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The concept of precision oncology involves the prescription of
therapies that target the molecular driver alterations of an
individual patient’s tumor. This treatment paradigm has been
accelerated in recent years through increasing integration of
molecular profiling approaches into mainstream clinical oncol-
ogy, and the approval of a variety of molecularly targeted agents
that have improved the clinical outcomes of patients across
multiple cancer types. Targeted therapies such as trastuzumab or
vemurafenib have become the standards of care for patients
with HER2-expressing breast cancers or BRAF-mutant melano-
mas, respectively, and immune checkpoint inhibitors recently
received tissue-agnostic approval for treating patients whose
tumors exhibit microsatellite instability. With the advent of
personalized cancer medicine, the portfolio of anti-tumor agents
and companion diagnostic assays has experienced an unprece-
dented expansion, and a plethora of clinical trials are exploring
the most effective treatments for the best-matching patients. In
this context, data-driven approaches for optimizing clinical
matching, reducing the cost of diagnostic testing, and improving
the prediction of clinical phenotypes hold great promise for
enhancing the clinical management of patients and maximize
the value of precision oncology. However, all stakeholders must
be aware of the important challenges that need to be overcome
to reach these goals. This editorial aims at raising awareness
about these challenges.

Artificial intelligence (Al), and more concretely its machine
learning (ML) branch, can process large-scale and heteroge-
neous data sets to discern medically relevant patterns. ML is
hence showing promise for making a positive impact in patient
care. Pioneering works in the field of computer vision, and
specifically in digital pathology, have demonstrated the
enormous potential of ML models for improving the accuracy
of diagnostic protocols using automated methods that require
little human input. For instance, deep learning models can learn
to predict molecular features of tumor samples, such as driver
mutations or histological subtyping, based on features of
histopathological images'2. Approaches such as this could be
scaled-up and incorporated in clinical pathways to streamline
the time-consuming task of histological examination, and the
generalization across tumor types and potential for accelerating
clinical diagnoses through assisting expert pathologists have
been supported by recent studies®>™. The field of diagnostic
radiology is another area where the integration of ML
techniques might have an impact on early cancer detection
and diagnosis. Models trained on sufficiently large and well-
annotated data sets of mammography or chest radiographs
have demonstrated potential to predict the risk of developing
breast® or lung’ cancers by extracting information that is often
imperceptible to the expert human eye, and to identify
prognostic imaging biomarkers that can be associated with
long-term patient outcome®. In non-invasive molecular testing,
random forest algorithms applied on circulating microRNAs® can
accurately diagnose glioblastoma preoperatively, and other
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types of ML analyses applied to DNA methylation signatures
measured in plasma cell-free nucleic acids achieve robust
performance for tumor detection and classification'®. To date,
however, these models have been tested in retrospective
studies, and their real-world impact for accelerating clinical
workflows and increasing the rates of early cancer detection
remains to be achieved prospectively.

On another clinical front, Al-powered decision support
systems are increasingly getting better at optimizing treatment
decision making for cancer patients. In addition to their role in
drug discovery efforts, ML models integrating data on tumor
growth kinetics, molecular profiling, and pharmacological
properties could provide accurate prospective recommenda-
tions on the most effective therapeutic approaches for
individual cancer patients—be it through drug repurposing, by
identifying synergistic drug combinations, or in optimizing
dosing schedules to maximize therapeutic efficacy. For this to be
achieved, population-scale data sets containing well-annotated
clinical and molecular information need to be made avail-
able'" "2 Issues such as tumor heterogeneity and sampling bias,
tumor evolution dynamics, or incomplete information on
electronic medical records, among many other factors, represent
major roadblocks for using and integrating these sources of data
to build ML models, and are only partially solved by approaches
increasing training set size (number of patients) at the expense
of relevance (e.g., including patients with other cancer subtypes
or treated with related drugs) or robustness of the data (e.g.,
merging clinical trials with different dosage schedules or even
exploiting less-controlled data such as electronic health
records). Even in the uncommon situations where large, care-
fully curated, and relevant data sets with low levels of noise are
available, several fundamental methodological challenges cur-
rently limit ML approaches, including reliable inference of
testable causality'®, identifying the most suitable algorithm
and features to solve a given problem', learning from high-
dimensional data sets'?, or accurately estimating model general-
ization'®. A related medical challenge is found when predicting
patient response or resistance to anti-cancer treatments, not
only for cytotoxic chemotherapies that form the backbone of
most treatment regimens, but also for targeted therapies that
either elicit unacceptable toxicities or achieve modest benefit
even in the presence of the associated genomic marker. Here
too, ML models are particularly promising for improving these
predictions by identifying an optimal combination of patient
features, which may include a range of non-genetic tumor
features, if provided with appropriate input training data'’. To
overcome the limitation imposed by the paucity of large, well-
annotated patient data sets, some studies have attempted to
predict clinical phenotypes using ML models trained on
response data from preclinical experimental systems of
patient-derived xenografts'® or large-scale in vitro drug
response studies'®. However, despite the high value of
preclinical models for drug development?®?', their general
usefulness for precision oncology remains to be proven?2. The
problem of predicting optimal treatment approaches and
response patterns remains unsolved, despite substantial efforts,
as these models have not so far influenced clinical care in a
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significant way. Notwithstanding, this nascent field may hold
great potential for advancing precision oncology.

The success of Al systems across medical domains will also
depend on establishing a roadmap that delineates the step-wise
integration of digital tools in the clinic?®. There have been
several initiatives proposing “best practice” guidelines to ensure
that Al methods are developed and deployed in a way that
maximizes the benefit for patients. On the model development
front, these include recommendations for providing sufficient
methodological detail on the development of algorithms, and
encouraging sharing of data sets and code to enhance the
transparency in the reporting of Al algorithms in medi-
cine'"122425 and allow other researchers to determine the
rigor, quality, reproducibility, and generalizability of the find-
ings?6-28, Studies also need to adopt standardized guidelines for
describing and reporting aspects related to the purpose and
context of the “clinical need” that is being addressed, the quality
of data used to train the models—including issues related to
power calculation, labeling, model biases, etc.—measures of
performance, outputs and framework for integration in clinical
pathways and workflows, among others. Many of these issues
have been approached by recent checklists intending to
promote a standard and transparent reporting of clinical
interventions involving ML approaches?*=3'. In addition, suc-
cessful deployment of Al systems in the clinic will largely
depend on the trust that end-users—clinicians and patients
alike—have in the recommendations provided. To achieve this,
it will be necessary to educate users on the working principles
and degree of interpretability of Al systems, and to carefully
define and test the interfaces that enable human-computer
collaboration.

The application of Al to precision oncology is still in its infancy.
In recent years we have witnessed a proliferation of proof-of-
concept studies that offer a glimpse of what the next generation
of precision oncology could look like. We have outlined here
several challenges that need to be overcome for Al to make strides
in medicine. We have also argued that the prospective application
of these Al systems needs to follow a responsible path in
collaboration with all stakeholders. Expectations are justifiably
high given these initial studies, but true progress can only come
from a deeper understanding of the discussed limitations. We look
forward to seeing how Al may enhance precision oncology
approaches and improve patient care around the world in the
years to come.
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