strengthen
(low confidence)

Southward shift and
strengthen (medium
confidence)

Winter East
Asian jet

Northward shift and increase
(medium confidence)

Northward shift and increase
(medium confidence)

The confidences of the future changes are also included.
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component related to strengthening EASM is almost twice as large
as that of the thermodynamic component when global warming
increases by more than 2 °C, while both contributions are quite
similar and small at GW1.543. Therefore, the changes of EASM at
GW1.5 and GW2 still remain large projection uncertainties, and the
confidence level is still low at GW1.5. Compared to the projections
of surface temperature changes related to the EASM, there is
lower confidence in projections of precipitation changes at GW1.5
and GW244. Nonetheless, the benefits of limiting global warming
to 1.5 °C instead of 2 °C are clear45, and it will robustly reduce areal
and population exposure to dangerous extreme precipitation
events in the populous land monsoon regions46.
The EASM is closely associated with water vapor transport

(WVT). There are four typical WVT corridors in the summer
monsoonal circulation: the southwestern, South China Sea, and
southeastern corridors at low latitudes, and the Eurasian westerly
corridor at high latitudes47. The results from CMIP5 models
showed that summer WVT is enhanced in East Asia at GW1.5 and
GW2 under both RCP4.5 and RCP8.5 (medium confidence). For
southern East Asia, enhanced southerly or southwesterly flow due
to an enhanced South China Sea summer monsoon trough and
western North Pacific subtropical high favors the enhanced WVT,
while for northern East Asia, changes in lower-level circulation
have less contribution to WVT, and the increased water vapor
content mainly due to the increased tropospheric air tempera-
ture48. A dynamic component plays an important role in WVT
changes at GW2, while the thermodynamic component caused by
increased water vapor content is more important at GW1.549. The
Tibetan Plateau also plays an essential role in enhancing WVT
related to EASM circulations under global warming through
enhancing precipitation-induced anomalous latent heating over
the high plateau50.
The Western North Pacific Subtropical High (WNPSH) is another

dominant component affecting the EASM and is a key high-
pressure system controlling the summer monsoon rainfall and
typhoon activities over the western Pacific47,51. Thus, the intensity,
shape, and location of WNPSH have great influences on EASM, but
whether the WNPSH will be strengthened or weakened remains
inconclusive due to limitations in models, varied index definitions
and constraining methods51–55. For example, the WNPSH may be
strengthened and extended westward in a warming future (low
confidence) (Fig. 2a and Table 1), with the most pronounced
changes expected in RCP8.5; while the ridge line of WNPSH shows
no obvious long-term trends56. However, based on the projected
changes in 925 hPa wind, 925hPa relative vorticity, 925 hPa
divergence, and 700 hPa vertical velocity, the CMIP5 model
simulation under RCP8.5 projects reduced intensity for the
subtropical anticyclones over the North Pacific57. Meanwhile, the
multi-model ensemble mean from 33 CMIP5 models shows the
projected changes in the WNPSH intensity (defined by zonal wind
at 850 hPa) are approximately zero in the long-term future, and
about half of the models indicate an enhanced WNPSH and about
half of the models project a weakened WNPSH under both RCP4.5
and RCP8.5 scenarios58. Furthermore, using a sea level pressure
index as a definition of the WNPSH constrained by observed sea
surface temperatures, CMIP5 models project a strengthened and
westward-shifted WNPSH due to suppressed warming in the
western Pacific and enhanced land–sea thermal contrasts59.
However, in contrast, based on eddy geopotential height at
500 hPa in CMIP5 models, the WNPSH will be weakened and
retreat eastward in the middle troposphere in response to global
warming, accompanied by an eastward expansion of the East
Asian rain belt along the northwestern flank of the WNPSH51.
Therefore, even in the long-term future, the projection of WNPSH
is still uncertain, and the reasons for the intermodal spreads
remain unknown.
For 1.5 and 2 °C targets, future projections of the WNPSH remain

hugely uncertain at different geopotential levels. Generally, the

study shows that the WNPSH approximately linearly weakens
(eastward retreat) at 500 hPa and intensifies (westward extension)
at 850 hPa with a rise in the warming target, while such changes
are insignificant at GW1.5 to GW2, and becomes apparent at
higher warming targets (low confidence). Meanwhile, the pro-
jected WNPSH might experience an interdecadal variation in the
21st century which is influenced by natural variability, thus the
robustness of the WNPSH projection is low under the low
warming targets like GW1.5 or GW252.
The Summer East Asian subtropical westerly jet (EASWJ), a

strong westerly jet in the upper troposphere with maximum
intensity at around 200 hPa, is also an important component of
the EASM system. The EASWJ is located to the north of the EASM
rain belt, and its intensity and location control EASM rain-
fall53,60–62. In summer, a southward EASWJ displacement often
corresponds to strong convective activity and accompanies
increased precipitation over south-central China, while a north-
ward shift is associated with heavier rainfall in North China63.
Many studies have projected changes in the EASWJ in response to
global warming and have shown the increase of its interannual
variability and a southward displacement in the EASWJ during the
21st century (medium confidence). This would also strengthen the
relationship between EASM rainfall and the EASWJ60,64. The
CMIP3, CMIP5, and CMIP6 model simulations all project a
southward shift and intensification of the EASWJ53,60,61, which is
associated with an enhanced poleward temperature gradient in
the mid-high troposphere in East Asia60,64.
Noticeably, however, the increase of the westerly on the south

side and decrease on the north side will intensify with increasing
global warming targets, suggesting a lower signal-to-noise ratio
for EASWJ changes at GW1.5 compared to GW2. The results show
that the EASWJ weakens slightly with weak air temperature
meridional gradient change at GW1.5 (low confidence), while the
westerly wind is strengthened/weakened on the south/north of
the EASWJ axis at GW2 (medium confidence), leading to a
southward movement64.

East Asian winter monsoon (EAWM). The EAWM is characterized
by a prevailing northerly flow between the Siberian high and the
Aleutian low and is associated with low winter temperatures,
outbreaks of snowfall in northern China, and freezing rain in
southeastern China65. The East Asian trough is a major feature at
500 hPa, usually around the longitude of Japan. Four main indices
are often used to describe the circulation related to the EAWM:
low-level meridional wind indices, east–west pressure gradient
indices, upper-level zonal wind shear indices, and east-Asian
trough indices66. Using low-level meridional wind indices, a
strengthened northerly wind in a future warmer climate is
projected and implies a stronger EAWM, which is associated with
changes in Aleutian low and near-surface temperature in East
Asia67. However, based on the rest three indices closely related to
the near-surface temperature of East Asia, the EAWM is projected
to become weaker in the future (medium confidence)68 (Fig. 2b
and Table 1). In addition, interannual variability of these indices
will be maintained with an intensity similar to that of the
present68. Thus, the projections of future changes in EAWM are
highly dependent on the models and indices employed.
It is also shown large uncertainties could be found in the

projection of EAWM system members at GW1.5 and GW2, which
are described in the following sections. Multi-model results from
the CMIP5 models indicated that compared to the EAWM system
members at GW1.5, the EAWM system members show more
robust changes at GW2 under the RCP4.5 and RCP8.5 scenarios65.
The Siberian high (SH) and Aleutian low (AL) are located on the

Asian continent and North Pacific at the lower troposphere,
respectively, and are important components of the EAWM. A
stronger (weaker) SH and AL lead to increased (reduced) zonal sea
level pressure gradient and stronger (weaker) EAWM. At GW1.5
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and GW2, the projected SH is weakened but the AL is intensified
based on CMIP5 models (medium confidence)65, consistent with
earlier results based on CMIP3 models69. The projected significant
intensification and a northward shift of the AL are associated with
strong warming over the high-latitude North Pacific due to
melting sea ice in the Bering Sea and Okhotsk Sea65. At the end of
the 21st century, the SH is expected to decrease with a much
smaller magnitude than the intensification of the AL. Overall the
projected poleward shifting of AL increases the horizontal
pressure gradient between the SH and the AL regions and
strengthens the EAWM67.
The East Asian trough (EAT) is an important part of the EAWM

system in the middle troposphere (500 hPa), and a deeper
(shallower) EAT is conducive to a stronger (weaker) EAWM65.
The tilt of the EAT line is closely correlated with the EAWM
pathway. When the EAT line tilts more (less) eastward, the EAWM
tends to take the eastern (southern) pathway, which will bring
more (less) cold air to the central North Pacific in comparison to
East Asia70. According to the results of 28 CMIP5 models, the EAT
is projected to weaken slightly and tilt more eastward with
latitude at GW1.5 and GW2 under RCP4.5 and RCP8.5 (medium
confidence)53, consistent with the previous studies67. A stronger
eastward tilt with the latitude of the projected EAT suggests that
the future EAWM will bring more cold surges out into the North
Pacific and a less disturbed winter climate in East Asia67, although
the current climate models still have large uncertainties in the
simulation of the EAT behavior and its position71.
The winter East Asian jet (WEAJ) in the upper troposphere is

also an important component of the EAWM. The core region and
zonal wind speed as well as the jet axis at 200/300 hPa can be
used to characterize the WEAJ. A strong jet is beneficial to a
deeper East Asian trough and Aleutian low as well as EAWM
enhancement65,72. At GW1.5 and GW2, the core region of the
WEAJ is expected to shift westward, zonal winds at 200 and
300 hPa increase slightly and the jet axis shifts would shift
northward under RCP4.5 and RCP8.567, suggesting a northward
shift of the WEAJ (medium confidence)65,68.

ENSO
The El Niño-Southern Oscillation (ENSO) is a prominent feature of
interannual climate variability, and associated weather and climate
events can cause pronounced socioeconomic losses in East Asia.
The future projection of ENSO and its climatic impacts on East Asia
is of great importance7. Based on CMIP3 and CMIP5 models in a
warming world, ENSO intensity and the frequency of extreme El
Niño events are expected to increase73,74, despite uncertainties in
climate model prjections75. Moreover, the influence of El Niño on
the interannual variability of climate in East Asia is ENSO-phase
dependent in a warmer future76 (Fig. 3). It is projected that the El
Niño-related sea surface temperature anomaly pattern becomes
narrower and stronger under global warming76, leading to a
strengthened positive (negative) precipitation anomaly in the

equatorial central Pacific (northwestern Pacific). Furthermore, the
strengthened negative precipitation anomaly in the northwestern
Pacific further enhances an anomalous anticyclone over the
tropical western North Pacific, which increases southerly flow to
East Asia, leading to enhanced precipitation there76.
Meanwhile, the future behavior of ENSO under anthropogenic

forcing remains uncertain. IPCC AR6 emphasized that there is no
consensus from models for a systematic change in the amplitude
of ENSO variability over the 21st century in any of the SSP
scenarios assessed (medium confidence)1. A recent study identi-
fies the sources of uncertainty in the ENSO amplitude projections
in CMIP5 and CMIP6 models, which found that internal variability
is the main contributor to the uncertainty in the near term future,
and model uncertainty dominates thereafter, while scenario
uncertainty is relatively small throughout the 21st century77. Thus,
it is hard to determine the ENSO changes at GW1.5 and GW2 due
to large internal ENSO variability on decadal time scales in the
near-term future.

Climate changes and climate extremes
Mean temperature and extreme temperature. The surface means
the temperature in East Asia will continue to rise under different
scenarios in the future based on CMIP6 models (high confidence)
(Figs. 1a and 4a–c). At both GW1.5 and GW2, warming in East Asia
will be more significant than the global mean22,25,78. The results of
the CESM low-warming experiment show the East Asian
temperature would increase by approximately 1.4 and 2 °C at
GW1.5 and GW2, and larger warming magnitudes would occur in
the southern, northwestern, and northeastern regions of China,
parts of Mongolia, the Korean Peninsula, and Japan than in other
regions78. Similar results can be obtained from the CMIP5 and
CMIP6 models. Multi-model ensemble mean from the CMIP5
models indicated the mean surface temperature in China will be
increased by 1.82 °C/1.83 °C at GW1.5 and 2.60 °C/2.52 °C at GW2
under RCP4.5/8.5, respectively. Regionally, there are similar spatial
patterns at both GW1.5 and GW2 under different RCP scenarios,
and the projected changes in northern China, northwestern China,
southern China, and the Tibetan Plateau being particularly
sensitive to the additional GW0.579. The spatial pattern of seasonal
warming in China at GW1.5 is similar to the annual mean80. Recent
studies show the annual surface mean temperature in China is
increased by 1.49 and 2.21 °C (relative to 1986–2005) at GW1.5 and
GW2 in CMIP6 models under the SSP5-8.5 scenario, while the
counterpart in CMIP5 models under RCP8.5 is 1.20 and 1.93 °C,
respectively, and the changes of annual surface mean tempera-
ture in China are generally larger in the new generation of models
and scenarios3. However, there are projection uncertainties that
remain at GW1.5 and GW2, which can also be reflected in signal-
to-noise. It is shown that the Southern China/Tibetan Plateau has
the smallest/largest signal-to-noise ratio at GW1.5 and GW2, and
both the model and internal variability uncertainty are the main
sources of uncertainties over China at GW1.5 under RCP4.5 and

Fig. 3 Schematic diagrams illustrating the changes of El Niño associated with future warming and its effects on the East Asian climate.
a El Niño impact on the East Asian climate in the Pre-industrial and b for the warmer climate. AC and C represent anticyclone and cyclone,
respectively. This figure is adapted from Fig. 5 of Yan et al. (2020).
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RCP8.5 scenario, while both the model and scenario uncertainty
contribute more at GW279.
In terms of extreme temperature events, global warming will

significantly increase extreme high temperatures, including east-
ern China, the Korean Peninsula, and Japan will see more intense,
more frequent, and longer-lasting extreme high-temperature
events78, but decrease the extremely low temperature at both
GW1.5 and GW2 (high confidence) (Fig. 4d–i), and Table 2
summarizes projected extreme temperature at GW1.5/2 in China.
At GW1.5/GW2 relative to 1986–2005, the temperatures of the
hottest day and coldest night are projected to increase about
1.0 °C/1.6 °C and 1.1 °C/1.8 °C, whereas warm days and warm spell
duration will increase about 7.5%/13.8% and by 15/30 days,

respectively (Fig. 4j–l)25. The spatial distribution of changes in
extreme temperature is generally consistent between CMIP5 and
CMIP6 models but with significantly stronger increases in CMIP6
models in northeastern and northwestern China for the hottest
days, and southern China for the coldest nights3. An additional
GW0.5 is projected to have substantial impacts on the extreme
temperatures in China. As shown in the results of the CESM low-
warming experiment, Compared to the higher scenarios GW2,
GW1.5 will help avoid 35–46% of the increases in extreme high
temperature in terms of intensity, frequency, and duration in East
Asia with maximal avoidance values (37–49%) occurring in
Mongolia78. CMIP6 models indicate about 36–87% of occurrences
of extremely high temperature will be avoided in China81, and

Fig. 4 Mean temperature change (Tav) and three extreme temperature indices (TXx, TNn, and TX90p) changes in China at GW1.5 and
GW2.0. The left-hand column shows the changes at GW1.5 while the middle-hand column shows GW2.0, and the right-hand column shows
additional changes due to the additional 0.5 °C warming (GW2 as compared with GW1.5). Results are based on the multi-model ensemble
mean (MMEM) of Coupled Model Intercomparison Project Phase 6 (CMIP6) models relative to 1995–2014. Areas with significant changes
above 95% confidence are marked with black dots.
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similar results can also be found in CMIP5 models25. Therefore, it is
beneficial for East Asia to limit the warming at GW1.5.
In addition to intensity, global warming will also affect the

probability of extreme temperature events. It is found that the
frequency, duration, and intensity of extreme warm events in
China under RCP4.5 and RCP8.5 at GW2 will increase82. Extreme
heatwave events with a recurrence interval of 5 years under the
current climate will recur every 2 years at GW1.5, while the severity
of annual heatwaves at GW2 will be higher than that recorded in
the summer of 201383. Moreover, the risks of the current 1-in-100-
year hottest day and hottest night occurring are projected to
increase by 14.4/23.3 and 31.4/50.6 times in China at GW1.5/2,
respectively. The greatest increase in the frequency of extremely
high temperatures is over the Tibetan Plateau, northwestern
China, and south of the Yangtze River84. In terms of stabilized
global warming scenario, an extreme hot event with a return
period of 100 years in the present climate becomes an event
occurring every 4.79 (GW1.5) and 1.56 years (GW2), an extreme
cold event with a return period of 10 years becomes event
occurring every 67 years at GW1.5 and is unlikely to occur under
GW285. Additionally, since East Asia is one of the most densely
populated regions in the world, enhanced extreme temperatures
associated with global warming would expose more people to
danger. It is believed that if global warming is restricted well
below 2 °C, the avoided impacts in population exposure are
prominent for most regions in East Asia86,87.

Mean precipitation and extreme precipitation. Based on CMIP6
models, precipitation in East Asia will increase in the future (high

confidence) (Fig. 5a–c). At GW1.5/GW2 relative to 1975–2005, the
global mean precipitation will increase by 1.7–1.9%/2.5–2.7%,
while the regional mean precipitation in China will increase by
2.1–2.9%/3.2–5.3%, suggesting that regional precipitation changes
are larger than the global mean88. There are regional differences
in the projected change of annual mean precipitation, and the
percentage change tends to increase from southeast to northwest
at GW1.580. The percentage change of precipitation in each
season is similar to the annual average, which increases in the
north of China but decreases in most parts of southern China28.
Changes in summer precipitation show intra-seasonal contrasts,
and are projected to decrease over 30-40°N in June and over the
Meiyu belt in July, while on the other hand August rainfall is
projected to increase in the high latitudes of East Asia89. Winter
precipitation is also projected to increase in East Asia at GW1.5,
especially in the northern part of the continent where positive
anomalies exceed 12% and such a pattern remains evident at
GW2 but with a stronger magnitude65. On average, winter
precipitation is projected to increase by 4.9% at GW1.5, and the
additional GW0.5 for GW2 induces a further 4% increase in the
east Asian continent65. However, the regional average signal-to-
noise ratios of annual and seasonal precipitation changes at
GW1.5 are only 0.1 and 0.01–0.280, indicating that the model
projection precipitation with great uncertainty, which may be
related to the poor ability of global climate models to simulate the
East Asian monsoon precipitation90.
The intensity and frequency of extreme precipitation events are

projected to increase over most of East Asia at GW1.5 and GW2
(high confidence) (Fig. 5). Table 2 summarizes the changes in

Table 2. Commonly used indices of climate extremes for temperature and precipitation and their predicted changes in China at GW1.5 and GW2.

Index Definition UNIT GW1.5 GW2 Reference period

Temperature extreme indices

Frost days (FD) Annual count when TN (daily minimum) <0 °C day −7 −12 1986–200525

Summer days (SU) Annual count when TX (daily maximum) >25 °C day +10 +16

Hottest day (TXx) Monthly maximum value of daily maximum temperature °C +1 +1.1

Coldest night (TNn) Monthly minimum value of daily minimum temperature °C +1.6 +1.8

Cool nights (TN10p) Percentage of days when TN < 10th percentile % −4 −6.8

Cool days (TX10p) Percentage of days when TX < 10th percentile % −4 −6.8

Warm nights (TN90p) Percentage of days when TN > 90th percentile % +9.5 +17.6

Warm days (TX90p) Percentage of days when TX > 90th percentile % +7.5 +13.8

Warm spell duration
indicator (WSDI)

Annual count of days with at least 6 consecutive days when
TX > 90th percentile

day +15 +30

Cold spell duration
indicator (CSDI)

Annual count of days with at least 6 consecutive days when
TN < 10th percentile

day ~0 ~0

Precipitation extreme indices

Max 5-day precipitation
(RX5day)

Monthly maximum consecutive 5-day precipitation mm +3.98% +7.63% 1986–200592

Simple daily intensity
index (SDII)

Annual total precipitation divided by the number of wet days
(defined as PRCP >= 1.0 mm) in the year

mm/
day

+7% +11% 1986–200591

Number of heavy precipitation
days (R25mm)

Annual count of days when PRCP >= 25mm day +8.14%
(+0.26)

+14.08%
(+0.45)

1971–200094

Number of very heavy
precipitation days (R50mm)

Annual count of days when PRCP >= 50mm day +25.81%
(+0.11)

+39.89%
(+0.17)

1971–200094

Consecutive dry days (CDD) Maximum number of consecutive days with RR < 1mm day −2 −3.4 1985–20053

Very wet days
precipitation(R95p)

Annual total PRCP when RR > 95th percentile mm +19.41%
(+30.41)

+34.42%
(+42)

1971–200094

Extremely wet days
precipitation (R99p)

Annual total PRCP when RR > 99th percentile mm +69.14%
(+30.51)

+86.89%
(+38.34)

1971–200094

Annual total wet-day
precipitation (PRCPTOT)

Annual total PRCP in wet days (RR >= 1mm) mm +3.89% +8.23% 1986–200592
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projected precipitation extremes at GW1.5/2. At GW1.5/GW2
relative to 1986–2005, the regional average extreme precipitation
intensity in China increases by 6%/11%, respectively, and the extra
GW0.5 increases extreme precipitation intensity by 4%91. The
recurrence interval of a typical 100-year event reduces to 63/42
years at GW1.5/2, respectively91. The maximum 5-day precipitation
total increases by 3.98% (7.63%), precipitation on very wet days
increases by 19.41% (34.42%), and the annual total wet-day
precipitation increases by 3.89% (8.23%) at GW1.5 (GW2) in China
suggesting that the extra GW0.5 can double the increase in
precipitation extremes92. However, there are regional differences.
The maximum 5-day precipitation total is expected to increase by

approximately 8.9% in northwestern China, 3.8% in northern
China, and 2.3% in southern China at the extra GW0.593. At GW1.5/
2 related to 1971–2000, precipitation on extremely wet days is
projected to increase by 69%/87%, and the heavy precipitation
days will increase by 25%/40%94. As for the difference between
CMIP6 and CMIP5 models, the future response of extreme
precipitation to warming in CMIP6 models is larger than in CMIP5
models. With respect to 1985–2005, precipitation on very wet days
will increase by 5.3%/8.6%/16.3% at GW1.5/2/3 in CMIP6 models
under SSP5–8.5, while the counterpart figures for CMIP5 models
under RCP8.5 are only 4.4%/7%/12.8%3. Meanwhile, on the south
bank of the Yangtze River and for most regions around 40°N,

Fig. 5 Annual total wet-day precipitation change (PRCPTOT) and three extreme precipitation indices (RX1day, R95p, and CDD) change in
China at GW1.5 and GW2.0. The left-hand column shows the changes at GW1.5 while the middle-hand column shows GW2.0, and the right-
hand column shows additional changes due to the additional 0.5 °C warming (GW2 as compared with GW1.5). Results are based on the multi-
model ensemble mean (MMEM) of Coupled Model Intercomparison Project Phase 6 (CMIP6) models relative to 1995–2014. Areas with
significant changes above 95% confidence are marked with black dots.
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CMIP6 models show even higher increases for precipitation
recorded on wet or very wet days3. Although the intensity and
frequency of extreme precipitation events are both projected to
increase in most areas in East Asia at GW1.5 and GW2, avoiding
the additional GW0.5 helps reduce the risks of extreme precipita-
tion frequency and intensity by 26–31%, and the greatest
reductions are found in Japan with 38–54%49. Meanwhile, the
population exposure would increase more rapidly at GW2
compared to GW1.5, especially under the RCP8.5 scenarios95.
Realizing the GW1.5 will robustly reduce the areal and population
exposures to dangerous extreme precipitation events for popu-
lous East Asia (reduce 35%/29% for RX5day events that exceed the
baseline 10-year/20-year return values)46.

Droughts. Drought is an important natural hazard and its risk and
severity are expected to increase in a warmer climate, but the
projected drought changes depending on region, season, and
drought metrics96,97. Based on both Palmer Drought Severity
Index (PDSI) and the Standardized Precipitation Evapotranspira-
tion Index (SPEI) which are widely used drought indices, drought
risks in China are projected to increase in many strong warming
scenarios, probably attributable to an enhancement in evapo-
transpiration98,99. Projected changes in PDSI and SPEI show that
the area of drought in northwestern China will increase100 and
that most areas of southern China will be drier in a warming
future98. The future drought frequency in CMIP6 models is
projected to be less serious than that in CMIP5 models101.
Drought frequency is expected to increase by 28 ± 4% at GW1.5
based on CMIP5 models, but to increase by only 12 ± 4% based on
CMIP6 models101. This is due to higher precipitation and potential
evapotranspiration in CMIP5 models than in CMIP6 models.
Furthermore, the projection of drought is also dependent on
future emission pathways. Based on PDSI, less/more drought is
projected under a low/high emission pathway for the same
warming level in East Asia at GW1.5102, which is likely related to
contrasting precipitation responses to regional aerosol loading99.
Compared to GW1.5, the 0.5 °C additional warming at GW2 will
account for approximately 9% of the increase in the drought
occurrence in China and ~8% of extreme droughts103. Thus, the
additional warming would lead to a significantly higher drought
impacts104–106. It is shown that the population exposure to
extreme droughts is projected to increase by about 17% due to
the 0.5 °C additional warming103, and the drought loss caused at
GW2 would increase by tens of billions of dollars compared with
that at GW1.598.

Local and regional changes and hotspots
Importance of local and regional climate change. Although
consequences of climate change vary with regions, climate
response at the local and regional levels plays a critical role in
regional climate variability1. This is because, in addition to global
forcings (e.g., greenhouse gases), regional climate change is also
driven by regional forcings, including aerosol emissions, land use,
and land cover changes, as well as changing synoptic climatology
which drives regional climate variability1. For example, cooling
effects of heavy aerosol load dominate historical temperature
change in central-eastern China, in some cases masking or even
reversing warming trends caused by greenhouse gases107. More-
over, regional climate change is also modulated by regional
physical processes such as snow/ice-albedo feedback and soil
moisture–temperature–precipitation feedback. For instance, the
Tibetan Plateau shows stronger temperature responses to GW1.5
and GW2 than surrounding regions, due in part to local snow/ice-
albedo feedback108–110. More importantly, predicting regional
climate change is highly relevant to policy-making related to
regional climate mitigation and adaptation. Thus, more attention
is necessary to downscale local and regional climate changes from

predictions made at a broader scale. It is often local changes that
have disproportionate impacts on humans and ecosystems.

Approaches on local and regional climate projection. Both general
circulation models (GCMs) and regional climate models (RCMs)
have shortcomings in attempting to simulate the fine spatial
structure of climate change, for example, both GCMs and RCMs
generally fail to reproduce mean and extreme precipitation at the
local level compared with observations111. Dynamical and
statistical downscaling techniques are important approaches to
improve model simulations, and statistical downscaling can
achieve more realistic local and regional climate change projec-
tions by transforming outputs and simulations of both GCMs and
RCMs to the local scale, whereas dynamic downscaling is often
carried out using RCMs which have a finer resolution and consider
more local effects than the GCMs1.
A comparison of statistical and dynamical downscaling of

extreme temperature and precipitation events in China at
GW1.5 and GW2 found the results are similar and method-
independent112. Recent studies show that statistical downscaling
approaches such as a non-homogeneous hidden Markov model113

and self-organizing maps114 can add values to GCMs in simulating
climate extremes and show good success in simulating local
probability distribution function and spatial distribution of climate
extremes in eastern China.

Identification of hotspots and sensitive regions. Identifying both
climate change “hotspots” and sensitive regions of climate
change is critical for effective mitigation and adaptation activities.
Climate change hotspots can be identified by either (a) the
magnitude of physical climate change, (b) the vulnerability to
climate change impacts, or (c) both (a) and (b). There are many
methods designed to identify the most responsive regions to
climate change. The most widely used method is focused on
constructing metrics quantifying aggregate (positive and nega-
tive) changes in several variables. Different variables may have
different scales and units. For example, a Regional Climate
Change Index (RCCI) was developed based on regional mean
precipitation change, mean surface air temperature change, and
changes in the interannual variability of precipitation and
temperature. These changes were combined to quantify the
aggregate response in multi-dimensional climate space between
the present period and the future simulation115. Other aggrega-
tions of multi-dimensional climate change include (a) standard
Euclidean distance which measures the distance traveled in
multivariable climate space116, (b) summing the number of
seasons exceeding the different temperature and precipitation
thresholds, and (c) measures of extreme seasonal temperature
and precipitation. Evaluating the changes in future risk varied
strongly by geographical location117,118.
There is increasing interest in identifying hotspots and sensitive

regions in East Asia, and a desire to understand how these may
vary for different levels of global warming. The Tibetan Plateau,
north-western China (arid and semi-arid region), the region south
of the Yangtze River (including Jianghuai), and urban areas
have been variously identified as regions with the strongest
responses to global warming119. They are also exposed to greater
risk than other regions suffering from climate extremes84. The
subsequent section discusses the enhanced changes experienced
in such regions.

Climate change and associated physical mechanisms in hotspot
regions. The Tibetan Plateau contains the largest cryospheric
region outside the polar regions and is undergoing cryospheric
change and rapid warming largely in phase with global trends but
at a higher magnitude108,120. Both GCMs and RCMs consistently
project an amplified increase in mean temperature over the
Tibetan Plateau at GW1.5 and GW2, which is even more obvious
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for temperature extremes, such as the hottest day representing the
annual maximum value of daily maximum temperature109. Robust
elevation-dependent warming over the Tibetan Plateau at both
GW1.5 and GW2 is projected, and greater amplification appears in
the higher GW2 scenario. Understanding such amplification is
essential for the management of the sustainability of water
resources over the Tibetan Plateau110. The amplified warming
and elevation-dependent warming over the Tibetan Plateau can be
attributed to multiple physical processes121,122 (Fig. 6), mainly
snow/ice-albedo feedback and cloud–water vapor–radiation inter-
actions121, supplemented by other local forcing and feedback
processes (e.g., deposition/transport of black carbon)108,110,120. At
moderate to high elevations, especially between 3500 and 4000m
where snow cover is rapidly decreasing, snow/ice-albedo feedback
and changes in solar radiation receipt greatly contribute to
warming over the Tibetan Plateau110.
North-western China is characterized by arid and semi-arid

climates, and semi-arid regions in China are projected to
continuously expand in the 21st century123, which will increase
the risk of land degradation and desertification in the future. This
vulnerability is a feature at both GW1.5 and GW214,124, North-
western China shows the strongest increase in both drought area
and drought intensities in the future98, and future temperature
extremes in North-western China show strong changes at GW1.5

and GW2. The enhanced responses of the temperature in this
region are mainly attributed to strong sensible heating and
suppressed evapotranspiration as a result of limited soil moisture
and vegetation14. The additional GW0.5 in North-western China is
expected to increase the number of summer days, warm spell
duration, warm days, and warm nights by up to 15 days, 30 days,
10% and 15%, respectively124. In terms of precipitation, north-
western China will experience the largest magnitude of ~3.2%
(−4.7–12.4%) from GW1.5 to GW2125. Meanwhile, arid and semi-
arid regions are projected to experience threefold higher risks of
extreme precipitation due to the additional GW0.5126. Enhanced
surface warming in North-western China can be explained by
surface and atmospheric processes controlled by low soil moisture
and sparse vegetation in this region14. Other mechanisms such as
dust–cloud interactions and large-scale atmosphere–ocean inter-
actions, also tend to amplify/dampen climate change in North-
western China14,124.
The Jianghuai region in eastern China which covers most of the

plain between the Yangtze and Huai rivers (e.g. Anhui and Jiangsu
provinces) is strongly influenced by the Asian monsoon, and
because it contains a high population and many cities (e.g.
Nanjing, Hefei) it suffers frequent extreme climate events causing
serious loss of life and property. For precipitation and precipita-
tion extremes, the future projection of precipitation over this
region based on the nonhomogeneous hidden Markov model
and self-organizing map statistical downscaling methods shows
that precipitation increases over the eastern Jianghuai region
while it decreases over western parts of the Jianghuai region at
GW1.5. Any enhancement of precipitation intensity is more
significant in the southern and western parts of the region at
GW2. Meanwhile, GW0.5 (GW2–GW1.5) increases the number of
heavy precipitation days by 12.1% (10–13%) over eastern regions
but decreases it by 3.7% (3.3–4.3%) over the western region113,127.
In the Jianghuai region as a whole, changes in future precipitation
are mainly attributable to the variable occurrence of different
synoptic regimes, and the overall intensification of precipitation
in the region in warmer simulations is linked to a rise in the
occurrence of a wet regime, which brings the South Asia High
eastward and pushes the WNPSH westwards114. In future studies,
more experiments specifically designed at GW1.5 and GW2 are
needed to better understand future changes in climate extremes
in the Jianghuai region.
Urban areas (including urban agglomerations) contain a high

proportion of the population and are increasingly vulnerable to
the risks of extreme weather and climate events128. The Yangtze
River Delta (YRD), Beijing–Tianjin–Hebei region (BTH), and the
Pearl River Delta (PRD) have been developed as three world-class
urban agglomerations, and this means that more research on
their vulnerability to climate change is required. Based on
downscaled CMIP5 simulations129, the additional half degree of
warming (GW2 compared with GW1.5) relative to 1986–2005 will
lead to an increased risk for China’s urban agglomerations
concerning extreme maximum temperature, total precipitation on
very wet days and maximum 5-day precipitation totals by 4.1, 1.8,
and 1.0 times, respectively. Both GW1.5 and GW2 show the largest
increases in extreme risks in the YRD region129. However,
compared to GW2, the occurrence probability of historically
unprecedented compound heatwaves at GW1.5 will reduce by
more than half in both BTH and YRD130, and the increasing rate of
future compound heatwave days in PRD will be much larger (for
GW2 and GW1.5) in comparison to BTH and YRD. Dynamical
downscaling results show that BTH, YRD, and PRD all experience a
more significant increase in summertime extreme maximum
temperature than in mean temperature131. The increase rate in
intensity, duration, and frequency of heatwaves in BTH, YRD, and
PRD increases by more than 50%/70% at GW1.5/2, respectively,
and YRD will receive the strongest increase in heatwave risk.
This is in part due to strong but localized warming effects

Fig. 6 Schematic figure of possible mechanisms responsible for
robust elevation-dependent warming over the Tibetan Plateau at
GW1.5 and GW2. SR and LR indicate shortwave radiation and
longwave radiation fluxes, respectively. It is adapted from Fig. 10 of
You et al. (2019).
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produced by larger concentrated urban aggregations131. The
combined effects of increasing climate extremes and localized
urbanization effects mean that these urban agglomerations are
particularly sensitive to future warming and require much more
investigation in this regard.

Scientific highlights and future research prospects
Divergent responses to GW1.5 and GW2 for transient vs. stabilized
scenarios. The Paris agreement attempted to limit global
warming to the 1.5/2 °C target with quasi-stabilized scenarios in
this century. For a long time, there was a lack of specific GW1.5/2
coupled model simulations, and studies investigated the climate
impacts of GW1.5/2 as a transient phase in CMIP5/6 model
simulations which eventually warm much more than this1,7. There
was an implicit assumption that there would be similar climate
impacts for transient warming of 1.5/2 °C as for a stabilized GW1.5
or GW2 scenario. However, this hypothesis has been challenged
by recent studies that show remarkable differences in climate
response between transient and stabilized scenarios at the same
temperature threshold132,133.
As different carbon emission strategies are applied, transient

global warming tends to produce greater Northern Hemisphere
(NH)–Southern Hemisphere (SH) thermal contrast, greater
land–ocean temperature difference, weaker warming in high-
latitude oceans, higher sea level rise, and less sea ice coverage
compared to stabilized scenarios132,134. Differences in ocean heat
storage and transport are critical to explaining the distinct climate
differences between the transient versus stabilized scenarios.
Ocean and atmospheric heat transport are both symmetric about
the equator under the transient scenario135. In contrast, heat
transport shows a significant difference between the two hemi-
spheres in the stabilized scenario135. The divergent response of
ocean heat transport between the two scenarios is caused by
distinct differences in heat storage in the Southern Ocean and in
the strength of the Atlantic Meridional Overturning Circulation135.
Based on the comparison of results from the transient (CESM
Large Ensemble, CESM-LE) experiment versus the quasi-
equilibrium (CESM Low Warming, CESM-LW) experiment at
GW1.5, CESM-LW exhibits the most warming in the ocean at
GW1.5 at the end of the 21st century, while in the transient
simulations of CESM-LE the land warms up more quickly to
achieve global GW1.5 by the 2020s119. The resulting imbalance in
warming between the northern and southern hemispheres and
the focus of warming over land in the transient scenario leads
most of the world’s population to suffer a more extreme local
climate and more extreme hot events in the transient model (in
comparison with the stabilized scenario), especially in summer132.
Such imbalanced temperature patterns accelerate across-
equatorial moisture transport, thus strengthening the boreal
summer Hadley circulation and Inter-tropical Convergence Zone,
as well as increasing moisture convergence in the NH land
monsoon region, resulting in a more vigorous NH land monsoon
under the transient scenario134.
On a regional scale, significant differences in drought intensity,

dryland coverage, and temperature response are also detected
between transient and stabilized global warming scenarios136,137.
In East Asia, precipitation increases more significantly in south-
eastern China in the stabilized scenario compared with the
transient one (Fig. 7). The difference is primarily attributable to
dynamic effects related to circulation changes and is again driven
by differences in the land–ocean thermal contrast in East Asia
between the two scenarios. The stabilized warming scenario
favors larger ocean warming and smaller land warming. Enhanced
warming in the sea to the south of China leads to an enhanced
meridional temperature gradient and ultimately speeds up the jet
stream in East Asia. The formation of ageostrophic wind at the
entrance of the accelerated jet (upstream) strengthens ascending

motion and therefore precipitation along the coast of Asia from
southeastern China to India138. Additionally enhanced heating
over the land mass of India further induces a Kelvin-wave
response with the formation of an anomalous anticyclone
contributing to a westward shift and intensification of the WNPSH.
Southerly winds on the western flank of the anticyclone transport
moisture northward from tropical oceans, and strengthen
precipitation in south-eastern China138. In addition, contrasting
responses of regional-scale hydrology may create differences in
the biosphere and land–atmosphere interaction between transi-
ent and stabilized scenarios133,137. Thus, multiple lines of evidence
confirm that the responses of the earth’s climate could be
different in transient versus stabilized scenarios and that this
needs to be considered when examining the global/regional
impacts of GW1.5/2.

Sources of uncertainties in climate projections. There are three
different sources of uncertainty for future projections using multi-
model approaches: (1) uncertainty due to the future scenario of
external forcings (scenario uncertainty), (2) uncertainty from
climate sensitivity to external forcings (model uncertainty), and
(3) natural climate variability (internal uncertainty)5,139,140. As
shown in Fig. 8, model uncertainty and scenario uncertainty are
the major sources of future uncertainties in temperature projec-
tions for CMIP6 model simulations across China throughout the
21st century. The contribution to the total uncertainty of internal
variability and model uncertainty both decrease over time while
that of scenario uncertainty increases, which can be explained by
the increasing importance of anthropogenic forcing as time
progresses. Model spread is the largest contributor to overall
uncertainty at GW1.5 and GW2, and accounts for 62.18%/61.08%
and 56.52%/53.80% of the total uncertainty under the SSP2–4.5/
SSP5–8.5 scenario. Internal variability accounts for 25.21%/23.60%
and 18.35%/15.95% of the total at GW1.5 and GW2, respectively.
Scenario uncertainty is the smallest contributor, only accounting
for 12.62%/15.32% and 25.13%/30.25% respectively. Similar results
are found in CMIP5 models according to Wu et al. (2021), which
indicated the largest total uncertainty is found over the Tibetan
Plateau and in southern China, dominated by the pattern of model
uncertainty. However, model uncertainty decreases slightly in the
south of China at GW2 compared with GW1.5. Internal variability
and scenario uncertainty are consistently small in the four sub-
regions of China. Thus, reliable projection of surface mean
temperature in China at GW1.5 mainly depends on reducing
model uncertainty.
In terms of the temporal evolution of the contribution of the

three uncertainties to the total uncertainty for precipitation,
internal uncertainty is projected to decrease with time, while
model uncertainty and scenario uncertainty are projected to
increase with time. At GW1.5, internal uncertainty is the
dominant source (>50% of total) for annual total wet-day
precipitation and precipitation on very wet days. Uncertainty
for consecutive dry days is an exception with model
uncertainty accounting for more than 50% of the total
uncertainty at GW1.5141. Projections of the East Asian monsoon
described above (see the section “East Asian monsoon
circulations”) demonstrate that large inter-model differences
were found at GW1.5 compared to GW2, and this shows that
model uncertainty plays a dominant role in the projection of
the EASM at GW1.5141. Overall more work is required to assess
the source and magnitude of uncertainties in climate projec-
tions at GW1.5 and GW2, and more efforts should be put into
understanding internal climate variability on decadal time
scales as part of future climate projection. In addition, it needs
to be clarified that the uncertainty analysis method above only
focuses on the three sources of uncertainty in transient
simulations, and further research is needed on the estimated
uncertainty of stabilized simulations.
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Methods required to reduce future projection uncertainty. Climate
model uncertainty is one of the important sources of uncertainty
for future projection of regional climate, and it is of great necessity
to reduce it. Many approaches can be used including climate
model evaluation, multi-model ensembles (MMEs), GCM bias
correction, emergent constraints, and machine learning. Although
no climate model performs best in all aspects, the “best model” is
usually determined by a multi-variable integrated evaluation
method, which can summarize the overall performance of each
climate model in simulating multiple variables142. One can
evaluate model performance in terms of multi-variate climatolo-
gical means and interannual variability143. Moreover, one can
select a subset of climate models to reduce the uncertainty in
climate projections, based on the relationship of each model’s
ability to correctly simulate historical and future climate144.
The selection of an MME based on climate model evaluation is

regarded as an important method to reduce model uncertainty.

A weighted MME based on the performance of individual models in
simulating the climatology, and internal variability of target
variables, is commonly used145–147. Many weighting schemes have
been proposed in recent years, including those based on the
reliability of the ensemble average, the rank weighting method, and
a weighting scheme jointly considering model performance and
independence148. A further improvement takes into account the
area weighting, the combination of multiple scalar and vector fields,
and the use of a normalized multi-variable integrated skill score149.
GCM bias corrections, together with MMEs, have great potential to
improve dynamical downscaling simulations and reduce uncertainty
in future climate projections150. Therefore, many GCM bias
correction methods have been developed to reduce the impact of
GCM bias on dynamical downscaling simulations151. These GCM bias
correction methods include, but are not limited to, GCM mean bias
correction, mean and variance bias correction152,153, quantile-
quantile bias correction154, trend-preserving bias correction, nested

Fig. 7 The significant differences of precipitation at GW1.5 for the whole of China and especially for Southeast China under the transient
scenario and stabilized scenario. Relative changes of summer (JJA) precipitation (relative to 1986–2005, considered as present-day climate) at
GW1.5 (relative to preindustrial), obtained with a CESM low-warming simulations (noted as CESM_LW, stabilized scenario), b CESM large-
ensemble simulations (noted as CESM_LENS, transient scenario), and c CMIP5 models in their ensemble-mean form (noted as CMIP5_MME,
transient scenario). The red box indicates south-eastern China (target domain 22–33°N, 105–122°E, land areas). d Percentage change in
regional mean precipitation in China versus south-eastern China. Error bars denote the range of the ensemble members, and the bar heights
are the median of the ensemble. e Schematic diagram showing mechanisms that increase JJA total precipitation over south-eastern China at
GW1.5 under a stabilized warming scenario compared to a transient scenario. Red (blue) contours indicate positive (negative) surface
temperature anomalies. Purple and black dotted arrows represent the enhanced Walker circulation and westerly jet, respectively. Green
curved arrows represent moisture transport. The solid circle with arrows represents the anticyclone over the western North Pacific (WNPSH).
This figure is adapted from Figs. 1 and 10 of Jiang et al. (2021).
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bias correction155, and MME-based GCM bias correction156. Together
such studies suggest that GCM bias correction can significantly
improve dynamical downscaling simulations compared with a
traditional dynamical downscaling approach150,152.
An emergent constraint method is a new approach to reducing

future uncertainty and has received more recent attention157.

Numerous emergent constraints have been identified, including
studies of equilibrium climate sensitivity158, cloud feedback159,
carbon cycle feedback160, the hydrological cycle161, and Arctic
warming162. The proposed observable constraints involve historical
trends, seasonal cycles, interannual variability, and climatological
biases. Moreover, most current research generally focuses on global

Fig. 8 The uncertainties for CMIP6 near-surface temperature projections in China. a Evolution of total uncertainty (black line) and the
contribution of individual sources to the total uncertainty. The blue line corresponds to model uncertainty, green line to scenario uncertainty,
and red line to internal variability. The long/short dashed vertical lines indicate when mean global warming reaches 1.5 °C/2 °C relative to pre-
industrial (1850–1900) under the SSP2–4.5 (light gray) and SSP5–8.5 scenarios (dark gray). b Fraction of total variance accounted for by each
type of uncertainty for near-surface mean predictions in China. c Spatial patterns of the uncertainty for internal variability (first column), model
uncertainty (second column) and scenario uncertainty (third column), and the total uncertainty (fourth column) in China at GW1.5 and GW2
relative to pre-industrial (1850–1900) under the SSP2–4.5 and SSP5–8.5 scenarios. This is adapted from Figs. 9 and 10 of You et al. (2021).
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or hemispheric scale issues and pays less attention to regional scale
or high-impact climate events.
All the above methods including climate model evaluation, MMEs,

emergent constraint, and GCM bias correction rely on the
performance of individual models and the concept of quantifying
specific relationships or indices (usually through linear regression),
potentially neglecting useful information. Machine learning is a
useful tool to extract more information from multi-model data to
reduce model uncertainty163. Since this approach is still in its
infancy, a lot more work is required to realize its potential.

OUTLOOK AND SUMMARY
This study has focused on the “regional response and mechan-
isms, fine spatial structure, future projections and prospects for
the East Asian climate system at GW1.5 and GW2”. Firstly, this
study clarifies the characteristics and mechanisms of the climatic
changes projected in East Asia at GW1.5 and GW2, including the
workings of the East Asian monsoon and ENSO. Secondly, it
reveals the details of the East Asian climate response at GW1.5 and
GW2, with particular emphasis on the projection of changes in
extreme events. Third, it summarizes the finer local and regional
climate changes and physical mechanisms which lead to “hot-
spots” of warming in defined locations. Finally, it highlights issues
worthy of future research, discusses how to reduce the uncertainty
in future projections, and puts forward a prospect for planning
effective carbon emission mitigation paths.
There are four main conclusions:

(1) At both GW1.5 and GW2, the intensity and variability of the
EASM will are expected to increase slightly. It is also
projected that water vapor transport in East Asia will
enhance, and the variability and intensity of the WNPSH will
increase significantly. An intensified and southward shift of
the summertime East Asian jet is also projected. The
intensity of the EAWM is projected to slightly reduce but
with high uncertainty since there are contradictory signals
and differences between GW1.5 and GW2. At GW1.5, the
winter Aleutian low will be significantly deepened but the
Siberian high will be weakened, and the East Asian trough
will not change significantly. However, the East Asian trough
is projected to weaken significantly, and the westerly jet
stream will move northward and be strengthened at GW2.
The frequency of interannual signals such as ENSO may
increase in a warming world but with great uncertainty, and
the influence of ENSO on the interannual variability of East
Asian climate is dependent on ENSO phase.

(2) Future warming and precipitation changes in East Asia are
expected to be greater than the global mean, and extreme
climate events are projected to become more frequent.
China’s surface mean temperature will increase by about
1.7–2 °C at GW1.5, and there is further elevation-dependent
temperature amplification over the Tibetan Plateau. Both
the intensity and frequency of extreme temperatures will
increase significantly, but the extreme cold will decrease.
The regional average precipitation will increase by about
2.1–5.3% under RCP4.5 and RCP8.5, but there are large
regional differences, resulting in the transformation of the
precipitation pattern from the current triple mode to a
dipole mode at GW1.5 and GW2. Extreme precipitation
events are also expected to increase at GW1.5 and GW2, and
the extra GW0.5 of warming will have a great additional
impact. It is expected that drought in East Asia will also
increase in the future, but this is dependent on the drought
index and scenarios.

(3) Local and regional climate changes play an important role in
climate variability, and the responses of various regional
climates and the controlling mechanisms can be different

due to different regional forcings. Four main “hotspots” of
warming in East Asia are identified, including the high-
elevation Tibetan Plateau, arid and semi-arid north-western
China, the Jianghuai region, and urban areas as a whole.
Under the influence of snow-ice albedo feedback and water
vapor changes, the Tibetan Plateau is expected to have
more intense warming than other regions in East Asia and is
projected to form the important feature of elevation-
dependent warming. Due to limited soil moisture, insuffi-
cient evapotranspiration, and vegetation, changes in extre-
mely high temperatures and drought in north-western
China (arid and semi-arid region) are strong at GW1.5 and
GW2. The response to extreme precipitation events in the
Jianghuai region is also very sensitive to global warming,
and closely related to changes in the frequency of different
weather patterns in this region. Finally, due to large-scale
urbanization, urban areas including BTH, YRD, and PRD are
particularly vulnerable to changes in climate extremes,
partly a result of changes in the underlying surface. The
urban fabric has a more prominent warming response due
to the urban heat island effect and can increase flooding risk
in high precipitation events.

(4) Although transient and stabilized warming scenarios may
reach similar warming levels in the future, ocean heat
transport, monsoon precipitation, and changes in extreme
weather events show different responses in the two
warming pathways. Thus, this study highlights the necessity
to understand such differences between climate change at
transient and stabilized GW1.5 and GW2, in order to plan
effective mitigation and adaptation activities. Meanwhile,
there are still great uncertainties in projections of future East
Asian climate change, and model uncertainty contributes a
large amount to the overall uncertainty. Several methods to
reduce model uncertainty are discussed, such as MME based
on model evaluation, GCM bias correction, emergent
constraint, and machine learning. However, these methods
also have shortcomings, and more verification analyses are
needed in the future.
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